Dynamic Consensus: Increasing Blockchain Adaptability to Enterprise Applications

  • Alex ButeanEmail author
  • Evangelos Pournaras
  • Andrei Tara
  • Hjalmar Turesson
  • Kirill Ivkushkin
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1226)


Decentralization powered by blockchain is validated for its capability to build trust like no other computational system before. The evolution of blockchain models has opened new use-cases that are becoming operational in many industry fields such as: energy, healthcare, banking, cross-border trade, aerospace, supply chain, and others. The core component of a decentralized architecture is the consensus algorithm - the set of rules that ensures an automated and fair agreement between the actors in the same network. Classic consensus algorithms are tailored to solve specific problems, but in an open ecosystem, each business case is unique and needs a certain level of customization. This paper introduces a new meta-consensus model called Dynamic Consensus, an architecture extension that allows multiple, complementary, consensus algorithms to run on the same platform. While classic consensus mechanisms are more appropriate for public or private systems (narrow set of rules), a dynamic approach would fit better for federated business consortiums (more rules and higher need for adaptability). The model is illustrated and analyzed as an ongoing experimental feature that can be added to enterprise blockchains designed to operate in cross-domain environments.


Decentralized system Blockchain Consensus Enterprise 


  1. 1.
    Al-Bassam, M., Sonnino, A., Bano, S., Hrycyszyn, D., Danezis, G.: Chainspace: A Sharded Smart Contracts Platform, arXiv:1708.03778v (2017)
  2. 2.
    Ali, A.A., El-Dessouky, I., Abdallah, M., Nabih, A.: The quest for fully smart autonomous business networks in IoT platforms. In: Proceedings of the 3rd Africa and Middle East Conference on Software Engineering, pp. 13–18. ACM, New York (2017)Google Scholar
  3. 3.
    Anwar, H.: 101Blockchain: Consensus Algorithms Blockchain. (2018)
  4. 4.
    Baliga, A.: Understanding Blockchain Consensus Models, Persistent Systems. (2017)
  5. 5.
    Ballandies, M.C., Dapp, M.M., Pournaras, E.: Decrypting distributed ledger design-taxonomy, classification and blockchain community evaluation. arXiv preprint arXiv:1811.03419 (2020)
  6. 6.
    Brown, R.G.: The Corda Platform: An Introduction, Corda R3 Documents (2018)Google Scholar
  7. 7.
    Buterin, V., Griffith, V.: Casper the Friendly Finality Gadget, arXiv:1710.09437v4 (2019)
  8. 8.
    Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: Proceedings of the Third Symposium on Operating Systems Design and Implementation (OSDI 1999), pp. 173–186. USENIX Association, USA (1999)Google Scholar
  9. 9.
    Coleman, J., Horne, L., Xuanji, L.: Counterfactual: Generalized State Channels. (2018)
  10. 10.
    Dib, O., Brousmiche, K.-L., Durand, A., Thea, E., Hamida, E.B.: Consortium blockchains: overview, applications and challenges. Int. J. Adv. Telecommun. 11(1&2), 51–64 (2018)Google Scholar
  11. 11.
    Dinh, T.T.A.D, Wang, J., Chen, G., Liu, R., Chin, O.B., Tan, K.: BLOCKBENCH: a framework for analyzing private blockchains. In: Proceedings of the 2017 ACM International Conference on Management of Data (SIGMOD 2017), pp. 1085–1100. ACM, New York (2017)Google Scholar
  12. 12.
    Garcia Ribera, E.: Design and Implementation of a Proof-of-Stake Consensus Algorithm for Blockchain, Ph.D. Thesis at Universitat Politècnica de Catalunya (2018)Google Scholar
  13. 13.
    Gazi, P., Kiayias, A., Russell, A.: Stake-bleeding attacks on proof-of-stake blockchains. In: IEEE Crypto Valley Conference on Blockchain Technology (CVCBT), pp. 85–92 (2018)Google Scholar
  14. 14.
    Gervais, A., Karame, O.K., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S.: On the security and performance of proof of work blockchains. In: Proceedings of the 2016, ACM SIGSAC Conference on Computer and Communications Security (CCS 2016), pp. 3–16. Association for Computing Machinery, New York (2016)Google Scholar
  15. 15.
    Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzantine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on Operating Systems Principles, pp. 51–68 (2017)Google Scholar
  16. 16.
    Gramoli, V., Staples, M.: Blockchain standard: can we reach consensus? IEEE Commun. Stan. Mag. 2(3), 16–21 (2018)CrossRefGoogle Scholar
  17. 17.
    Insolar Team: Insolar Technical Paper (2019).
  18. 18.
    International Organization for Standardization, ISO/TC 307 - Blockchain and distributed ledger technologies (2016).
  19. 19.
    Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) Advances in Cryptology. Lecture Notes in Computer Science, vol. 10401. Springer, Cham (2017)Google Scholar
  20. 20.
    Kim, H., Laskowski, M.: Towards an ontology-driven blockchain design for supply chain provenance. Intell. Syst. Acc. Financ. Manage. 25(1), 18–27 (2018)CrossRefGoogle Scholar
  21. 21.
    Khan, N.: FAST: a MapReduce consensus for high performance blockchains. In: Proceedings of the 1st Workshop on Blockchain-enabled Networked Sensor Systems (BlockSys 2018), pp. 1–6. ACM, New York (2018)Google Scholar
  22. 22.
    Kraft, D.: Difficulty control for blockchain-based consensus systems. Peer-to-Peer Netw. Appl. 9(2), 397–413 (2015). Scholar
  23. 23.
    Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure sharding protocol For open Blockchains. In: ACM SIGSAC Conference on Computer and Communications Security, pp. 17–30, ACM, New York (2016)Google Scholar
  24. 24.
    Milutinovic, M., He, W., Wu, H., Kanwal, M.: Proof of luck: an efficient blockchain consensus protocol. In: Proceedings of the 1st Workshop on System Software for Trusted Execution (SysTEX 2016), pp. 1–6 ACM, New York (2016). Article 2Google Scholar
  25. 25.
    Mohanty, D.: R3 Corda for Architects and Developers. Apress (2019). ISBN-13: 978-1484245316Google Scholar
  26. 26.
    Moorsel, A.V.: Benchmarks and models for blockchain: consensus algorithms. SIGMETRICS Perform. Eval. Rev. 46(3), 113 (2018)CrossRefGoogle Scholar
  27. 27.
    Nguyen, G., Kim, K.: A survey about consensus algorithms used in blockchain. J. Inf. Process. Syst. 14(1), 101–128 (2018)Google Scholar
  28. 28.
    Pîrlea, G., Sergey, I.: Mechanising blockchain consensus. In: Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs, pp. 78–90. Association for ACM, New York (2018)Google Scholar
  29. 29.
    Shah, N.: Blockchain for Business with Hyperledger Fabric. BPB Publications (2019). ISBN-13: 978-9388511650Google Scholar
  30. 30.
    Slepak, G., Petrova, A.: The DCS Theorem, arXiv:1801.04335v1 (2017)
  31. 31.
    Stifter, N., Judmayer, A., Schindler, P., Zamyatin, A., Weippl, E.R.: Agreement with Satoshi - On the Formalization of Nakamoto Consensus. IACR Cryptology ePrint Archive (2018)Google Scholar
  32. 32.
    Tang, Y., Zou, Q., Chen, J., Li, K., Kamhoua, C.A., Kwiat, K., Njilla, L.: ChainFS: blockchain-secured cloud storage. In: IEEE 11th International Conference on Cloud Computing, pp. 987–990 (2018)Google Scholar
  33. 33.
    Tara, A., Ivkushkin, K., Butean, A., Turesson, H.: The evolution of blockchain virtual machine architecture towards an enterprise usage perspective. In: Silhavy, R. (eds.) Software Engineering Methods in Intelligent Algorithms. CSOC 2019. Advances in Intelligent Systems and Computing, vol. 984. Springer (2019)Google Scholar
  34. 34.
    The Linux Foundation, Hyperledger Architecture, Volume 1, Introduction to Hyperledger Business Blockchain Design Philosophy and Consensus (2017)Google Scholar
  35. 35.
    Vasa, V.: Difference Between SideChains and State Channels, Hackernoon (2018).
  36. 36.
    Zhang, J.: Kaleido - Permissions & Privacy: Core Elements of an Enterprise Blockchain (2019).

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Alex Butean
    • 1
    Email author
  • Evangelos Pournaras
    • 2
  • Andrei Tara
    • 1
  • Hjalmar Turesson
    • 3
  • Kirill Ivkushkin
    • 4
  1. 1.Lucian Blaga University of SibiuSibiuRomania
  2. 2.University of LeedsLeedsUK
  3. 3.York UniversityTorontoCanada
  4. 4.Insolar Technologies GmbHSteinhausenSwitzerland

Personalised recommendations