Advertisement

Evolutionary Retrace of the Third Eye

  • Mohammed Maan Al-Salihi
Chapter
  • 38 Downloads

Abstract

The pineal gland is an endocrine organ located deep in the brain; philosophers throughout the history suggested that this organ has particular importance. This chapter emphasizes the why rather than the how, trying to understand how this organ had started in its beginning and why it ended with its current status and trying to illustrate the stages that this organ went through during the evolutionary ladder.

Keywords

Evolution Pineal Neurosurgery Melatonin Retrace Evidences Light Genetics 

References

  1. 1.
    Korf HW, Oksche A, Ekström P, van Veen T, Zigler JS, Gery I, Stein P, Klein DC. S-antigen immunocytochemistry. Pineal and retinal relationships. Orlando: Academic Press; 1986. p. 343–55.Google Scholar
  2. 2.
    Dodt E. Photosensitivity of the pineal organ in the teleost, Salmo irideus (gibbons). Cell Mol Life Sci. 1963;19(12):642–3.Google Scholar
  3. 3.
    Morita Y, Dodt E. Early receptor potential from the pineal photoreceptor. Pflügers Arch Eur J Physiol. 1975;354(3):273–80.Google Scholar
  4. 4.
    Dodt E, Meissl H. The pineal and parietal organs of lower vertebrates. Cell Mol Life Sci. 1982;38(9):996–1000.Google Scholar
  5. 5.
    Rosner JM, de Pérez Bedés GD, Cardinali DP. Direct effect of light on duck pineal explants. Life Sci. 1971;10(18):1065–9.Google Scholar
  6. 6.
    Binkley SA, Riebman JB, Reilly KB. The pineal gland: a biological clock in vitro. Science. 1978;202(4373):1198–20.PubMedGoogle Scholar
  7. 7.
    Gern WA, Ralph CL. Melatonin synthesis by the retina. Science. 1979;204(4389):183–4.PubMedGoogle Scholar
  8. 8.
    Wainwright SD, Wainwright LK. Chick pineal serotonin acetyltransferase: a diurnal cycle maintained in vitro and its regulation by light. Can J Biochem. 1979;57(6):700–9.PubMedGoogle Scholar
  9. 9.
    Hamm HE, Takahashi JS, Menaker M. Light-induced decrease of serotonin N-acetyltransferase activity and melatonin in the chicken pineal gland and retina. Brain Res. 1983;266(2):287–93.PubMedGoogle Scholar
  10. 10.
    Zatz M. Relationship between light, calcium influx and cAMP in the acute regulation of melatonin production by cultured chick pineal cells. Brain Res. 1989;477(1):14–8.PubMedGoogle Scholar
  11. 11.
    Falcon J, Marmillon JB, Claustrat B, Collin JP. Regulation of melatonin secretion in a photoreceptive pineal organ: an in vitro study in the pike. J Neurosci. 1989;9(6):1943–50.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Cahill GM, Grace MS, Besharse JC. Rhythmic regulation of retinal melatonin: metabolic pathways, neurochemical mechanisms, and the ocular circadian clock. Cell Mol Neurobiol. 1991;11(5):529–60.PubMedGoogle Scholar
  13. 13.
    Iuvone PM, Tosini G, Pozdeyev N, Haque R, Klein DC, Chaurasia SS. Circadian clocks, clock networks, arylalkylamine N-acetyltransferase, and melatonin in the retina. Prog Retin Eye Res. 2005;24(4):433–56.PubMedGoogle Scholar
  14. 14.
    Wiechmann AF. Localization of hydroxyindole-O-methyltransferase in the retina: a re-evaluation. Exp Eye Res. 1993;57(3):379.PubMedGoogle Scholar
  15. 15.
    Rodriguez IR, Mazuruk K, Schoen TJ, Chader GJ. Structural analysis of the human hydroxyindole-O-methyltransferase gene. Presence of two distinct promoters. J Biol Chem. 1994;269(50):31969–77.PubMedGoogle Scholar
  16. 16.
    Bernard M, Donohue SJ, Klein DC. Human hydroxyindole-O-methyltransferase in pineal gland, retina and Y79 retinoblastoma cells. Brain Res. 1995;696(1):37–48.PubMedGoogle Scholar
  17. 17.
    Craft CM, Murage J, Brown B, Zhan-Poe X. Bovine arylalkylamine N-acetyltransferease activity correlated with mRNA expression in pineal and retina. Mol Brain Res. 1999;65(1):44–51.PubMedGoogle Scholar
  18. 18.
    Coon SL, Mazuruk K, Bernard M, Roseboom PH, Klein DC, Rodriguez IR. The human Serotonin N-Acetyltransferase (EC 2.3. 1.87) gene (AANAT): structure, chromosomal localization, and tissue expression. Genomics. 1996;34(1):76–84.PubMedGoogle Scholar
  19. 19.
    Reppert SM. Melatonin receptors: molecular biology of a new family of G protein-coupled receptors. J Biol Rhythm. 1997;12(6):528–31.Google Scholar
  20. 20.
    Barrett P, Conway S, Morgan PJ. Digging deep–structure–function relationships in the melatonin receptor family. J Pineal Res. 2003;35(4):221–30.PubMedGoogle Scholar
  21. 21.
    Dubocovich ML, Rivera-Bermudez MA, Gerdin MJ, Masana MI. Molecular pharmacology, regulation and function of mammalian melatonin receptors. Front Biosci. 2003;8:d1093–108.PubMedGoogle Scholar
  22. 22.
    Eakin RM. The third eye. Ther Ber.Google Scholar
  23. 23.
    Collin JP, Oksche A. Structural and functional relationships in the nonmammalian pineal gland. Pineal Gland. 1981;1:27–67.Google Scholar
  24. 24.
    Ekström P, Meissl H. Evolution of photosensory pineal organs in new light: the fate of neuroendocrine photoreceptors. Philos Trans R Soc London B. 2003;358(1438):1679–700.Google Scholar
  25. 25.
    Klein DC. The 2004 Aschoff/Pittendrigh lecture: theory of the origin of the pineal gland—a tale of conflict and resolution. J Biol Rhythm. 2004;19(4):264–79.Google Scholar
  26. 26.
    Zimmerman BL, Tso MO. Morphologic evidence of photoreceptor differentiation of pinealocytes in the neonatal rat. J Cell Biol. 1975;66(1):60–75.PubMedGoogle Scholar
  27. 27.
    Kalsow CM, Wacker WB. Pineal reactivity of anti-retina sera. Invest Ophthalmol Vis Sci. 1977;16(2):181–4.PubMedGoogle Scholar
  28. 28.
    Kalsow CM, Wacker WB. Pineal gland involvement in retina-induced experimental allergic uveitis. Invest Ophthalmol Vis Sci. 1978;17(8):774–83.PubMedGoogle Scholar
  29. 29.
    Somers RL, Klein DC. Rhodopsin kinase activity in the mammalian pineal gland and other tissues. Science. 1984;226:182–5.PubMedGoogle Scholar
  30. 30.
    Korf HW, Møller M, Gery I, Zigler JS, Klein DC. Immunocytochemical demonstration of retinal S-antigen in the pineal organ of four mammalian species. Cell Tissue Res. 1985;239(1):81–5.PubMedGoogle Scholar
  31. 31.
    Korf HW, Korl B, Schachenmayr W, Chader GJ, Wiggert B. Immunocytochemical demonstration of interphotoreceptor retinoid-binding protein in cerebellar medulloblastoma. Acta Neuropathol. 1992;83(5):482–7.PubMedGoogle Scholar
  32. 32.
    Korf HW, White BH, Schaad NC, Klein DC. Recoverin in pineal organs and retinae of various vertebrate species including man. Brain Res. 1992;595(1):57–66.PubMedGoogle Scholar
  33. 33.
    Mirshahi M, Boucheix C, Collenot G, Thillaye B, Faure JP. Retinal S-antigen epitopes in vertebrate and invertebrate photoreceptors. Invest Ophthalmol Vis Sci. 1985;26(7):1016–21.PubMedGoogle Scholar
  34. 34.
    Donoso LA, Merryman CF, Edelberg KE, Naids R, Kalsow C. S-antigen in the developing retina and pineal gland: a monoclonal antibody study. Invest Ophthalmol Vis Sci. 1985;26(4):561–7.PubMedGoogle Scholar
  35. 35.
    Van Veen T, Katial A, Shinohara T, Barrett DJ, Wiggert B, Chader GJ, Nickerson JM. Retinal photoreceptor neurons and pinealocytes accumulate mRNA for interphotoreceptor retinoid-binding protein (IRBP). FEBS Lett. 1986;208(1):133–7.PubMedGoogle Scholar
  36. 36.
    Van Veen T, Ostholm TH, Gierschik P, Spiegel A, Somers R, Korf HW, Klein DC. Alpha-Transducin immunoreactivity in retinae and sensory pineal organs of adult vertebrates. Proc Natl Acad Sci. 1986;83(4):912–6.PubMedGoogle Scholar
  37. 37.
    Van Veen T, Elofsson R, Hartwig HG, Gery I, Mochizuki M, Cena V, Klein DC. Retinal S-antigen: immunocytochemical and immunochemical studies on distribution in animal photoreceptors and pineal organs. Exp Biol. 1986;45(1):15.PubMedGoogle Scholar
  38. 38.
    Rodrigues MM, Hackett J, Gaskins R, Wiggert B, Lee L, Redmond M, Chader GJ. Interphotoreceptor retinoid-binding protein in retinal rod cells and pineal gland. Invest Ophthalmol Vis Sci. 1986;27(5):844–50.PubMedGoogle Scholar
  39. 39.
    Reig JA, Yu L, Klein DC. Pineal transduction. Adrenergic—cyclic AMP-dependent phosphorylation of cytoplasmic 33-kDa protein (MEKA) which binds beta gamma-complex of transducin. J Biol Chem. 1990;265(10):5816–24.PubMedGoogle Scholar
  40. 40.
    Schaad NC, Shinohara T, Abe T, Klein DC. Photoneural control of the synthesis and phosphorylation of pineal MEKA (phosducin). Endocrinology. 1991;129(6):3289–98.PubMedGoogle Scholar
  41. 41.
    Babila T, Schaad NC, Simonds WF, Shinohara T, Klein DC. Development of MEKA (phosducin), Gβ, Gγ and S-antigen in the rat pineal gland and retina. Brain Res. 1992;585(1):141–8.PubMedGoogle Scholar
  42. 42.
    Blackshaw S, Snyder SH. Developmental expression pattern of phototransduction components in mammalian pineal implies a light-sensing function. J Neurosci. 1997;17(21):8074–82.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Okano T, Yoshizawa T, Fukada Y. Pinopsin is a chicken pineal photoreceptive molecule. Nature. 1994;372(6501):94–7.PubMedGoogle Scholar
  44. 44.
    Max M, McKinnon PJ, Seidenman KJ, Barrett RK, Applebury ML, Takahashi JS, Margolskee RF. Pineal opsin: a nonvisual opsin expressed in chick pineal. Science. 1995;267(5203):1502–6.PubMedGoogle Scholar
  45. 45.
    Mano H, Kojima D, Fukada Y. Exo-rhodopsin: a novel rhodopsin expressed in the zebrafish pineal gland. Mol Brain Res. 1999;73(1):110–8.PubMedGoogle Scholar
  46. 46.
    Kojima D, Fukada Y. Non-visual photoreception by a variety of vertebrate opsins. Novartis Found Symp. 1999;224:265–82.PubMedGoogle Scholar
  47. 47.
    Araki M. Developmental potency of cultured pineal cells: an approach to pineal developmental biology. Microsc Res Tech. 2001;53(1):33–42.PubMedGoogle Scholar
  48. 48.
    Araki M, Nonaka T, Watanabe K, Tokunaga F. Phenotypic expression of photoreceptor and endocrine cell properties by cultured pineal cells of the newborn rat. Cell Differ Dev. 1988;25(2):155–63.PubMedGoogle Scholar
  49. 49.
    Araki M, Kodama R, Eguchi G, Yasujima M, Orii H, Watanabe K. Retinal differentiation from multipotential pineal cells of the embryonic quail. Neurosci Res. 1993;18(1):63–72.PubMedGoogle Scholar
  50. 50.
    Tosini G, Doyle S, Geusz M, Menaker M. Induction of photosensitivity in neonatal rat pineal gland. Proc Natl Acad Sci. 2000;97(21):11540–4.PubMedGoogle Scholar
  51. 51.
    Shimauchi Y, Yahata T, Matsubara S, Araki M. Role of tissue interaction between pineal primordium and neighboring tissues in avian pineal morphogenesis studied by intraocular transplantation. Dev Genes Evol. 2002;212(7):319–29.PubMedGoogle Scholar
  52. 52.
    Jangir OP, Suthar P, Shekhawat DV, Acbarya P, Swami KK, Sharma M. The “Third Eye”—A new concept of trans-differentiation of pineal gland into median eye in amphibian tadpoles of Bufo melanostictus.Google Scholar
  53. 53.
    Chen S, Wang QL, Nie Z, Sun H, Lennon G, Copeland NG, Gilbert DJ, Jenkins NA, Zack DJ. Crx, a novel Otx-like paired-homeodomain protein, binds to and transactivates photoreceptor cell-specific genes. Neuron. 1997;19(5):1017–30.PubMedGoogle Scholar
  54. 54.
    Furukawa T, Morrow EM, Li T, Davis FC, Cepko CL. Retinopathy and attenuated circadian entrainment in Crx-deficient mice. Nat Genet. 1999;23(4):466–70.PubMedGoogle Scholar
  55. 55.
    Gamse JT, Shen YC, Thisse C, Thisse B, Raymond PA, Halpern ME, Liang JO. Otx5 regulates genes that show circadian expression in the zebrafish pineal complex. Nat Genet. 2002;30:1.Google Scholar
  56. 56.
    Bernard M, Dinet V, Voisin P. Transcriptional regulation of the chicken hydroxyindole-O-methyltransferase gene by the cone–rod homeobox-containing protein. J Neurochem. 2001;79(2):248–57.PubMedGoogle Scholar
  57. 57.
    Ekström P, Meissl H. Evolution of photosensory pineal organs in new light: the fate of neuroendocrine photoreceptors. Philos Trans R Soc London B. 2003;358(1438):1679–700.Google Scholar
  58. 58.
    Appelbaum L, Toyama R, Dawid IB, Klein DC, Baler R, Gothilf Y. Zebrafish serotonin-N-acetyltransferase-2 gene regulation: pineal-restrictive downstream module contains a functional E-box and three photoreceptor conserved elements. Mol Endocrinol. 2004;18(5):1210–21.PubMedGoogle Scholar
  59. 59.
    Appelbaum L, Anzulovich A, Baler R, Gothilf Y. Homeobox-clock protein interaction in Zebrafish a shared mechanism for pineal-specific and circadian gene expression. J Biol Chem. 2005;280(12):11544–51.PubMedGoogle Scholar
  60. 60.
    Nishida A, Furukawa A, Koike C, Tano Y, Aizawa S, Matsuo I, Furukawa T. Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development. Nat Neurosci. 2003;6(12):1255–63.PubMedGoogle Scholar
  61. 61.
    Jakobiec FA, Tso MO, Zimmerman LE, Danis P. Retinoblastoma and intracranial malignancy. Cancer. 1977;39(5):2048–58.PubMedGoogle Scholar
  62. 62.
    Bader J, Miller R, Meadows A, Zimmerman L, Champion LA, Voute PA. Trilateral retinoblastoma. Lancet. 1980;316(8194):582–3.Google Scholar
  63. 63.
    Mouratova T. Trilateral retinoblastoma: A. Bull Soc Belge Ophtalmol. 2005;297:25–35.Google Scholar
  64. 64.
    Calvo J, Boya J. Embryonic development of the rat pineal gland. Anat Rec. 1981;200(4):491–500.PubMedGoogle Scholar
  65. 65.
    Tamminga CA. Images in neuroscience: brain development, I: the neural plate. Am J Psychiatry. 1998;155(3):324.Google Scholar
  66. 66.
    Voisin P, Namboodiri MA, Klein DC. Arylamine N-acetyltransferase and arylalkylamine N-acetyltransferase in the mammalian pineal gland. J Biol Chem. 1984;259(17):10913–8.PubMedGoogle Scholar
  67. 67.
    Coon SL, Roseboom PH, Baler R, Weller JL, Namboodiri MA, Koonin EV, Klein DC. Pineal serotonin N-acetyltransferase: expression cloning and molecular analysis. Science. 1995;270(5242):1681–3.PubMedGoogle Scholar
  68. 68.
    Ferry G, Loynel A, Kucharczyk N, Bertin S, Rodriguez M, Delagrange P, Galizzi JP, Jacoby E, Volland JP, Lesieur D, Renard P. Substrate specificity and inhibition studies of human Serotonin N-Acetyltransferase. J Biol Chem. 2000;275(12):8794–805.PubMedGoogle Scholar
  69. 69.
    Ferry G, Ubeaud C, Dauly C, Mozo J, Guillard S, Berger S, Jimenez S, Scoul C, Leclerc G, Yous S, Delagrange P. Purification of the recombinant human serotonin N-acetyltransferase (EC 2.3. 1.87): further characterization of and comparison with AANAT from other species. Protein Expr Purif. 2004;38(1):84–98.PubMedGoogle Scholar
  70. 70.
    Klein DC, Coon SL. The melatonin rhythm enzyme in the retina: a detoxification role. Ann Rev Pharmacol Tox (in press). 2006.Google Scholar
  71. 71.
    Klein DC, Coon SL, Roseboom PH, Weller JL, Bernard M, Gastel JA, Zatz M, Iuvone M, Rodriguez IR, Bégay V, Falcon J. The melatonin rhythm-generating enzyme: molecular regulation of serotonin N-acetyltransferase in the pineal gland. Recent Prog Horm Res. 1997;52:307–58.PubMedGoogle Scholar
  72. 72.
    Klein DC. The 2004 Aschoff/Pittendrigh lecture: theory of the origin of the pineal gland—a tale of conflict and resolution. J Biol Rhythm. 2004;19(4):264–79.Google Scholar
  73. 73.
    Goodwin LG, Richards WH, Udall V. The toxicity of diaminodiphenoxyalkanes. Br J Pharmacol. 1957;12(4):468–74.Google Scholar
  74. 74.
    Bernstein PS, Rando RR. The specific inhibition of 11-cis-retinyl palmitate formation in the frog eye by diaminophenoxypentane, an inhibitor of rhodopsin regeneration. Vis Res. 1985;25(6):741–8.PubMedGoogle Scholar
  75. 75.
    Bernstein PS, Lichtman JR, Rando RR. Short-circuiting the visual cycle with retinotoxic aromatic amines. Proc Natl Acad Sci. 1986;83(6):1632–5.PubMedGoogle Scholar
  76. 76.
    Hein DW, McQueen CA, Grant DM, Goodfellow GH, Kadlubar FF, Weber WW. Pharmacogenetics of the arylamineN-acetyltransferases: a symposium in honor of Wendell W. Weber. Drug Metab Dispos. 2000;28(12):1425–32.PubMedGoogle Scholar
  77. 77.
    Hein DW. N-Acetyltransferase genetics and their role in predisposition to aromatic and heterocyclic amine-induced carcinogenesis. Toxicol Lett. 2000;112:349–56.PubMedGoogle Scholar
  78. 78.
    Kilbane AJ, Petroff TH, Weber WW. Kinetics of acetyl CoA: arylamine N-acetyltransferase from rapid and slow acetylator human liver. Drug Metab Dispos. 1991;19(2):503–7.PubMedGoogle Scholar
  79. 79.
    Weber WW. Acetylating, deacetylating and amino acid conjugating enzymes. In: Concepts in biochemical pharmacology. Berlin, Heidelberg: Springer; 1971. p. 564–83.Google Scholar
  80. 80.
    Weber WW. Acetylation of drugs. In: Metabolic conjugation and metabolic hydrolysis, vol. III. Amsterdam: Elsevier; 1973. p. 249–96.Google Scholar
  81. 81.
    Weber WW. The acetylator genes and drug response. Oxford: Oxford University Press; 1987.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mohammed Maan Al-Salihi
    • 1
  1. 1.College of Medicine, University of BaghdadBaghdadIraq

Personalised recommendations