Animal Based Surgical Training in Pineal Approaches

  • Samer S. HozEmail author
  • Rami Darwazeh
  • Mohammed Sabah Abdulqader
  • Osama Majeed Alaawadi
  • Gulshan Talat Muhammed
  • Awfa Aktham Abdullateef
  • Aysar Khudhair Jassam
  • Alyaa Khadim Abdulreda
  • Hayder Ali Al-Saadi


The nonliving animal head model greatly simulates the standard neurosurgical procedures, and thus it is a useful, cost effective, and an easily applicable tool for developing and refining neurosurgical skills. Like any surgical specialty, neurosurgery requires the development of dexterity and skills for basic up to difficult techniques and procedures. In delicate organs such as the central nervous system, the neurosurgeon’s individual skills play a crucial role in preventing complications and determining patient outcome. Active measures for further development and refinement of nonliving animal-based models and programs are warranted for optimized residency outcome.


Pineal Animal Sheep Simulation Microneurosurgical 


  1. 1.
    Yaşargil MG. From the microsurgical laboratory to the operating theatre. Acta Neurochir. 2005;147(5):465–8.CrossRefGoogle Scholar
  2. 2.
    Dandy WE. An operation for the removal of pineal tumors. Surg Gynecol Obstet. 1921;33:113–9.Google Scholar
  3. 3.
    Egermann M, Gerhardt C, Barth A, Maestroni GJ, Schneider E, Alini M. Pinealectomy affects bone mineral density and structure-an experimental study in sheep. BMC Musculoskelet Disord. 2011;12(1):271.CrossRefGoogle Scholar
  4. 4.
    Tricoire H, Malpaux B, Møller M. Cellular lining of the sheep pineal recess studied by light-, transmission-, and scanning electron microscopy: morphologic indications for a direct secretion of melatonin from the pineal gland to the cerebrospinal fluid. J Comp Neurol. 2003;456(1):39–47.CrossRefGoogle Scholar
  5. 5.
    Güney M, Ayranci E, Kaplan S. Development and histology of the pineal gland in animals. Step by step experimental pinealectomy techniques in animals for researchers. New York: Nova Science Publishers; 2013. p. 33–52.Google Scholar
  6. 6.
    Dempsey RJ, Hopkins J, Bittman EL, Kindt GW. Total pinealectomy by an occipital parasagittal approach in sheep. Surg Neurol. 1982;18(5):377–80.CrossRefGoogle Scholar
  7. 7.
    Poppen JL. The right occipital approach to a pinealoma. J Neurosurg. 1966;25(6):706–10.CrossRefGoogle Scholar
  8. 8.
    Menovsky T. A human skull cast model for training of intracranial microneurosurgical skills. Microsurgery. 2000;20(7):311–3.CrossRefGoogle Scholar
  9. 9.
    Stienen MN, Netuka D, Demetriades AK, Ringel F, Gautschi OP, Gempt J, Kuhlen D, Schaller K. Residency program trainee-satisfaction correlate with results of the European board examination in neurosurgery. Acta Neurochir. 2016;158(10):1823–30.CrossRefGoogle Scholar
  10. 10.
    Stienen MN, Netuka D, Demetriades AK, Ringel F, Gautschi OP, Gempt J, Kuhlen D, Schaller K. Working time of neurosurgical residents in Europe—results of a multinational survey. Acta Neurochir. 2016;158(1):17–25.CrossRefGoogle Scholar
  11. 11.
    Suri A, Patra DP, Meena RK. Simulation in neurosurgery: past, present, and future. Neurol India. 2016;64(3):387.CrossRefGoogle Scholar
  12. 12.
    Rehder R, Abd-El-Barr M, Hooten K, Weinstock P, Madsen JR, Cohen AR. The role of simulation in neurosurgery. Childs Nerv Syst. 2016;32(1):43–54.CrossRefGoogle Scholar
  13. 13.
    Kirkman MA, Ahmed M, Albert AF, Wilson MH, Nandi D, Sevdalis N. The use of simulation in neurosurgical education and training: a systematic review. J Neurosurg. 2014;121(2):228–46.CrossRefGoogle Scholar
  14. 14.
    Stienen MN, Schaller K, Cock H, Lisnic V, Regli L, Thomson S. eLearning resources to supplement postgraduate neurosurgery training. Acta Neurochir. 2017;159(2):325–37.CrossRefGoogle Scholar
  15. 15.
    Roitberg B, Banerjee P, Luciano C, Matulyauskas M, Rizzi S, Kania P, Gasco J. Sensory and motor skill testing in neurosurgery applicants: a pilot study using a virtual reality haptic neurosurgical simulator. Neurosurgery. 2013;73(suppl_1):S116–21.CrossRefGoogle Scholar
  16. 16.
    Hayashi S, Naito M, Kawata S, Qu N, Hatayama N, Hirai S, Itoh M. History and future of human cadaver preservation for surgical training: from formalin to saturated salt solution method. Anat Sci Int. 2016;91(1):1–7.CrossRefGoogle Scholar
  17. 17.
    Stein BM. The supracerebellar infratentorial approach to pineal lesions. J Neurosurg. 1971;35(2):197–202.CrossRefGoogle Scholar
  18. 18.
    Hicdonmez T, et al. Posterior fossa approach: microneurosurgical training model in cadaveric sheep. Turk Neurosurg. 2006;16(3):111–4.Google Scholar
  19. 19.
    Hicdonmez T, Hamamcioglu MK, Tiryaki M, Cukur Z, Cobanoglu S. Microneurosurgical training model in fresh cadaveric cow brain: a laboratory study simulating the approach to the circle of Willis. Surg Neurol. 2006;66(1):100–4.CrossRefGoogle Scholar
  20. 20.
    Regelsberger J, Heese O, Horn P, Kirsch M, Eicker S, Sabel M, Westphal M. Training microneurosurgery–four years experiences with an in vivo model. Central Eur Neurosurg Zentralblatt für Neurochirurgie. 2011;72(04):192–5.CrossRefGoogle Scholar
  21. 21.
    Aurich LA, Silva Junior LF, Monteiro FM, Ottoni AN, Jung GS, Ramina R. Microsurgical training model with nonliving swine head. Alternative for neurosurgical education. Acta Cir Bras. 2014;29(6):405–9.CrossRefGoogle Scholar
  22. 22.
    Silva LF, Aurich L, Monteiro F, Zambon L, Nogueira G, Ramina R. Microsurgical and endoscopic training model with nonliving swine head: new alternative for skull base education. J Neurolog Surg Part B. 2014;75(S01):A190.Google Scholar
  23. 23.
    Sindou M. Practical handbook of neurosurgery, vol. 2. 1st ed. Vienna: Springer; 2009. p. 286.CrossRefGoogle Scholar
  24. 24.
    Carey JN, Minneti M, Leland HA, Demetriades D, Talving P. Perfused fresh cadavers: method for application to surgical simulation. Am J Surg. 2015;210(1):179–87.CrossRefGoogle Scholar
  25. 25.
    Greenberg MS, Greenberg MS. Handbook of neurosurgery. 8th ed. Tampa: Greenberg Graphics; 2016. p. 663.CrossRefGoogle Scholar
  26. 26.
    Reiter RJ. The mammalian pineal gland: structure and function. Am J Anat. 1981;162(4):287–313.CrossRefGoogle Scholar
  27. 27.
    Yildiz D, Gultiken M, Bolat D. Arterial supply of the pineal gland of Akkaraman sheep. Acta Vet Hung. 2004;52(1):1–6.CrossRefGoogle Scholar
  28. 28.
    Grist EP. Transmissible spongiform encephalopathy risk assessment: the UK experience. Risk Anal Int J. 2005;25(3):519–32.CrossRefGoogle Scholar
  29. 29.
    Turan Suslu H, Ceylan D, Tatarlı N, Hıcdonmez T, Seker A, Bahrı Y, Kılıc T. Laboratory training in the retrosigmoid approach using cadaveric silicone injected cow brain. Br J Neurosurg. 2013;27(6):812–4.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Samer S. Hoz
    • 1
    Email author
  • Rami Darwazeh
    • 2
  • Mohammed Sabah Abdulqader
    • 3
  • Osama Majeed Alaawadi
    • 3
  • Gulshan Talat Muhammed
    • 3
  • Awfa Aktham Abdullateef
    • 3
  • Aysar Khudhair Jassam
    • 3
  • Alyaa Khadim Abdulreda
    • 3
  • Hayder Ali Al-Saadi
    • 3
  1. 1.Neurosurgery Teaching HospitalBaghdadIraq
  2. 2.Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
  3. 3.Department of NeurosurgeryNeurosurgery Teaching HospitalBaghdadIraq

Personalised recommendations