Paroxysmal Kinesigenic Dyskinesia

  • Katarzyna Smilowska
  • Roberto Erro
  • Kailash P. Bhatia


Paroxysmal kinesigenic dyskinesia (PKD) is the most common among the three typical forms of paroxysmal dyskinesia (PxD). It is defined by attacks of dystonia, chorea, or both, which are specifically triggered by sudden movements (hence kinesigenic). Infantile or childhood epilepsy may precede PKD in some instances, and hence overlap syndromes, namely, benign familial infantile seizures (BFIS) and the so-called infantile convulsion with choreoathetosis (ICCA), were recognized. Only after the discovery of the gene causing PKD, namely, PRRT2 (proline-rich transmembrane protein 2), it became evident that BFIS and ICCA were allelic conditions also caused by mutations in the same gene. Clinical syndromes have been better defined since the discovery of the PRRT2 gene for PKD, but it is clear that this is a genetically heterogeneous disorder with the PRRT2 gene accounting for up to 40–90% of cases in different studies. Phenotypes for the PRRT2 positive cases have been defined including early onset with kinesigenic triggers (but also others), multiple attacks a day, a male preponderance, and an excellent response to antiepileptic drugs, particularly carbamazepine. Phenotypic spread to include episodic ataxia and migraine, especially hemiplegic subtype, has been discovered in addition to childhood epilepsy. Other disorders where PKD-like attacks may occur include several genetic disorders, including but not limited to those associated with SCN8A (encoding a sodium voltage-gated channels alpha subunit 8), ADCY5 (encoding for adenylate cyclase 5), and SLC16A2 (encoding monocarboxylate transporter type 8 (MCT8) mutations. However, most of these have particular characteristics and are usually complex disorders with associated features. It is likely that further genetic conditions will be recognized to cause PKD.


Paroxysmal disorders Paroxysmal kinesigenic dyskinesia Paroxysmal kinesigenic dyskinesia with infantile convulsions Benign familial infantile epilepsy Hemiplegic migraine PRRT2 PKD-like episodes 

Supplementary material

Video 3.1

A very brief dystonic attack involving the left arm is observed as soon as this lady gets ups from the chair, with no change in consciousness or associated pain, thus fulfilling the criteria for PKD (MPG 5401 kb)


  1. 1.
    Spacey S, Adams P. Familial paroxysmal kinesigenic dyskinesia. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. GeneReviews((R)). Seattle: University of Washington, Seattle. University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved; 1993.Google Scholar
  2. 2.
    Demirkiran M, Jankovic J. Paroxysmal dyskinesias: clinical features and classification. Ann Neurol. 1995;38(4):571–9.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Erro R, Sheerin UM, Bhatia KP. Paroxysmal dyskinesias revisited: a review of 500 genetically proven cases and a new classification. Mov Disord. 2014;29(9):1108–16.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Houser MK, Soland VL, Bhatia KP, Quinn NP, Marsden CD. Paroxysmal kinesigenic choreoathetosis: a report of 26 patients. J Neurol. 1999;246(2):120–6.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Bruno MK, Hallett M, Gwinn-Hardy K, Sorensen B, Considine E, Tucker S, et al. Clinical evaluation of idiopathic paroxysmal kinesigenic dyskinesia: new diagnostic criteria. Neurology. 2004;63(12):2280–7.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Ebrahimi-Fakhari D, Saffari A, Westenberger A, Klein C. The evolving spectrum of PRRT2-associated paroxysmal diseases. Brain J Neurol. 2015;138(Pt 12):3476–95.CrossRefGoogle Scholar
  7. 7.
    Chen WJ, Lin Y, Xiong ZQ, Wei W, Ni W, Tan GH, et al. Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia. Nat Genet. 2011;43(12):1252–5.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Erro R, Bhatia KP. Unravelling of the paroxysmal dyskinesias. J Neurol Neurosurg Psychiatry. 2019;90:227–34.Google Scholar
  9. 9.
    Meneret A, Gaudebout C, Riant F, Vidailhet M, Depienne C, Roze E. PRRT2 mutations and paroxysmal disorders. Eur J Neurol. 2013;20(6):872–8.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Gardiner AR, Jaffer F, Dale RC, Labrum R, Erro R, Meyer E, et al. The clinical and genetic heterogeneity of paroxysmal dyskinesias. Brain J Neurol. 2015;138(Pt 12):3567–80.CrossRefGoogle Scholar
  11. 11.
    Lance JW. Familial paroxysmal dystonic choreoathetosis and its differentiation from related syndromes. Ann Neurol. 1977;2(4):285–93.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Bhatia KP. Paroxysmal dyskinesias. Mov Disord. 2011;26(6):1157–65.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Roze E, Méneret A, Vidailhet M. Chapter 48 – paroxysmal movement disorders: clinical and genetic features. In: LeDoux MS, editor. Movement disorders. 2nd ed. Boston: Academic Press; 2015. p. 767–78.CrossRefGoogle Scholar
  14. 14.
    Williams J, Stevens H. Familial paroxysmal chorea-athetosis. Pediatrics. 1963;31(4):656–9.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Kato M, Araki S. Paroxysmal kinesignenic choreoathetosis. Report of a case relieved by carbamazepine. Arch Neurol. 1969;20(5):508–13.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Jung SS, Chen KM, Brody JA. Paroxysmal choreoathetosis. Report of Chinese cases. Neurology. 1973;23(7):749–55.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Gilroy J. Abnormal computed tomograms in paroxysmal kinesigenic choreoathetosis. Arch Neurol. 1982;39(12):779–80.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Silveira-Moriyama L, Gardiner AR, Meyer E, King MD, Smith M, Rakshi K, et al. Clinical features of childhood-onset paroxysmal kinesigenic dyskinesia with PRRT2 gene mutations. Dev Med Child Neurol. 2013;55(4):327–34.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Cloarec R, Bruneau N, Rudolf G, Massacrier A, Salmi M, Bataillard M, et al. PRRT2 links infantile convulsions and paroxysmal dyskinesia with migraine. Neurology. 2012;79(21):2097–103.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Fusco C, Russo A, Invernizzi F, Frattini D, Pisani F, Garavaglia B. Novel phenotype in a family with infantile convulsions and paroxysmal choreoathetosis syndrome and PRRT2 gene mutation. Brain Dev. 2014;36(2):183–4.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Zhang LM, An Y, Pan G, Ding YF, Zhou YF, Yao YH, et al. Reduced penetrance of PRRT2 mutation in a chinese family with infantile convulsion and choreoathetosis syndrome. J Child Neurol. 2015;30(10):1263–9.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Weber A, Kohler A, Hahn A, Neubauer B, Muller U. Benign infantile convulsions (IC) and subsequent paroxysmal kinesigenic dyskinesia (PKD) in a patient with 16p11.2 microdeletion syndrome. Neurogenetics. 2013;14(3–4):251–3.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Paucar M, Malmgren H, Svenningsson P. Paroxysmal kinesigenic dyskinesia. Tremor Other Hyperkinet Mov (N Y). 2017;7:529.CrossRefGoogle Scholar
  24. 24.
    Kertesz A. Paroxysmal kinesigenic choreoathetosis. An entity within the paroxysmal choreoathetosis syndrome. Description of 10 cases, including 1 autopsied. Neurology. 1967;17(7):680–90.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Li HF, Chen WJ, Ni W, Wang KY, Liu GL, Wang N, et al. PRRT2 mutation correlated with phenotype of paroxysmal kinesigenic dyskinesia and drug response. Neurology. 2013;80(16):1534–5.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Ferrell PB Jr, McLeod HL. Carbamazepine, HLA-B*1502 and risk of Stevens-Johnson syndrome and toxic epidermal necrolysis: US FDA recommendations. Pharmacogenomics. 2008;9(10):1543–6.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Chung WH, Hung SI, Hong HS, Hsih MS, Yang LC, Ho HC, et al. Medical genetics: a marker for Stevens-Johnson syndrome. Nature. 2004;428(6982):486.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Tangamornsuksan W, Chaiyakunapruk N, Somkrua R, Lohitnavy M, Tassaneeyakul W. Relationship between the HLA-B*1502 allele and carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis: a systematic review and meta-analysis. JAMA Dermatol. 2013;149(9):1025–32.Google Scholar
  29. 29.
    Vigevano F, Fusco L, Di Capua M, Ricci S, Sebastianelli R, Lucchini P. Benign infantile familial convulsions. Eur J Pediatr. 1992;151(8):608–12.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Stevens H. Paroxysmal choreo-athetosis. A form of reflex epilepsy. Arch Neurol. 1966;14(4):415–20.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Liu XR, Huang D, Wang J, Wang YF, Sun H, Tang B, et al. Paroxysmal hypnogenic dyskinesia is associated with mutations in the PRRT2 gene. Neurol Genet. 2016;2(2):e66.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Guerrini R, Mink JW. Paroxysmal disorders associated with PRRT2 mutations shake up expectations on ion channel genes. Neurology. 2012;79(21):2086–8.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Mink JW. Defining and refining the phenotype of PRRT2 mutations. Dev Med Child Neurol. 2013;55(4):297.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Wood H. Genetics: expanding the spectrum of neurological disorders associated with PRRT2 mutations. Nat Rev Neurol. 2012;8(12):657.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Liu Q, Qi Z, Wan XH, Li JY, Shi L, Lu Q, et al. Mutations in PRRT2 result in paroxysmal dyskinesias with marked variability in clinical expression. J Med Genet. 2012;49(2):79–82.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Tian WT, Huang XJ, Mao X, Liu Q, Liu XL, Zeng S, et al. Proline-rich transmembrane protein 2-negative paroxysmal kinesigenic dyskinesia: clinical and genetic analyses of 163 patients. Mov Disord. 2018;33(3):459–67.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Gardella E, Becker F, Moller RS, Schubert J, Lemke JR, Larsen LH, et al. Benign infantile seizures and paroxysmal dyskinesia caused by an SCN8A mutation. Ann Neurol. 2016;79(3):428–36.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Balint B, Erro R, Salpietro V, Houlden H, Bhatia KP. PKD or Not PKD: that is the question. Ann Neurol. 2016;80(1):167–8.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Larsen J, Carvill GL, Gardella E, Kluger G, Schmiedel G, Barisic N, et al. The phenotypic spectrum of SCN8A encephalopathy. Neurology. 2015;84(5):480–9.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Chen DH, Meneret A, Friedman JR, Korvatska O, Gad A, Bonkowski ES, et al. ADCY5-related dyskinesia: broader spectrum and genotype-phenotype correlations. Neurology. 2015;85(23):2026–35.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Friedman JR, Meneret A, Chen DH, Trouillard O, Vidailhet M, Raskind WH, et al. ADCY5 mutation carriers display pleiotropic paroxysmal day and nighttime dyskinesias. Mov Disord. 2016;31(1):147–8.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Mencacci NE, Erro R, Wiethoff S, Hersheson J, Ryten M, Balint B, et al. ADCY5 mutations are another cause of benign hereditary chorea. Neurology. 2015;85(1):80–8.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Fuchs O, Pfarr N, Pohlenz J, Schmidt H. Elevated serum triiodothyronine and intellectual and motor disability with paroxysmal dyskinesia caused by a monocarboxylate transporter 8 gene mutation. Dev Med Child Neurol. 2009;51(3):240–4.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Brockmann K, Dumitrescu AM, Best TT, Hanefeld F, Refetoff S. X-linked paroxysmal dyskinesia and severe global retardation caused by defective MCT8 gene. J Neurol. 2005;252(6):663–6.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Lu Q, Shang L, Tian WT, Cao L, Zhang X, Liu Q. Complicated paroxysmal kinesigenic dyskinesia associated with SACS mutations. Ann Transl Med. 2020;8(1):8.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Zhan FX, Tian WT, Zhang C, Zhu ZY, Wang SG, Huang XJ, et al. Primary familial brain calcification presenting as paroxysmal kinesigenic dyskinesia: genetic and functional analyses. Neurosci Lett. 2020;714:134543.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Yin XM, Lin JH, Cao L, et al. Familial paroxysmal kinesigenic dyskinesia is associated with mutations in the KCNA1 gene. Hum Mol Genet. 2018;27:625–37.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Zhu M, Zhu X, Wan H, Hong D. Familial IBGC caused by SLC20A2 mutation presenting as paroxysmal kinesigenic dyskinesia. Parkinsonism Relat Disord. 2014;20(3):353–4.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Jiang YL, Yuan F, Yang Y, Sun XL, Song L, Jiang W. CHRNA4 variant causes paroxysmal kinesigenic dyskinesia and genetic epilepsy with febrile seizures plus? Seizure. 2018;56:88–91.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Di Fonzo A, Monfrini E, Erro R. Genetics of movement disorders and the practicing clinician; who and what to test for? Curr Neurol Neurosci Rep. 2018;18(7):37.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  • Katarzyna Smilowska
    • 1
  • Roberto Erro
    • 2
  • Kailash P. Bhatia
    • 3
  1. 1.Department of NeurologySilesian Center of NeurologyKatowicePoland
  2. 2.Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”University of SalernoBaronissiItaly
  3. 3.Department of Clinical and Movement Neurosciences, UCLQueen Square Institute of NeurologyLondonUK

Personalised recommendations