Advertisement

Cycles and Long-Range Behaviour in the European Stock Markets

  • Guglielmo Maria CaporaleEmail author
  • Luis A. Gil-Alana
  • Carlos Poza
Chapter
  • 12 Downloads
Part of the Dynamic Modeling and Econometrics in Economics and Finance book series (DMEF, volume 27)

Abstract

This paper uses a modelling framework which includes two singularities (or poles) in the spectral density function, one corresponding to the long-run (zero) frequency and the other to the cyclical (nonzero) frequency. The adopted specification is very general, since it allows for fractional integration with stochastic patterns at the zero and cyclical frequencies and includes both long-memory and short-memory components. The cyclical patterns are modelled using Gegenbauer processes. This model is estimated using monthly data for five European stock market indices (DAX30, FTSE100, CAC40, FTSE MIB40, IBEX35) from January 2009 to January 2019. The results indicate that the series are highly persistent at the long-run frequency, but they are not supportive of the existence of cyclical stochastic structures in the European financial markets. The only clear evidence of a stochastic cycle is obtained in the case of France under the assumption of white noise disturbances; in all other cases, there is no evidence of cycles.

Notes

Acknowledgement

Luis A. Gil-Alana gratefully acknowledges financial support from the Ministerio de Ciencia y Tecnología ((ECO2017-85503-R).

References

  1. Abbritti, M., Gil-Alana, L. A., Lovcha, Y., & Moreno, A. (2016). Term structure persistence. Journal of Financial Econometrics, 14(2), 331–352.CrossRefGoogle Scholar
  2. Andel, J. (1986). Long memory time series models. Kybernetika, 22, 105–123.Google Scholar
  3. Baillie, R. T. (1996). Long memory processes and fractional integration in econometrics. Journal of Econometrics, 73, 5–59.CrossRefGoogle Scholar
  4. Bloomfield, P. (1973). An exponential model in the spectrum of a scalar time series. Biometrika, 60, 217–226.CrossRefGoogle Scholar
  5. Borio, C. (2014). The financial cycle and macroeconomics. What have we learnt? Journal of Banking & Finance, 45, 182–198.CrossRefGoogle Scholar
  6. Borio, C., Drehmann, M., & Xia, D. (2019). The financial cycle and recession risk. BIS Quarterly Review, December 2018.Google Scholar
  7. Canarella, G., Gil-Alana, L. A., Gupta, R., & Miller, S. (2019). Modeling U.S. historical time-series prices and inflation using alternative long-memory approaches. Empirical Economics, forthcoming.Google Scholar
  8. Caporale, G. M., & Gil-Alana, L. A. (2002). Fractional integration and mean reversion in stock prices. Quarterly Review of Economics and Finance, 42, 599–609.CrossRefGoogle Scholar
  9. Caporale, G. M., & Gil-Alana, L. A. (2014). Long run and cyclical dynamics in the US stock market. Journal of Forecasting, 33, 147–161.CrossRefGoogle Scholar
  10. Chung, C.-F. (1996a). A generalized fractionally integrated autoregressive moving-average process. Journal of Time Series Analysis, 17, 111–140.CrossRefGoogle Scholar
  11. Chung, C.-F. (1996b). Estimating a generalized long memory process. Journal of Econometrics, 73, 237–259.CrossRefGoogle Scholar
  12. Claessens, S., Ayhan, K., & Terrones, M. (2011). Financial cycles. What? How’, When? NBER International Seminar on Macroeconomics, 7(1), 303–334.Google Scholar
  13. Dalla, V., & Hidalgo, J. (2005). A parametric bootstrap test for cycles. Journal of Econometrics, 129, 219–261.CrossRefGoogle Scholar
  14. DePenya, F., & Gil-Alana, L. (2006). Testing of nonstationary cycles in financial time series data. Review of Quantitative Finance and Accounting, 27(1), 47–65.CrossRefGoogle Scholar
  15. Drehmann, M., Borio, C., Tsatsaronis, K. (2012). Characterising the financial cycle, don’t lose sight of the medium term. BIS Working Paper No. 380.Google Scholar
  16. Drehmann, M., Juselius, K., & Korinke, A. (2018). Going with the flows, new borrowing debt service and the transmission of credit booms. NBER Working Paper 24549.Google Scholar
  17. Fama, E. F., & French, K. R. (1988a). Dividend yields and expected stock returns. Journal of Financial Economics, 22, 3–25.CrossRefGoogle Scholar
  18. Fama, E. F., & French, K. R. (1988b). Permanent and temporary components of stock prices. Journal of Political Economy, 96, 246–273.CrossRefGoogle Scholar
  19. Filardo, A., Lombardi, M., & Raczko, M. (2018). Measuring financial cycle time. BIS Working Papers 755, Monetary and Economic Department.Google Scholar
  20. Gil-Alana, L. A. (2001). Testing stochastic cycles in macroeconomic time series. Journal of Time Series Analysis, 22, 411–430.CrossRefGoogle Scholar
  21. Gil-Alana, L. A. (2004). The use of the Bloomfield (1973) model as an approximation to ARMA processes in the context of fractional integration. Mathematical and Computer Modelling, 39, 429–436.CrossRefGoogle Scholar
  22. Gil-Alana, L. A., & Robinson, P. M. (1997). Testing of unit roots and other nonstationary hypotheses in macroeconomic time series. Journal of Econometrics, 80, 241–268.CrossRefGoogle Scholar
  23. Gil-Alana, L. A., & Trani, T. (2019). The cyclical structure of the UK inflation rate. 1210–2016. Economics Letters, 181, 182–185.CrossRefGoogle Scholar
  24. Giraitis, L., & Leipus, R. (1995). A generalized fractionally differencing approach in long memory modeling. Lithuanian Mathematical Journal, 35, 65–81.CrossRefGoogle Scholar
  25. Gray, H. L., Yhang, N., & Woodward, W. A. (1989). On generalized fractional processes. Journal of Time Series Analysis, 10, 233–257.CrossRefGoogle Scholar
  26. Gray, H. L., Yhang, N., & Woodward, W. A. (1994). On generalized fractional processes. A correction. Journal of Time Series Analysis, 15, 561–562.CrossRefGoogle Scholar
  27. Iacoviello, A. (2015). Financial business cycles. Review of Economic Dynamics, 18(1), 140–163.CrossRefGoogle Scholar
  28. Oman, W. (2019). The synchronization of business cycles and financial cycles in the Euro area. International Journal of Central Banking, 15, 1.Google Scholar
  29. Poterba, J. M., & Summers, L. H. (1988). Mean reversion in stockprices: Evidence and implications. Journal of Financial Economics, 22, 27–59.CrossRefGoogle Scholar
  30. Stock, J. (1987). Measuring business cycle time. Journal of Political Economy, 95(6), 1240–1261.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  • Guglielmo Maria Caporale
    • 1
    Email author
  • Luis A. Gil-Alana
    • 2
    • 3
  • Carlos Poza
    • 3
  1. 1.Brunel University LondonLondonUK
  2. 2.University of NavarraPamplonaSpain
  3. 3.Universidad Francisco de VitoriaMadridSpain

Personalised recommendations