Advertisement

An Analysis of the Time-Varying Behavior of the Equilibrium Velocity of Money in the Euro Area

  • Mariam Camarero
  • Juan Sapena
  • Cecilio TamaritEmail author
Chapter
  • 23 Downloads
Part of the Dynamic Modeling and Econometrics in Economics and Finance book series (DMEF, volume 27)

Abstract

Recent developments in inflation and M3 velocity in the euro area have raised serious doubts about the reliability of M3 growth as a pillar of the ECB’s monetary policy strategy. We develop a very flexible and comprehensive state-space framework for modeling the velocity of circulation. Our specification allows for the estimation of different autoregressive alternatives and includes control instruments, whose coefficients can be set up either common or idiosyncratic. This is particularly useful to detect asymmetries in the reaction among countries to common shocks. Our findings first suggest that the downward trend of M3 velocity is mainly explained by the evolution of permanent income, proxied by the trend component of per capita income, and also exhibits a high persistence. A second relevant result is the asymmetric impact of business cycle fluctuations in the evolution of the unobserved state that drives the varying parameters, causing the instability of velocity. Third, the estimated model emphasizes the role of changes in uncertainty and risk premia with heterogeneous and asymmetric effects for the different member countries of the euro area. Hence, although monetary aggregates can be used as a nominal anchor, it is essential, especially for the case of peripheral EMU countries, to complement these measures with other policies, not only unconventional monetary policies, but also the use of fiscal and structural initiatives.

Keywords

Monetary policy EMU Velocity of money QE Panel unit root tests Multiple structural breaks Kalman filter Time-varying parameters 

JEL Classification

E4 E5 C54 C87 

Notes

Acknowledgements

We acknowledge the financial support from the Agencia Estatal de Investigación-FEDER ECO2017-83255-C3-2-P project, from the Generalitat Valenciana, Prometeo/2018/102 project and European Commission project 611032-EPP-1-2019-1-ES-EPPJMO-CoE (C. Tamarit and M. Camarero) and the Betelgeux-Christeyns Chair (J. Sapena). The European Commission support does not constitute an endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein. All remaining errors are ours.

References

  1. Andrews, D. W. K., & Ploberger, W. (1994). Optimal tests when a nuisance parameter is present only under the alternative. Econometrica, 62(6), 1383.CrossRefGoogle Scholar
  2. Ansley, C. F., & Kohn, R. (1985). Estimation, filtering, and smoothing in state space models with incompletely specified initial conditions. The Annals of Statistics, 1286–1316.Google Scholar
  3. Bai, J., & Carrion-I-Silvestre, J. (2009). Structural changes, common stochastic trends, and unit roots in panel data. The Review of Economic, 76(2), 471–501.Google Scholar
  4. Bai, J., & Ng, S. (2002). Determining the number of factors in approximate factor models. Econometrica, 70(1), 191–221.CrossRefGoogle Scholar
  5. Bai, J., & Ng, S. (2004). A panic attack on unit roots and cointegration. Econometrica, 72(4), 1127–1177.CrossRefGoogle Scholar
  6. Bai, J., & Perron, P. (1998). Estimating and testing linear models with multiple structural changes. Econometrica, 66(1), 47–78.CrossRefGoogle Scholar
  7. Bai, J., & Perron, P. (2003). Computation and analysis of multiple structural change models. Journal of Applied Econometrics, 18(1), 1–22.CrossRefGoogle Scholar
  8. Benati, L. (2009). Long run evidence on money growth and inflation. ECB Working Paper Series (1027).Google Scholar
  9. Bernoth, K., & Erdogan, B. (2012). Sovereign bond yield spreads: A time-varying coefficient approach. Journal of International Money and Finance, 31(3), 639–656.Google Scholar
  10. Benati, L. (2019). Money velocity and the natural rate of interest. Journal of Monetary Economics, 1–18.Google Scholar
  11. Biefang-Frisancho Mariscal, I., & Howells, P. G. (2012). Income velocity and non-GDP transactions in the UK. International Review of Applied Economics, 26(1), 97–110.CrossRefGoogle Scholar
  12. Bobeica, E., & Jarociński, M. (2017). Missing disinflation and missing inflation: The puzzles that aren’t. ECB Working Paper Series (2000).Google Scholar
  13. Bordes, C., Clerc, L., & Marimoutou, V. (2007). Is there a structural break in equilibrium velocity in the euro area? To cite this version: HAL Id: hal-00308654. Bank de France. Notes d’Études et de Recherche.Google Scholar
  14. Bordo, M. D., & Jonung, L. (1987). The long-run behavior of the velocity of circulation: The international evidence. Cambridge: Cambridge University Press.Google Scholar
  15. Bordo, M. D., & Jonung, L. (1990). The long-run behavior of velocity: The institutional approach revisited. Journal of Policy Modeling, 12(2), 165–197.CrossRefGoogle Scholar
  16. Bordo, M. D., Jonung, L., & Siklos, P. L. (1997). Institutional change and the velocity of money: A century of evidence. Economic Inquiry, 35(4), 710–724.CrossRefGoogle Scholar
  17. Brand, C., Gerdesmeier, D., & Roffia, B. (2002). Estimating the trend of M3 income velocity underlying the reference value for monetary growth. ECB Occasional Paper Series (3).Google Scholar
  18. Broto, C., & Perez-Quiros, G. (2015). Disentangling contagion among Sovereign CDS spreads during the European debt crisis. Journal of Empirical Finance, 32, 165–179.Google Scholar
  19. Bruggeman, A., Camba-Méndez, G., Fischer, B., & Sousa, J. (2005). Structural filters for monetary analysis. The inflationary movements of money in the Euro area. ECB Working Paper Series 470.Google Scholar
  20. Calza, A., & Zaghini, A. (2009). Nonlinearities in the dynamics of the euro area demand for M1. Macroeconomic Dynamics, 13(1), 1–19.CrossRefGoogle Scholar
  21. Camarero, M., Sapena, J., & Tamarit, C. (2019). Modeling time-varying parameters in panel data state-space frameworks: An application to the Feldstein-Horioka puzzle. Computational Economics, 56, 87–114.Google Scholar
  22. Carrion-i Silvestre, J. L., Kim, D., & Perron, P. (2009). GLS-based Unit Root tests with multiple structural breaks under both the null and the alternative hypotheses. Econometric Theory, 25(Special Issue 06), 1754–1792.Google Scholar
  23. Cochrane, J. H. (2017). The radical implications of stable quiet inflation at the zero bound. mimeo.Google Scholar
  24. Crowder, W. (1998). The long-run relation between money growth and inflation. Economic Inquiry, 36(2), 229–243.CrossRefGoogle Scholar
  25. De Grauwe, P., & Polan, M. (2005). Is inflation always and everywhere a monetary phenomenon? Scandinavian Journal of Economics, 107(2), 239–259.CrossRefGoogle Scholar
  26. Dreger, C., & Wolters, J. (2009). Money velocity and asset prices in the euro area. Empirica, 36(1), 51–63.CrossRefGoogle Scholar
  27. El-Shagi, M., & Giesen, S. (2010). Money and inflation: The role of persistent velocity movements. Mimeo, 1–24.Google Scholar
  28. El-Shagi, M., Giesen, S., & Kelly, L. (2011). The quantity theory revisited: A new structural approach. mimeo, 1–26.Google Scholar
  29. European Central Bank. (2017). Base money, broad money and the APP. ECB Economic Bulletin, 6, 62–65.Google Scholar
  30. Faragher, R. (2012). Understanding the basis of the Kalman filter via a simple and intuitive derivation [lecture notes]. IEEE Signal Processing Magazine, 29(5), 128–132.Google Scholar
  31. Fitzgerald, T. J. (1999, August). Money growth and inflation: How long is the long-run? Federal Reserve Bank of Cleveland Economic Commentary, 1–5.Google Scholar
  32. Friedman, M. (1963). Inflation: Causes and consequences. New York: Asia Publishing House.Google Scholar
  33. Friedman, M., & Schwartz, A. J. (1963). A monetary history of the United States, 1867–1960. Princeton: Princeton University Press.Google Scholar
  34. Gerlach, S., & Svensson, L. E. O. (2003). Money and inflation in the euro area: A case for monetary indicators? Journal of Monetary Economics, 50(8), 1649–1672.CrossRefGoogle Scholar
  35. Gourieroux, C., & Monfort, A. (1997). Time series and dynamic models. Cambridge: Cambridge University Press.Google Scholar
  36. Gravy, G. (1959). Structural aspects of money velocity. The Quarterly Journal of Economics, 73(3), 429–447.CrossRefGoogle Scholar
  37. Hamilton, J. D. (1989). The long-run behavior of the velocity of circulation. A review essay. Journal of Monetary Economics, 23(January 1987), 335–344.Google Scholar
  38. Hamilton, J. D. (2018). Why you should never use the Hodrick-Prescott filter. Review of Economics and Statistics, 100(5), 831–843.CrossRefGoogle Scholar
  39. Hamilton, J. D. (1994a). State-space models. In R. F. Engle & D. L. McFadden (Eds.), Handbook of econometrics (Vol. 4, Chap. 50, pp. 3039–3080). Amsterdam: Elsevier.Google Scholar
  40. Hamilton, J. D. (1994b). Time series analysis. Princeton, NJ: Princeton University Press.Google Scholar
  41. Harvey, A. (1989). Forecasting, structural time series models and the Kalman filter. Cambridge: Cambridge University Press.Google Scholar
  42. Harvey, A. C. (1993). Time series models (2nd ed.). New York: Harvester Wheatsheaf.Google Scholar
  43. Harvey, A. C., & Phillips, G. D. A. (1979). Maximum likelihood estimation of regression models with autoregressive-moving average disturbances. Biometrika, 66(1), 49–58.Google Scholar
  44. Haug, A. A., & Dewald, W. G. (2012). Money, output, and inflation in the longer term: Major industrial countries, 1880–2001. Economic Inquiry, 50(3), 773–787.CrossRefGoogle Scholar
  45. Kim, C.-J., & Nelson, C. R. (1999). State-space models with regime switching: Classical and Gibbs-sampling approaches with applications (Vol. 1). Cambridge, MA: MIT Press Books.Google Scholar
  46. Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Fluids Engineering, 82(1), 35–45.Google Scholar
  47. Kalman, R. E. (1963). New methods in Wiener filtering theory. In J. L. Bogdanoff, & F. Kozin (Eds.), Proceedings of the First Symposium on Engineering Applications of Random Function Theory and Probability. New York: Wiley.Google Scholar
  48. Kalman, R. E., & Bucy, R. S. (1961). New results in linear filtering and prediction theory. Journal of Basic Engineering, 83(1), 95–108.CrossRefGoogle Scholar
  49. Koopman, S. J. (1997). Exact initial Kalman filtering and smoothing for nonstationary time series models. Journal of the American Statistical Association, 92(440), 1630–1638.CrossRefGoogle Scholar
  50. Koopman, S. J., & Durbin, J. (2003). Filtering and smoothing of state vector for diffuse state-space models. Journal of Time Series Analysis, 24(1), 85–98.CrossRefGoogle Scholar
  51. Leão, P. (2005). Why does the velocity of money move pro-cyclically? International Review of Applied Economics, 19(1), 119–135.CrossRefGoogle Scholar
  52. Lucas, R. E. (1980). Two illustrations of the quantity theory of money. The American Economic Review, 70(5), 1005–1014.Google Scholar
  53. McCallum, B. T. (1984). On low-frequency estimates of long-run relationships in macroeconomics. Journal of Monetary Economics, 14(1), 3–14.CrossRefGoogle Scholar
  54. Mele, A., & Stefanski, R. (2019). Velocity in the long run: Money and structural transformation. Review of Economic Dynamics, 31, 393–410.CrossRefGoogle Scholar
  55. Moon, H. R., & Perron, B. (2004). Testing for a unit root in panels with dynamic factors. Journal of Econometrics, 122(1), 81–126.CrossRefGoogle Scholar
  56. Morgan, D. P. (1993). Asymmetric effects of monetary policy. Federal Reserve Bank of Kansas City Economic Review, second quarter, 21–33.Google Scholar
  57. Orphanides, A., & Porter, R. D. (2000). P * revisited: Money-based inflation forecasts with a changing equilibrium velocity. Journal of Economics and Business, 52, 87–100.CrossRefGoogle Scholar
  58. Orphanides, A., Porter, R. D. (2001). Money and inflation: The role of information regarding the determinants of M2 behavior. In Monetary analysis: Tools and applications (pp. 77–95). European Central Bank.Google Scholar
  59. Perron, P. (1989). The great crash, the oil price shock, and the unit root hypothesis. Econometrica, 57(6), 1361–1401.CrossRefGoogle Scholar
  60. Perron, P., & Yabu, T. (2009). Testing for shifts in trend with an integrated or stationary noise component. Journal of Business & Economic Statistics, 27(3), 369–396.CrossRefGoogle Scholar
  61. Perron, P., & Zhu, X. (2005). Structural breaks with deterministic and stochastic trends. Journal of Econometrics, 129(1–2), 65–119.CrossRefGoogle Scholar
  62. Raj, B. (1995). Institutional hypothesis of the long-run income velocity of money and parameter stability of the equilibrium relationship. Journal of Applied Econometrics, 10(September 1994), 233–253.Google Scholar
  63. Reynard, S. (2006). Money and the great disinflation. Swiss National Bank Working Papers, 06(7).Google Scholar
  64. Sargan, J. D., & Bhargava, A. (1983). Testing residuals from least squares regression for being generated by the Gaussian random walk. Econometrica, 51(1), 153–174.CrossRefGoogle Scholar
  65. Stock, J. H., & Watson, M. W. (1996). Evidence on structural instability in macroeconomic time series relations. Journal of Business & Economic Statistics, 14(1), 11–30.Google Scholar
  66. Stock, J. H., & Watson, M. W. (2005). Implications of dynamic factor models for VAR analysis. NBER Working Paper Series, 11467 (pp. 1–67).Google Scholar
  67. Stock, J. H., & Watson, M. (1999). A comparison of linear and nonlinear models for forecasting macroeconomic time series. In R. F. Engle, & H. White (Eds.), Cointegration, causality and forecasting: A Festchrift in honour of Clive W.J. Granger (pp. 1–44). Oxford: Oxford University Press.Google Scholar
  68. Svensson, L. E. (2010). Inflation targeting. In B. M. Friedman, & M. Woodford (Eds.), Handbook of monetary economics (Vol. 3B, Chap. 22, pp. 1237–1303). Oxford: Elsevier.Google Scholar
  69. Swamy, P., & Tavlas, G. S. (2001). Random coefficient models. In B. H. Baltagi (Ed.), A companion to theoretica econmetrics (pp. 410–428). Malden, MA: Blackwell Publishing Ltd.Google Scholar
  70. West, M., & Harrison, J. (1997). Bayesian forecasting and dynamic models (2nd ed.). New York, NY, USA: Springer.Google Scholar
  71. Swerling, P. (1959). First-order error propagation in a stagewise smoothing procedure for satellite observations. The Journal of the Astronautical Sciences, 6, 45–52.Google Scholar
  72. Thiele, T. N. (1880). Om Anvendelse af mindste Kvadraters Methode i nogle Tilfælde, hvor en Komplikation af visse Slags uensartede tilfældige Fejlkilder giver Fejlene en ’systematisk’Karakter. Det Kongelige Danske Videnskabernes Selskabs Skrifter-Naturvidenskabelig og Mathematisk Afdeling (pp. 381–408).Google Scholar
  73. Zadeh, L. A., & Desoer, C. A. (1963). Linear system theory: The state space approach. New York: McGraw-Hill.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.INTECO, University Jaume IValenciaSpain
  2. 2.Catholic University of ValenciaValenciaSpain
  3. 3.INTECO, University of ValenciaValenciaSpain

Personalised recommendations