Neurobiology of Insomnia

  • Célyne H. BastienEmail author
  • Thierry Provencher
  • Jessica Lebel
  • Roxanne Bolduc-Landry


The present chapter will discuss the neurobiology of insomnia. After briefly defining insomnia according to the DSM-5 and the ICSD-2 previous subtypes, prevalence of the disorder will be introduced. Then this chapter will present the sleep-wake regulation system to identify how insomnia might be developed and what is impaired in suffering individuals, especially regarding the flip-flop switch. Techniques used to study the neurobiology of insomnia such as electroencephalography (EEG), magnetic resonance imaging (MRI, fMRI), positron emission tomography (PET), and event-related potentials (ERPs) will be presented. A discussion on the different phenotypes of insomnia, including recent developments in our knowledge of short sleepers and the challenged group of insomnia sufferers (INS), will follow. Finally, the status of our understanding of daily functioning in insomnia and cortical areas involved will be briefly presented. Future directions will conclude this chapter, including an interesting perspective on attention-deficit hyperactivity disorder (ADHD) and insomnia. Note that this chapter deals only with insomnia not comorbid with any other disorders (psychiatric, mental, medical, etc.).


Insomnia disorder Neurobiology Flip-flop switch VLPO GABA EEG ERPs Subtypes Phenotypes ADHD 


  1. 1.
    American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington: American Psychiatric Publishing; 2013.CrossRefGoogle Scholar
  2. 2.
    American Academy of Sleep Medicine. International classification of sleep disorders: diagnostic and coding manual. 3rd ed. Westchester: Author; 2014.Google Scholar
  3. 3.
    American Academy of Sleep Medicine. International classification of sleep disorders: diagnostic and coding manual. 2nd ed. Westchester: Author; 2005.Google Scholar
  4. 4.
    Edinger JD, Bonnet MH, Bootzin RR, Doghramji K, Dorsey CM, Espie CA, et al. Derivation of research diagnostic criteria for insomnia: report of an American Academy of sleep medicine work group. Sleep. 2004;27(8):1567–96.PubMedCrossRefGoogle Scholar
  5. 5.
    Edinger JD, Krystal AD. Subtyping primary insomnia: is sleep state misperception a distinct clinical entity? Sleep Med Rev. 2003;7(3):203–14.PubMedCrossRefGoogle Scholar
  6. 6.
    St-Jean G, Bastien CH. Classification of insomnia sufferers based on laboratory PSG recordings and subjective sleep reports. Sleep. 2009;32:A284.Google Scholar
  7. 7.
    Morin CM, LeBlanc M, Daley M, Gregoire JP, Merette C. Epidemiology of insomnia: prevalence, self-help treatments, consultations, and determinants of help-seeking behaviors. Sleep Med. 2006;7(2):123–30.PubMedCrossRefGoogle Scholar
  8. 8.
    Bastien CH, Vallieres A, Morin CM. Precipitating factors of insomnia. Behav Sleep Med. 2004;2(1):50–62.PubMedCrossRefGoogle Scholar
  9. 9.
    Bastien CH, Vallieres A, Morin CM. Validation of the insomnia severity index as an outcome measure for insomnia research. Sleep Med. 2001;2(4):297–307.PubMedCrossRefGoogle Scholar
  10. 10.
    Perlis ML, Giles DE, Mendelson WB, Bootzin RR, Wyatt JK. Psychophysiological insomnia: the behavioural model and a neurocognitive perspective. J Sleep Res. 1997;6(3):179–88.PubMedCrossRefGoogle Scholar
  11. 11.
    Riemann D, Nissen C, Palagini L, Otte A, Perlis ML, Spiegelhalder K. The neurobiology, investigation, and treatment of chronic insomnia. Lancet Neurol. 2015;14(5):547–58.PubMedCrossRefGoogle Scholar
  12. 12.
    Harvey AG. A cognitive model of insomnia. Behav Res Ther. 2002;40(8):869–93.PubMedCrossRefGoogle Scholar
  13. 13.
    Espie CA. Insomnia: conceptual issues in the development, persistence, and treatment of sleep disorder in adults. Annu Rev Psychol. 2002;53:215–43.PubMedCrossRefGoogle Scholar
  14. 14.
    Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature. 2005;437(7063):1257–63.PubMedCrossRefGoogle Scholar
  15. 15.
    Saper CB, Chou TC, Scammell TE. The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci. 2001;24(12):726–31.PubMedCrossRefGoogle Scholar
  16. 16.
    Borbély AA. A two process model of sleep regulation. Hum Neurobiol. 1982;1(3):195–204.PubMedGoogle Scholar
  17. 17.
    Bastien CH. Insomnia: neurophysiological and neuropsychological approaches. Neuropsychol Rev. 2011;21(1):22–40.PubMedCrossRefGoogle Scholar
  18. 18.
    Spiegelhalder K, Regen W, Feige B, Holz J, Piosczyk H, Baglioni C, et al. Increased EEG sigma and beta power during NREM sleep in primary insomnia. Biol Psychol. 2012;91(3):329–33.PubMedCrossRefGoogle Scholar
  19. 19.
    Freedman RR. EEG power spectra in sleep-onset insomnia. Electroencephalogr Clin Neurophysiol. 1986;63(5):408–13.PubMedCrossRefGoogle Scholar
  20. 20.
    Merica H, Blois R, Gaillard JM. Spectral characteristics of sleep EEG in chronic insomnia. Eur J Neurosci. 1998;10(5):1826–34.PubMedCrossRefGoogle Scholar
  21. 21.
    Merica H, Gaillard JM. The EEG of the sleep onset period in insomnia: a discriminant analysis. Physiol Behav. 1992;52(2):199–204.PubMedCrossRefGoogle Scholar
  22. 22.
    Maes J, Verbraecken J, Willemen M, De Volder I, van Gastel A, Michiels N, et al. Sleep misperception, EEG characteristics and autonomic nervous system activity in primary insomnia: a retrospective study on polysomnographic data. Int J Psychophysiol. 2014;91(3):163–71.PubMedCrossRefGoogle Scholar
  23. 23.
    Israel B, Buysse DJ, Krafty RT, Begley A, Miewald J, Hall M. Short-term stability of sleep and heart rate variability in good sleepers and patients with insomnia: for some measures, one night is enough. Sleep. 2012;35(9):1285–91.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Wu YM, Pietrone R, Cashmere JD, Begley A, Miewald JM, Germain A, et al. EEG power during waking and NREM sleep in primary insomnia. J Clin Sleep Med. 2013;9(10):1031–7.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    St-Jean G, Turcotte I, Perusse AD, Bastien CH. REM and NREM power spectral analysis on two consecutive nights in psychophysiological and paradoxical insomnia sufferers. Int J Psychophysiol. 2013;89(2):181–94.PubMedCrossRefGoogle Scholar
  26. 26.
    Corsi-Cabrera M, Figueredo-Rodriguez P, del Rio-Portilla Y, Sanchez-Romero J, Galan L, Bosch-Bayard J. Enhanced frontoparietal synchronized activation during the wake-sleep transition in patients with primary insomnia. Sleep. 2012;35(4):501–11.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Feige B, Al-Shajlawi A, Nissen C, Voderholzer U, Hornyak M, Spiegelhalder K, et al. Does REM sleep contribute to subjective wake time in primary insomnia? A comparison of polysomnographic and subjective sleep in 100 patients. J Sleep Res. 2008;17(2):180–90.PubMedCrossRefGoogle Scholar
  28. 28.
    Riemann D, Spiegelhalder K, Nissen C, Hirscher V, Baglioni C, Feige B. REM sleep instability--a new pathway for insomnia? Pharmacopsychiatry. 2012;45(5):167–76.PubMedGoogle Scholar
  29. 29.
    Kryger MH, Roth T, Dement WC. Principles and practice of sleep medicine. 4th ed. Philadelphia: Elsevier; 2005.Google Scholar
  30. 30.
    Krystal AD, Edinger JD, Wohlgemuth WK, Marsh GR. NREM sleep EEG frequency spectral correlates of sleep complaints in primary insomnia subtypes. Sleep. 2002;25(6):630–40.PubMedGoogle Scholar
  31. 31.
    Harvey AG, Tang NK. (Mis)perception of sleep in insomnia: a puzzle and a resolution. Psychol Bull. 2012;138(1):77–101.PubMedCrossRefGoogle Scholar
  32. 32.
    Riemann D, Voderholzer U, Spiegelhalder K, Hornyak M, Buysse DJ, Nissen C, et al. Chronic insomnia and MRI-measured hippocampal volumes: a pilot study. Sleep. 2007;30(8):955–8.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Joo EY, Kim H, Suh S, Hong SB. Hippocampal substructural vulnerability to sleep disturbance and cognitive impairment in patients with chronic primary insomnia: magnetic resonance imaging morphometry. Sleep. 2014;37(7):1189–98.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Neylan TC, Mueller SG, Wang Z, Metzler TJ, Lenoci M, Truran D, et al. Insomnia severity is associated with a decreased volume of the CA3/dentate gyrus hippocampal subfield. Biol Psychiatry. 2010;68(5):494–6.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Noh HJ, Joo EY, Kim ST, Yoon SM, Koo DL, Kim D, et al. The relationship between hippocampal volume and cognition in patients with chronic primary insomnia. J Clin Neurol. 2012;8(2):130–8.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Santarnecchi E, Del Bianco C, Sicilia I, Momi D, Di Lorenzo G, Ferrone S, et al. Age of insomnia onset correlates with a reversal of default mode network and supplementary motor cortex connectivity. Neural Plast. 2018;2018:3678534.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    De Havas JA, Parimal S, Soon CS, Chee MW. Sleep deprivation reduces default mode network connectivity and anti-correlation during rest and task performance. NeuroImage. 2012;59(2):1745–51.PubMedCrossRefGoogle Scholar
  38. 38.
    Altena E, Vrenken H, Van Der Werf YD, van den Heuvel OA, Van Someren EJ. Reduced orbitofrontal and parietal gray matter in chronic insomnia: a voxel-based morphometric study. Biol Psychiatry. 2010;67(2):182–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Stoffers D, Altena E, van der Werf YD, Sanz-Arigita EJ, Voorn TA, Astill RG, et al. The caudate: a key node in the neuronal network imbalance of insomnia? Brain. 2014;137(Pt 2):610–20.PubMedCrossRefGoogle Scholar
  40. 40.
    Drummond SP, Walker M, Almklov E, Campos M, Anderson DE, Straus LD. Neural correlates of working memory performance in primary insomnia. Sleep. 2013;36(9):1307–16.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Santarnecchi E, Sicilia I, Richiardi J, Vatti G, Polizzotto NR, Marino D, et al. Altered cortical and subcortical local coherence in obstructive sleep apnea: a functional magnetic resonance imaging study. J Sleep Res. 2013;22(3):337–47.PubMedCrossRefGoogle Scholar
  42. 42.
    Spiegelhalder K, Regen W, Prem M, Baglioni C, Nissen C, Feige B, et al. Reduced anterior internal capsule white matter integrity in primary insomnia. Hum Brain Mapp. 2014;35(7):3431–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and behavioural correlates. Brain. 2006;129(Pt 3):564–83.PubMedCrossRefGoogle Scholar
  44. 44.
    Nofzinger EA. Advancing the neurobiology of insomnia, a commentary on: “functional imaging of the sleeping brain” by Drummond et al. Sleep Med Rev. 2004;8(3):243–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Baglioni C, Spiegelhalder K, Regen W, Feige B, Nissen C, Lombardo C, et al. Insomnia disorder is associated with increased amygdala reactivity to insomnia-related stimuli. Sleep. 2014;37(12):1907–17.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Baglioni C, Spiegelhalder K, Lombardo C, Riemann D. Sleep and emotions: a focus on insomnia. Sleep Med Rev. 2010;14(4):227–38.PubMedCrossRefGoogle Scholar
  47. 47.
    Espie CA, Broomfield NM, MacMahon KM, Macphee LM, Taylor LM. The attention-intention-effort pathway in the development of psychophysiologic insomnia: a theoretical review. Sleep Med Rev. 2006;10(4):215–45.PubMedCrossRefGoogle Scholar
  48. 48.
    Leerssen J, Wassing R, Ramautar JR, Stoffers D, Lakbila-Kamal O, Perrier J, et al. Increased hippocampal-prefrontal functional connectivity in insomnia. Neurobiol Learn Mem. 2019;160:144–50.PubMedCrossRefGoogle Scholar
  49. 49.
    Bailey DL, Townsend DW, Valk PE, Maisey MN. Positron emission tomography: basic sciences. London: Springer; 2005.CrossRefGoogle Scholar
  50. 50.
    Nofzinger EA, Buysse DJ, Germain A, Price JC, Miewald JM, Kupfer DJ. Functional neuroimaging evidence for hyperarousal in insomnia. Am J Psychiatry. 2004;161(11):2126–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Spiegelhalder K, Nissen C, Riemann D. Clinical sleep-wake disorders II: focus on insomnia and circadian rhythm sleep disorders. Handb Exp Pharmacol. 2019;253:261–76.PubMedCrossRefGoogle Scholar
  52. 52.
    Thomas M, Sing H, Belenky G, Holcomb H, Mayberg H, Dannals R, et al. Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity. J Sleep Res. 2000;9(4):335–52.PubMedCrossRefGoogle Scholar
  53. 53.
    Buysse DJ, Germain A, Hall M, Monk TH, Nofzinger EA. A neurobiological model of insomnia. Drug Discov Today Dis Model. 2011;8(4):129–37.CrossRefGoogle Scholar
  54. 54.
    Blackwood DH, Muir WJ. Cognitive brain potentials and their application. Br J Psychiatry Suppl. 1990;9:96–101.CrossRefGoogle Scholar
  55. 55.
    Muller-Gass A, Campbell K. The processing of infrequently-presented low-intensity stimuli during natural sleep: an event-related potential study. Noise Health. 2010;12(47):120–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Hull JS. Event-related potentials during the wake/sleep transition in adults with and without primary insomnia [Dissertation]. University of Southern Mississippi; 1993.Google Scholar
  57. 57.
    Colrain IM, Campbell KB. The use of evoked potentials in sleep research. Sleep Med Rev. 2007;11(4):277–93.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Luck SJ, Hillyard SA, Mouloua M, Woldorff MG, Clark VP, Hawkins HL. Effect of spatial cueing on luminance detectability: psychophysical and electrophysiological evidence for early selection. J Exp Psychol Hum Percept Perform. 1994;20(4):887–904.PubMedCrossRefGoogle Scholar
  59. 59.
    Campbell K. Event-related potentials as a measure of sleep disturbance: a tutorial review. Noise Health. 2010;12(47):137–53.PubMedCrossRefGoogle Scholar
  60. 60.
    Loewy DH, Bootzin RR. Event-related potentials measures of information processing in insomniacs at bedtime and during sleep. Sleep. 1998;21(Suppl. 1):98.Google Scholar
  61. 61.
    Loewy DH, Burdik RS, Al-Shajlawi A, Franzen PL, Bootzin RR. Enhanced information processing at the peri-sleep onset period in insomniacs as measured by event-related potentials. Sleep. 1999;22(Suppl. 1):S152.Google Scholar
  62. 62.
    Bastien CH, St-Jean G, Morin CM, Turcotte I, Carrier J. Chronic psychophysiological insomnia: hyperarousal and/or inhibition deficits? An ERPs investigation. Sleep. 2008;31(6):887–98.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Bastien CH. ERP measures during wakefulness and sleep-onset in psychophysiological and paradoxical insomnia sufferers. J Sleep Res. 2008;17:65.Google Scholar
  64. 64.
    Turcotte I, St-Jean G, Bastien CH. Are individuals with paradoxical insomnia more hyperaroused than individuals with psychophysiological insomnia? Event-related potentials measures at the peri-onset of sleep. Int J Psychophysiol. 2011;81(3):177–90.PubMedCrossRefGoogle Scholar
  65. 65.
    Riemann D, Spiegelhalder K, Feige B, Voderholzer U, Berger M, Perlis M, et al. The hyperarousal model of insomnia: a review of the concept and its evidence. Sleep Med Rev. 2010;14(1):19–31.PubMedCrossRefGoogle Scholar
  66. 66.
    Stepanski E, Zorick F, Roehrs T, Young D, Roth T. Daytime alertness in patients with chronic insomnia compared with asymptomatic control subjects. Sleep. 1988;11(1):54–60.PubMedCrossRefGoogle Scholar
  67. 67.
    Perusse AD, Turcotte I, St-Jean G, Ellis J, Hudon C, Bastien CH. Types of primary insomnia: is hyperarousal also present during napping? J Clin Sleep Med. 2013;9(12):1273–80.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Vgontzas AN, Fernandez-Mendoza J, Liao D, Bixler EO. Insomnia with objective short sleep duration: the most biologically severe phenotype of the disorder. Sleep Med Rev. 2013;17(4):241–54.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Vgontzas AN, Bixler EO, Lin HM, Prolo P, Mastorakos G, Vela-Bueno A, et al. Chronic insomnia is associated with nyctohemeral activation of the hypothalamic-pituitary-adrenal axis: clinical implications. J Clin Endocrinol Metab. 2001;86(8):3787–94.PubMedCrossRefGoogle Scholar
  70. 70.
    Vgontzas AN, Tsigos C, Bixler EO, Stratakis CA, Zachman K, Kales A, et al. Chronic insomnia and activity of the stress system: a preliminary study. J Psychosom Res. 1998;45(1):21–31.PubMedCrossRefGoogle Scholar
  71. 71.
    Fernandez-Mendoza J, Calhoun S, Bixler EO, Pejovic S, Karataraki M, Liao D, et al. Insomnia with objective short sleep duration is associated with deficits in neuropsychological performance: a general population study. Sleep. 2010;33(4):459–65.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Varkevisser M, Kerkhof GA. Chronic insomnia and performance in a 24-h constant routine study. J Sleep Res. 2005;14(1):49–59.PubMedCrossRefGoogle Scholar
  73. 73.
    Covassin N, de Zambotti M, Sarlo M, De Min TG, Sarasso S, Stegagno L. Cognitive performance and cardiovascular markers of hyperarousal in primary insomnia. Int J Psychophysiol. 2011;80(1):79–86.PubMedCrossRefGoogle Scholar
  74. 74.
    Kwan Y, Baek C, Chung S, Kim TH, Choi S. Resting-state quantitative EEG characteristics of insomniac patients with depression. Int J Psychophysiol. 2018;124:26–32.PubMedCrossRefGoogle Scholar
  75. 75.
    Colombo MA, Ramautar JR, Wei Y, Gomez-Herrero G, Stoffers D, Wassing R, et al. Wake high-density electroencephalographic Spatiospectral signatures of insomnia. Sleep. 2016;39(5):1015–27.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Corsi-Cabrera M, Rojas-Ramos OA, del Rio-Portilla Y. Waking EEG signs of non-restoring sleep in primary insomnia patients. Clin Neurophysiol. 2016;127(3):1813–21.PubMedCrossRefGoogle Scholar
  77. 77.
    Wolynczyk-Gmaj D, Szelenberger W. Waking EEG in primary insomnia. Acta Neurobiol Exp (Wars). 2011;71(3):387–92.Google Scholar
  78. 78.
    Oades RD, Dittmann-Balcar A, Schepker R, Eggers C, Zerbin D. Auditory event-related potentials (ERPs) and mismatch negativity (MMN) in healthy children and those with attention-deficit or Tourette/tic symptoms. Biol Psychol. 1996;43(2):163–85.PubMedCrossRefGoogle Scholar
  79. 79.
    Killgore WD, Schwab ZJ, Kipman M, Deldonno SR, Weber M. Insomnia-related complaints correlate with functional connectivity between sensory-motor regions. Neuroreport. 2013;24(5):233–40.PubMedCrossRefGoogle Scholar
  80. 80.
    Konrad K, Eickhoff SB. Is the ADHD brain wired differently? A review on structural and functional connectivity in attention deficit hyperactivity disorder. Hum Brain Mapp. 2010;31(6):904–16.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Wynchank D, Bijlenga D, Beekman AT, Kooij JJS, Penninx BW. Adult attention-deficit/hyperactivity disorder (ADHD) and insomnia: an update of the literature. Curr Psychiatry Rep. 2017;19(12):98.PubMedCrossRefGoogle Scholar
  82. 82.
    Barry RJ, Clarke AR, Johnstone SJ, McCarthy R, Selikowitz M. Electroencephalogram theta/beta ratio and arousal in attention-deficit/hyperactivity disorder: evidence of independent processes. Biol Psychiatry. 2009;66(4):398–401.PubMedCrossRefGoogle Scholar
  83. 83.
    Arns M, Conners CK, Kraemer HC. A decade of EEG theta/beta ratio research in ADHD: a meta-analysis. J Atten Disord. 2013;17(5):374–83.PubMedCrossRefGoogle Scholar
  84. 84.
    Clarke AR, Barry RJ, Dupuy FE, McCarthy R, Selikowitz M, Johnstone SJ. Excess beta activity in the EEG of children with attention-deficit/hyperactivity disorder: a disorder of arousal? Int J Psychophysiol. 2013;89(3):314–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Clarke AR, Barry RJ, McCarthy R, Selikowitz M. EEG-defined subtypes of children with attention-deficit/hyperactivity disorder. Clin Neurophysiol. 2001;112(11):2098–105.PubMedCrossRefGoogle Scholar
  86. 86.
    Arns M, Swatzyna RJ, Gunkelman J, Olbrich S. Sleep maintenance, spindling excessive beta and impulse control: an RDoC arousal and regulatory systems approach? Neuropsychiatric Electrophysiology. 2015;1(1):5.CrossRefGoogle Scholar
  87. 87.
    Cervena K, Dauvilliers Y, Espa F, Touchon J, Matousek M, Billiard M, et al. Effect of cognitive behavioural therapy for insomnia on sleep architecture and sleep EEG power spectra in psychophysiological insomnia. J Sleep Res. 2004;13(4):385–93.PubMedCrossRefGoogle Scholar
  88. 88.
    Altena E, Van Der Werf YD, Sanz-Arigita EJ, Voorn TA, Rombouts SA, Kuijer JP, et al. Prefrontal hypoactivation and recovery in insomnia. Sleep. 2008;31(9):1271–6.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Wei Y, Colombo MA, Ramautar JR, Blanken TF, van der Werf YD, Spiegelhalder K, et al. Sleep stage transition dynamics reveal specific stage 2 vulnerability in insomnia. Sleep. 2017;40(9)
  90. 90.
    Schwartz JRL, Roth T. Neurophysiology of sleep and wakefulness: basic science and clinical implications. Curr Neuropharmacol. 2008;6(4):367–78.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Saper CB, Fuller PM. Wake-sleep circuitry: an overview. Curr Opin Neurobiol. 2017;44:186–92.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Scammell TE, Arrigoni E, Lipton JO. Neural circuitry of wakefulness and sleep. Neuron. 2017;93(4):747–65.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Ono D, Yamanaka A. Hypothalamic regulation of the sleep/wake cycle. Neurosci Res. 2017;118:74–81.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  • Célyne H. Bastien
    • 1
    Email author
  • Thierry Provencher
    • 1
  • Jessica Lebel
    • 1
  • Roxanne Bolduc-Landry
    • 1
  1. 1.School of PsychologyLaval UniversityQuebecCanada

Personalised recommendations