3D Printing in Endodontics

  • Gunpreet OberoiEmail author
  • Hermann Agis


With increasing demand for precision and personalization in dentistry, we need to metamorphose stereotypical dental treatment and workflow. In this context, 3D printing, also termed “additive manufacturing,” is one such platform that has currently enveloped almost all spheres of oral medicine. Based on the wide range of manual competencies with microscopic resolution required in endodontics, it is highly imperative to establish accurate, reproducible, effective, and patient-clinician-friendly treatment procedures and inventory. 3D printing is a meticulous, cost-effective, and user-friendly solution to these concerns. Today, 3D printing has found a vital role in endodontics, ranging from clinical to education, including innovative research applications. In this chapter, we emphasize the past, present, and future prominence of this technique in the field of endodontics. We will highlight the various technologies of additive manufacturing and their underlying mechanism of action. The functionality of additive manufacturing in improving current trends in endodontics will focus mainly on guided endodontic procedures and surgeries, educational root canal models, and experimental approaches in the research on dental pulp biology and future regenerative approaches.


3D printing Additive manufacturing Guided endodontics 3D printed educational models Endodontic regeneration 



Research of the authors on 3D printing within the M3dRES project (858060) is supported by the Austrian Research Promoting Agency (FFG). We thank Abeer El Temtamy (Columbia College of Dental Medicine) for proofreading of the chapter.


  1. 1.
    Moser N, Santander P, Quast A. From 3D imaging to 3D printing in dentistry - a practical guide. Int J Comput Dent. 2018;21(4):345–56.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Oberoi G, Nitsch S, Edelmayer M, Janjić K, Müller AS, Agis H. 3D printing-encompassing the facets of dentistry. Front Bioeng Biotechnol. 2018;6:172.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Ackerman S, Aguilera FC, Buie JM, Glickman GN, Umorin M, Wang Q, et al. Accuracy of 3-dimensional-printed endodontic surgical guide: a human cadaver study. J Endod. 2019;45(5):615–8.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Valdec S, Schiefersteiner M, Rücker M, Stadlinger B. Guided biopsy of osseous pathologies in the jaw bone using a 3D-printed, tooth-supported drilling template. Int J Oral Maxillofac Surg. 2019;48:1028.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Király L. [Three-dimensional virtual and printed models improve preoperative planning and promote patient-safety in complex congenital and pediatric cardiac surgery]. Orv Hetil 2019;160(19):747–755.Google Scholar
  6. 6.
    Aimar A, Palermo A, Innocenti B. The role of 3D printing in medical applications: a state of the art. J Healthc Eng. 2019;2019:5340616.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Walker M, Humphries S. 3D printing: applications in evolution and ecology. Ecol Evol. 2019;9(7):4289–301.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8. 2018. Was a Strong Year for the Global 3D Printer Market > Accessed 20 May 2019 from
  9. 9.
    Dawood A, Marti Marti B, Sauret-Jackson V, Darwood A. 3D printing in dentistry. Br Dent J. 2015;219(11):521–9.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers for 3D printing and customized additive manufacturing. Chem Rev. 2017;117(15):10212–90.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    van der Meer WJ, Vissink A, Ng YL, Gulabivala K. 3D Computer aided treatment planning in endodontics. J Dent. 2016;45:67–72.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Anssari Moin D, Verweij JP, Waars H, van Merkesteyn R, Wismeijer D. Accuracy of computer-assisted template-guided autotransplantation of teeth with custom three-dimensional designed/printed surgical tooling: a cadaveric study. J Oral Maxillofac Surg. 2017;75(5):925.e1–7.CrossRefGoogle Scholar
  13. 13.
    Kulczyk T, Rychlik M, Lorkiewicz-Muszyńska D, Abreu-Głowacka M, Czajka-Jakubowska A, Przystańska A. Computed tomography versus optical scanning: a comparison of different methods of 3D data acquisition for tooth replication. Biomed Res Int. 2019;2019:4985121.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Tardieu PB, Vrielinck L, Escolano E, Henne M, Tardieu A. Computer-assisted implant placement: scan template, simplant, surgiguide, and SAFE system. Int J Periodontics Restorative Dent. 2007;27(2):141–9.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Shaheen E, Sun Y, Jacobs R, Politis C. Three-dimensional printed final occlusal splint for orthognathic surgery: design and validation. Int J Oral Maxillofac Surg. 2017;46(1):67–71.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Filippou V, Tsoumpas C. Recent advances on the development of phantoms using 3D printing for imaging with CT, MRI, PET, SPECT, and ultrasound. Med Phys. 2018;45(9):e740.PubMedCentralCrossRefGoogle Scholar
  17. 17.
    Wang KC, Jones A, Kambhampati S, Gilotra MN, Liacouras PC, Stuelke S, et al. CT-based 3D printing of the glenoid prior to shoulder arthroplasty: bony morphology and model evaluation. J Digit Imaging. 2019;32:816–26.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Chang D, Tummala S, Sotero D, Tong E, Mustafa L, Mustafa M, et al. Three-dimensional printing for procedure rehearsal/simulation/planning in interventional radiology. Tech Vasc Interv Radiol. 2019;22(1):14–20.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Metzger Z, Zary R, Cohen R, Teperovich E, Paqué F. The quality of root canal preparation and root canal obturation in canals treated with rotary versus self-adjusting files: a three-dimensional micro-computed tomographic study. J Endod. 2010;36(9):1569–73.PubMedCrossRefGoogle Scholar
  20. 20.
    Kamio T, Hayashi K, Onda T, Takaki T, Shibahara T, Yakushiji T, et al. Utilizing a low-cost desktop 3D printer to develop a “one-stop 3D printing lab” for oral and maxillofacial surgery and dentistry fields. 3D Print Med. 2018;4(1):6.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Nilsson J, Richards RG, Thor A, Kamer L. Virtual bite registration using intraoral digital scanning, CT and CBCT: in vitro evaluation of a new method and its implication for orthognathic surgery. J Craniomaxillofac Surg. 2016;44(9):1194–200.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Liang X, Liao W, Cai H, Jiang S, Chen S. 3D-printed artificial teeth: accuracy and application in root canal therapy. J Biomed Nanotechnol. 2018;14(8):1477–85.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Eken R, Sen OG, Eskitascioglu G, Belli S. Evaluation of the effect of rotary systems on stresses in a new testing model using a 3-dimensional printed simulated resin root with an oval-shaped canal: a finite element analysis study. J Endod. 2016;42(8):1273–8.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Bateman MG, Durfee WK, Iles TL, Martin CM, Liao K, Erdman AG, et al. Cardiac patient-specific three-dimensional models as surgical planning tools. Surgery. 2020;167:259.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    van Steenberghe D, Glauser R, Blombäck U, Andersson M, Schutyser F, Pettersson A, et al. A computed tomographic scan-derived customized surgical template and fixed prosthesis for flapless surgery and immediate loading of implants in fully edentulous maxillae: a prospective multicenter study. Clin Implant Dent Relat Res. 2005;7(Suppl 1):S111–20.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Strbac GD, Schnappauf A, Giannis K, Bertl MH, Moritz A, Ulm C. Guided autotransplantation of teeth: a novel method using virtually planned 3-dimensional templates. J Endod. 2016;42(12):1844–50.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Martorelli M, Gerbino S, Giudice M, Ausiello P. A comparison between customized clear and removable orthodontic appliances manufactured using RP and CNC techniques. Dent Mater. 2013;29(2):e1–10.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Tunchel S, Blay A, Kolerman R, Mijiritsky E, Shibli JA. 3D printing/additive manufacturing single titanium dental implants: a prospective multicenter study with 3 years of follow-up. Int J Dent. 2016;2016:8590971.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Revilla León M, Klemm IM, García-Arranz J, Özcan M. 3D metal printing - additive manufacturing technologies for frameworks of implant-borne fixed dental prosthesis. Eur J Prosthodont Restor Dent. 2017;25(3):143–7.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Xia J, Li Y, Cai D, Shi X, Zhao S, Jiang Q, et al. Direct resin composite restoration of maxillary central incisors using a 3D-printed template: two clinical cases. BMC Oral Health. 2018;18(1):158.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Knowlton S, Onal S, Yu CH, Zhao JJ, Tasoglu S. Bioprinting for cancer research. Trends Biotechnol. 2015;33(9):504–13.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Rasperini G, Pilipchuk SP, Flanagan CL, Park CH, Pagni G, Hollister SJ, et al. 3D-printed bioresorbable scaffold for periodontal repair. J Dent Res. 2015;94(9 Suppl):153S–7S.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Visscher DO, Farré-Guasch E, Helder MN, Gibbs S, Forouzanfar T, van Zuijlen PP, et al. Advances in bioprinting technologies for craniofacial reconstruction. Trends Biotechnol. 2016;34(9):700–10.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Moroni L, Boland T, Burdick JA, De Maria C, Derby B, Forgacs G, et al. Biofabrication: a guide to technology and terminology. Trends Biotechnol. 2018;36(4):384–402.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Smith EE, Zhang W, Schiele NR, Khademhosseini A, Kuo CK, Yelick PC. Developing a biomimetic tooth bud model. J Tissue Eng Regen Med. 2017;11(12):3326–36.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W, Xing M. 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioact Mater. 2018;3(2):144–56.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Morgan AJL, Hidalgo San Jose L, Jamieson WD, Wymant JM, Song B, Stephens P, et al. Simple and versatile 3D printed microfluidics using fused filament fabrication. PLoS One. 2016;11(4):e0152023.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Kalsoom U, Hasan CK, Tedone L, Desire CT, Li F, Breadmore MC, et al. A low-cost passive sampling device with integrated porous membrane produced using multi-material 3D printing. Anal Chem. 2018;90(20):12081–9.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Masood SH. Advances in fused deposition modeling. In: Comprehensive materials processing. Amsterdam: Elsevier; 2014. p. 69–91.CrossRefGoogle Scholar
  40. 40.
    Mazzoli A. Selective laser sintering in biomedical engineering. Med Biol Eng Comput. 2013;51(3):245–56.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Ionita CN, Mokin M, Varble N, Bednarek DR, Xiang J, Snyder KV, et al. Challenges and limitations of patient-specific vascular phantom fabrication using 3D Polyjet printing. Proc SPIE. 2014;9038:90380M.CrossRefGoogle Scholar
  42. 42.
    Ibrahim D, Broilo TL, Heitz C, de Oliveira MG, de Oliveira HW, Nobre SMW, et al. Dimensional error of selective laser sintering, three-dimensional printing and PolyJet models in the reproduction of mandibular anatomy. J Craniomaxillofac Surg. 2009;37(3):167–73.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Lopez CD, Witek L, Torroni A, Flores RL, Demissie DB, Young S, et al. The role of 3D printing in treating craniomaxillofacial congenital anomalies. Birth Def Res. 2018;110(13):1055–64.CrossRefGoogle Scholar
  44. 44.
    Urkasemsin G, Ferreira JN. Unveiling stem cell heterogeneity toward the development of salivary gland regenerative strategies. Adv Exp Med Biol. 2019;1123:151–64.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Chen S, Shi Y, Luo Y, Ma J. Layer-by-layer coated porous 3D printed hydroxyapatite composite scaffolds for controlled drug delivery. Colloids Surf B: Biointerfaces. 2019;179:121–7.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Chen H, Zhang J, Li X, Liu L, Zhang X, Ren D, et al. Multi-level customized 3D printing for autogenous implants in skull tissue engineering. Biofabrication. 2019;11:045007.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Lipskas J, Deep K, Yao W. Robotic-assisted 3D bio-printing for repairing bone and cartilage defects through a minimally invasive approach. Sci Rep. 2019;9(1):3746.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Noh I, Kim N, Tran HN, Lee J, Lee C. 3D printable hyaluronic acid-based hydrogel for its potential application as a bioink in tissue engineering. Biomater Res. 2019;23:3.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Datta P, Ayan B, Ozbolat IT. Bioprinting for vascular and vascularized tissue biofabrication. Acta Biomater. 2017;51:1–20.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Huang Y, Zhang X-F, Gao G, Yonezawa T, Cui X. 3D bioprinting and the current applications in tissue engineering. Biotechnol J. 2017;12(8):1600734.CrossRefGoogle Scholar
  51. 51.
    Wenz A, Borchers K, Tovar GEM, Kluger PJ. Bone matrix production in hydroxyapatite-modified hydrogels suitable for bone bioprinting. Biofabrication. 2017;9(4):044103.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Itoh Y, Sasaki JI, Hashimoto M, Katata C, Hayashi M, Imazato S. Pulp regeneration by 3-dimensional dental pulp stem cell constructs. J Dent Res. 2018;97(10):1137–43.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Blakely AM, Manning KL, Tripathi A, Morgan JR. Bio-pick, place, and perfuse: a new instrument for three-dimensional tissue engineering. Tissue Eng Part C Methods. 2015;21(7):737–46.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Nguyen D, Hägg DA, Forsman A, Ekholm J, Nimkingratana P, Brantsing C, et al. Cartilage tissue engineering by the 3D bioprinting of ips cells in a nanocellulose/alginate bioink. Sci Rep. 2017;7(1):658.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Thrivikraman G, Athirasala A, Twohig C, Boda SK, Bertassoni LE. Biomaterials for craniofacial bone regeneration. Dent Clin N Am. 2017;61(4):835–56.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Athirasala A, Tahayeri A, Thrivikraman G, França CM, Monteiro N, Tran V, et al. A dentin-derived hydrogel bioink for 3D bioprinting of cell laden scaffolds for regenerative dentistry. Biofabrication. 2018;10(2):024101.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Intini C, Elviri L, Cabral J, Mros S, Bergonzi C, Bianchera A, et al. 3D-printed chitosan-based scaffolds: an in vitro study of human skin cell growth and an in-vivo wound healing evaluation in experimental diabetes in rats. Carbohydr Polym. 2018;199:593–602.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Chen Y-W, Shen Y-F, Ho C-C, Yu J, Wu Y-HA, Wang K, et al. Osteogenic and angiogenic potentials of the cell-laden hydrogel/mussel-inspired calcium silicate complex hierarchical porous scaffold fabricated by 3D bioprinting. Mater Sci Eng C Mater Biol Appl. 2018;91:679–87.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Rahman SU, Nagrath M, Ponnusamy S, Arany PR. Nanoscale and macroscale scaffolds with controlled-release polymeric systems for dental craniomaxillofacial tissue engineering. Materials (Basel). 2018;11(8):E1478.CrossRefGoogle Scholar
  60. 60.
    Chiarello E, Cadossi M, Tedesco G, Capra P, Calamelli C, Shehu A, et al. Autograft, allograft and bone substitutes in reconstructive orthopedic surgery. Aging Clin Exp Res. 2013;25(Suppl 1):S101–3.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Bill JS, Reuther JF, Dittmann W, Kübler N, Meier JL, Pistner H, et al. Stereolithography in oral and maxillofacial operation planning. Int J Oral Maxillofac Surg. 1995;24(1 Pt 2):98–103.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Wang G, Li J, Khadka A, Hsu Y, Li W, Hu J. CAD/CAM and rapid prototyped titanium for reconstruction of ramus defect and condylar fracture caused by mandibular reduction. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113(3):356–61.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Fahmy MD, Jazayeri HE, Razavi M, Masri R, Tayebi L. Three-dimensional bioprinting materials with potential application in preprosthetic surgery. J Prosthodont. 2016;25(4):310–8.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Shah P, Chong BS. 3D imaging, 3D printing and 3D virtual planning in endodontics. Clin Oral Investig. 2018;22(2):641–54.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Anderson J, Wealleans J, Ray J. Endodontic applications of 3D printing. Int Endod J. 2018;51(9):1005–18.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Kröger E, Dekiff M, Dirksen D. 3D printed simulation models based on real patient situations for hands-on practice. Eur J Dent Educ. 2017;21(4):e119–25.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Alrasheed AS, Nguyen LHP, Mongeau L, Funnell WRJ, Tewfik MA. Development and validation of a 3D-printed model of the ostiomeatal complex and frontal sinus for endoscopic sinus surgery training. Int Forum Allergy Rhinol. 2017;7(8):837–41.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Decurcio DA, Lim E, Chaves GS, Nagendrababu V, Estrela C, Rossi-Fedele G. Pre-clinical endodontic education outcomes between artificial versus extracted natural teeth: a systematic review. Int Endod J. 2019;52:1153.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Mitsouras D, Liacouras P, Imanzadeh A, Giannopoulos AA, Cai T, Kumamaru KK, et al. Medical 3D printing for the radiologist. Radiographics. 2015;35(7):1965–88.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Sánchez-Sánchez Á, Girón-Vallejo Ó, Ruiz-Pruneda R, Fernandez-Ibieta M, García-Calderon D, Villamil V, et al. Three-dimensional printed model and virtual reconstruction: an extra tool for pediatric solid tumors surgery. Eur J Pediatr Surg Rep. 2018;6(1):e70–6.CrossRefGoogle Scholar
  71. 71.
    Redwood B, Schöffer F, Garret B. The 3d printing handbook: technologies, design and applications. 1st ed. Amsterdam: 3d Hubs; 2017.Google Scholar
  72. 72.
    Nikoyan L, Patel R. Intraoral scanner, three-dimensional imaging, and three-dimensional printing in the dental office. Dent Clin N Am. 2020;64(2):365–78.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Ozbolat IT, Moncal KK, Gudapati H. Evaluation of bioprinter technologies. Addit Manufact. 2017;13:179–200.CrossRefGoogle Scholar
  74. 74.
    Ozbolat IT, Peng W, Ozbolat V. Application areas of 3D bioprinting. Drug Discov Today. 2016;21(8):1257–71.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR. Organ printing: tissue spheroids as building blocks. Biomaterials. 2009;30(12):2164–74.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Oberoi G, Janjić K, Müller AS, Schädl B, Andrukhov O, Moritz A, et al. Contraction dynamics of rod microtissues of gingiva-derived and periodontal ligament-derived cells. Front Physiol. 2018;9:1683.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Oberoi G, Janjić K, Müller AS, Schädl B, Moritz A, Agis H. Contraction dynamics of dental pulp cell rod microtissues. Clin Oral Investig. 2020;24:631.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Ji S, Guvendiren M. Recent advances in bioink design for 3D bioprinting of tissues and organs. Front Bioeng Biotechnol. 2017;5:23.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Moldovan NI. Progress in scaffold-free bioprinting for cardiovascular medicine. J Cell Mol Med. 2018;22(6):2964–9.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Zhang YS, Yue K, Aleman J, Moghaddam KM, Bakht SM, Yang J, et al. 3D bioprinting for tissue and organ fabrication. Ann Biomed Eng. 2017;45(1):148–63.PubMedCrossRefGoogle Scholar
  81. 81.
    Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773–85.PubMedCrossRefGoogle Scholar
  82. 82.
    Ahlfeld T, Cidonio G, Kilian D, Duin S, Akkineni AR, Dawson JI, et al. Development of a clay based bioink for 3D cell printing for skeletal application. Biofabrication. 2017;9(3):034103.PubMedCrossRefGoogle Scholar
  83. 83.
    Müller AS, Gashi M, Janjić K, Edelmayer M, Moritz A, Agis H. The impact of clay-based hypoxia mimetic hydrogel on human fibroblasts of the periodontal soft tissue. J Biomater Appl. 2019;33:1277.PubMedCrossRefGoogle Scholar
  84. 84.
    Müller AS, Artner M, Janjić K, Edelmayer M, Kurzmann C, Moritz A, et al. Synthetic clay-based hypoxia mimetic hydrogel for pulp regeneration: the impact on cell activity and release kinetics based on dental pulp-derived cells in vitro. J Endod. 2018;44(8):1263–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Almela T, Al-Sahaf S, Brook IM, Khoshroo K, Rasoulianboroujeni M, Fahimipour F, et al. 3D printed tissue engineered model for bone invasion of oral cancer. Tissue Cell. 2018;52:71–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Lee V, Singh G, Trasatti JP, Bjornsson C, Xu X, Tran TN, et al. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods. 2014;20(6):473–84.PubMedCrossRefGoogle Scholar
  87. 87.
    Kurzmann C, Janjić K, Shokoohi-Tabrizi H, Edelmayer M, Pensch M, Moritz A, et al. Evaluation of resins for stereolithographic 3D-printed surgical guides: the response of L929 cells and human gingival fibroblasts. Biomed Res Int. 2017;2017:4057612.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Vasak C, Watzak G, Gahleitner A, Strbac G, Schemper M, Zechner W. Computed tomography-based evaluation of template (NobelGuide™)-guided implant positions: a prospective radiological study. Clin Oral Implants Res. 2011;22(10):1157–63.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Strbac GD, Schnappauf A, Giannis K, Moritz A, Ulm C. Guided modern endodontic surgery: a novel approach for guided osteotomy and root resection. J Endod. 2017;43(3):496–501.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Byun C, Kim C, Cho S, Baek SH, Kim G, Kim SG, et al. Endodontic treatment of an anomalous anterior tooth with the aid of a 3-dimensional printed physical tooth model. J Endod. 2015;41(6):961–5.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Loios G, Martins RF, Ginjeira A, Dragoi MV, Buican G. Fatigue resistance of rotary endodontic files submitted to axial motion in multiplanar canals manufactured by 3D printing. Proc Eng. 2016;160:117–22.CrossRefGoogle Scholar
  92. 92.
    Patel S, Aldowaisan A, Dawood A. A novel method for soft tissue retraction during periapical surgery using 3D technology: a case report. Int Endod J. 2017;50(8):813–22.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Huumonen S, Orstavik D. Radiological aspects of apical periodontitis. Endod Top. 2002;1(1):3–25.CrossRefGoogle Scholar
  94. 94.
    Connert T, Zehnder MS, Amato M, Weiger R, Kühl S, Krastl G. Microguided Endodontics: a method to achieve minimally invasive access cavity preparation and root canal location in mandibular incisors using a novel computer-guided technique. Int Endod J. 2018;51(2):247–55.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Ahn S-Y, Kim N-H, Kim S, Karabucak B, Kim E. Computer-aided Design/Computer-aided Manufacturing-guided endodontic surgery: guided osteotomy and apex localization in a mandibular molar with a thick buccal bone plate. J Endod. 2018;44(4):665–70.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    McCabe PS, Dummer PMH. Pulp canal obliteration: an endodontic diagnosis and treatment challenge. Int Endod J. 2012;45(2):177–97.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Hsieh C-Y, Wu Y-C, Su C-C, Chung M-P, Huang R-Y, Ting P-Y, et al. The prevalence and distribution of radiopaque, calcified pulp stones: a cone-beam computed tomography study in a northern Taiwanese population. J Dent Sci. 2018;13(2):138–44.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Jannati R, Afshari M, Moosazadeh M, Allahgholipour SZ, Eidy M, Hajihoseini M. Prevalence of pulp stones: a systematic review and meta-analysis. J Evid Based Med. 2019;12:133.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Tassoker M, Magat G, Sener S. A comparative study of cone-beam computed tomography and digital panoramic radiography for detecting pulp stones. Imaging Sci Dent. 2018;48(3):201–12.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Yang H, Tian C, Li G, Yang L, Han X, Wang Y. A cone-beam computed tomography study of the root canal morphology of mandibular first premolars and the location of root canal orifices and apical foramina in a Chinese subpopulation. J Endod. 2013;39(4):435–8.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Eaton JA, Clement DJ, Lloyd A, Marchesan MA. Micro-computed tomographic evaluation of the influence of root canal system landmarks on access outline forms and canal curvatures in mandibular molars. J Endod. 2015;41(11):1888–91.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Boschetti E, Silva-Sousa YTC, Mazzi-Chaves JF, Leoni GB, Versiani MA, Pécora JD, et al. Micro-CT evaluation of root and canal morphology of mandibular first premolars with radicular grooves. Braz Dent J. 2017;28(5):597–603.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Zhang Y, Xu H, Wang D, Gu Y, Wang J, Tu S, et al. Assessment of the second mesiobuccal root canal in maxillary first molars: a cone-beam computed tomographic study. J Endod. 2017;43(12):1990–6.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Rusu D, Surlin P, Stratul S-I, Boariu M, Calniceanu H, Kasaj A, et al. Changes in anatomic position of root canal orifices in pluriradicular teeth following re-location during endodontic treatment. Ann Anat. 2018;217:29–33.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Su C-C, Huang R-Y, Wu Y-C, Cheng W-C, Chiang H-S, Chung M-P, et al. Detection and location of second mesiobuccal canal in permanent maxillary teeth: a cone-beam computed tomography analysis in a Taiwanese population. Arch Oral Biol. 2019;98:108–14.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Tassoker M, Sener S. Analysis of the root canal configuration and C-shaped canal frequency of mandibular second molars: a cone beam computed tomography study. Folia Morphol (Warsz). 2018;77(4):752–7.Google Scholar
  107. 107.
    Zhang W, Tang Y, Liu C, Shen Y, Feng X, Gu Y. Root and root canal variations of the human maxillary and mandibular third molars in a Chinese population: a micro-computed tomographic study. Arch Oral Biol. 2018;95:134–40.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Dos Santos OR, Maria Gomes Oliveira A, Cintra Junqueira JL, Kühl Panzarella F. Association between the anatomy of the mandibular canal and facial types: a cone-beam computed tomography analysis. Int J Dent. 2018;2018:5481383.Google Scholar
  109. 109.
    Al Qahtani A, Abdulrab S, Alhadainy H. Management of a failed endodontic treatment for a maxillary second molar with two separate palatal roots. Clin Case Rep. 2018;6(9):1735–8.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Sathyanarayanan K, Poornima L. Endodontic management of maxillary second molar with vertucci type VI root canal morphology diagnosed using cone-beam computed tomography. Contemp Clin Dent. 2018;9(3):494–7.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Marceliano-Alves MF, de Lima CO, Augusto CM, Almeida Barbosa AF, Vieira Bruno AM, Rosa AM, et al. The internal root canal morphology of single-rooted mandibular canines revealed by micro-computed tomography. J Conserv Dent. 2018;21(6):588–91.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Saber SEDM, Ahmed MHM, Obeid M, Ahmed HMA. Root and canal morphology of maxillary premolar teeth in an Egyptian subpopulation using two classification systems: a cone beam computed tomography study. Int Endod J. 2019;52(3):267–78.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Kato H, Kamio T. Diagnosis and endodontic management of fused mandibular second molar and paramolar with concrescent supernumerary tooth using cone-beam CT and 3-D printing technology: a case report. Bull Tokyo Dent Coll. 2015;56(3):177–84.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Connert T, Krug R, Eggmann F, Emsermann I, ElAyouti A, Weiger R, et al. Guided endodontics versus conventional access cavity preparation: a comparative study on substance loss using 3-dimensional-printed teeth. J Endod. 2019;45(3):327–31.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Krastl G, Zehnder MS, Connert T, Weiger R, Kühl S. Guided endodontics: a novel treatment approach for teeth with pulp canal calcification and apical pathology. Dent Traumatol. 2016;32(3):240–6.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Connert T, Zehnder MS, Weiger R, Kühl S, Krastl G. Microguided endodontics: accuracy of a miniaturized technique for apically extended access cavity preparation in anterior teeth. J Endod. 2017;43(5):787–90.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Fonseca Tavares WL, Diniz Viana AC, de Carvalho MV, Feitosa Henriques LC, Ribeiro Sobrinho AP. Guided endodontic access of calcified anterior teeth. J Endod. 2018;44(7):1195–9.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Lara-Mendes STO, Barbosa CFM, Machado VC, Santa-Rosa CC. A new approach for minimally invasive access to severely calcified anterior teeth using the guided endodontics technique. J Endod. 2018;44(10):1578–82.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Mao T, Neelakantan P. Three-dimensional imaging modalities in endodontics. Imaging Sci Dent. 2014;44(3):177–83.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Philpott R, Gulabivala K, Leeson R, Ng YL. Prevalence, predictive factors, and clinical course of persistent pain associated with teeth displaying periapical healing following non-surgical root canal treatment: a prospective study. Int Endod J. 2018;52(4):407–15.PubMedCrossRefGoogle Scholar
  121. 121.
    Nayak A, Jain PK, Kankar PK, Jain N. Computer-aided design-based guided endodontic: a novel approach for root canal access cavity preparation. Proc Inst Mech Eng H. 2018;232(8):787–95.PubMedCrossRefGoogle Scholar
  122. 122.
    Fan Y, Glickman GN, Umorin M, Nair MK, Jalali P. A novel prefabricated grid for guided endodontic microsurgery. J Endod. 2019;45:206.CrossRefGoogle Scholar
  123. 123.
    Buchgreitz J, Buchgreitz M, Bjørndal L. Guided endodontics modified for treating molars by using an intracoronal guide technique. J Endod. 2019;45(6):818–23.PubMedCrossRefGoogle Scholar
  124. 124.
    Strbac GD, Giannis K, Unger E, Mittlböck M, Vasak C, Watzek G, et al. Drilling- and withdrawing-related thermal changes during implant site osteotomies. Clin Implant Dent Relat Res. 2015;17(1):32–43.PubMedCrossRefGoogle Scholar
  125. 125.
    Mazzoni S, Bianchi A, Schiariti G, Badiali G, Marchetti C. Computer-aided design and computer-aided manufacturing cutting guides and customized titanium plates are useful in upper maxilla waferless repositioning. J Oral Maxillofac Surg. 2015;73(4):701–7.PubMedCrossRefGoogle Scholar
  126. 126.
    Patel S. New dimensions in endodontic imaging: Part 2. Cone beam computed tomography. Int Endod J. 2009;42(6):463–75.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Patel S, Dawood A, Whaites E, Pitt FT. New dimensions in endodontic imaging: part 1. Conventional and alternative radiographic systems. Int Endod J. 2009;42(6):447–62.PubMedCrossRefGoogle Scholar
  128. 128.
    Zehnder MS, Connert T, Weiger R, Krastl G, Kühl S. Guided endodontics: accuracy of a novel method for guided access cavity preparation and root canal location. Int Endod J. 2016;49(10):966–72.PubMedCrossRefGoogle Scholar
  129. 129.
    Faria MIA, Borges M, Carneiro SM, Filho JMMS, et al. Endodontic treatment of dental formation anomalies. Rev Odonto Ciênc. 2011;26:88.CrossRefGoogle Scholar
  130. 130.
    Albuquerque D, Kottoor J, Hammo M. Endodontic and clinical considerations in the management of variable anatomy in mandibular premolars: a literature review. Biomed Res Int. 2014;2014:512574.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Luder HU. Malformations of the tooth root in humans. Front Physiol. 2015;6:307.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Gok T, Capar ID, Akcay I, Keles A. Evaluation of different techniques for filling simulated c-shaped canals of 3-dimensional printed resin teeth. J Endod. 2017;43(9):1559–64.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Schwindling FS, Tasaka A, Hilgenfeld T, Rammelsberg P, Zenthöfer A. Three-dimensional-guided removal and preparation of dental root posts-concept and feasibility. J Prosthod Res. 2020;64:104.CrossRefGoogle Scholar
  134. 134.
    Tsesis I, Rosen E, Schwartz-Arad D, Fuss Z. Retrospective evaluation of surgical endodontic treatment: traditional versus modern technique. J Endod. 2006;32(5):412–6.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Kim S, Kratchman S. Modern endodontic surgery concepts and practice: a review. J Endod. 2006;32(7):601–23.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Ye S, Zhao S, Wang W, Jiang Q, Yang X. A novel method for periapical microsurgery with the aid of 3D technology: a case report. BMC Oral Health. 2018;18(1):85.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Oh J-H. Recent advances in the reconstruction of cranio-maxillofacial defects using computer-aided design/computer-aided manufacturing. Maxillofac Plast Reconstr Surg. 2018;40(1):2.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Pugliese L, Marconi S, Negrello E, Mauri V, Peri A, Gallo V, et al. The clinical use of 3D printing in surgery. Updat Surg. 2018;70(3):381–8.CrossRefGoogle Scholar
  139. 139.
    Hu YK, Xie QY, Yang C, Xu GZ. Computer-designed surgical guide template compared with free-hand operation for mesiodens extraction in premaxilla using “trapdoor” method. Medicine. 2017;96(26):e7310.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Giacomino CM, Ray JJ, Wealleans JA. Targeted endodontic microsurgery: a novel approach to anatomically challenging scenarios using 3-dimensional-printed guides and trephine burs-a report of 3 cases. J Endod. 2018;44(4):671–7.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Bahcall JK. Using 3-dimensional printing to create presurgical models for endodontic surgery. Compend Contin Educ Dent. 2014;35(8):e29–30.PubMedPubMedCentralGoogle Scholar
  142. 142.
    Verweij JP, Anssari Moin D, Wismeijer D, van Merkesteyn JPR. Replacing heavily damaged teeth by third molar autotransplantation with the use of cone-beam computed tomography and rapid prototyping. J Oral Maxillofac Surg. 2017;75(9):1809–16.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Kim K, Choi H-S, Pang N-S. Clinical application of 3D technology for tooth autotransplantation: a case report. Aust Endod J. 2019;45:122.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Höhne C, Schmitter M. 3D printed teeth for the preclinical education of dental students. J Dent Educ. 2019;83:1100.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Arora A, Taneja S, Kumar M. Comparative evaluation of shaping ability of different rotary NiTi instruments in curved canals using CBCT. J Conserv Dent. 2014;17(1):35–9.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Saber SEDM, Nagy MM, Schäfer E. Comparative evaluation of the shaping ability of ProTaper Next, iRaCe and Hyflex CM rotary NiTi files in severely curved root canals. Int Endod J. 2015;48(2):131–6.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Pedullà E, Plotino G, Grande NM, Avarotti G, Gambarini G, Rapisarda E, et al. Shaping ability of two nickel-titanium instruments activated by continuous rotation or adaptive motion: a micro-computed tomography study. Clin Oral Investig. 2016;20(8):2227–33.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Alovisi M, Cemenasco A, Mancini L, Paolino D, Scotti N, Bianchi CC, et al. Micro-CT evaluation of several glide path techniques and ProTaper Next shaping outcomes in maxillary first molar curved canals. Int Endod J. 2017;50(4):387–97.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Mohmmed SA, Vianna ME, Hilton ST, Boniface DR, Ng Y-L, Knowles JC. Investigation to test potential stereolithography materials for development of an in vitro root canal model. Microsc Res Tech. 2017;80(2):202–10.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Mohmmed SA, Vianna ME, Penny MR, Hilton ST, Mordan N, Knowles JC. Confocal laser scanning, scanning electron, and transmission electron microscopy investigation of Enterococcus faecalis biofilm degradation using passive and active sodium hypochlorite irrigation within a simulated root canal model. Microbiology. 2017;6(4):e00455.CrossRefGoogle Scholar
  151. 151.
    Robberecht L, Chai F, Dehurtevent M, Marchandise P, Bécavin T, Hornez JC, et al. A novel anatomical ceramic root canal simulator for endodontic training. Eur J Dent Educ. 2016;21:e1.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    McMenamin PG, Quayle MR, McHenry CR, Adams JW. The production of anatomical teaching resources using three-dimensional (3D) printing technology. Anat Sci Educ. 2014;7(6):479–86.CrossRefPubMedGoogle Scholar
  153. 153.
    Christofzik D, Bartols A, Faheem MK, Schroeter D, Groessner-Schreiber B, Doerfer CE. Shaping ability of four root canal instrumentation systems in simulated 3D-printed root canal models. PLoS One. 2018;13(8):e0201129.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Mohmmed SA, Vianna ME, Penny MR, Hilton ST, Mordan NJ, Knowles JC. Investigations into in situ Enterococcus faecalis biofilm removal by passive and active sodium hypochlorite irrigation delivered into the lateral canal of a simulated root canal model. Int Endod J. 2018;51(6):649–62.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Mohmmed SA, Vianna ME, Penny MR, Hilton ST, Mordan N, Knowles JC. A novel experimental approach to investigate the effect of different agitation methods using sodium hypochlorite as an irrigant on the rate of bacterial biofilm removal from the wall of a simulated root canal model. Dent Mater. 2016;32(10):1289–300.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Lertchirakarn V, Palamara JEA, Messer HH. Patterns of vertical root fracture: factors affecting stress distribution in the root canal. J Endod. 2003;29(8):523–8.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Janjić K, Cvikl B, Moritz A, Agis H. Dental pulp regeneration. Int J Stomatol Occlusion Med. 2016;8(1):1–9.CrossRefGoogle Scholar
  158. 158.
    Masri R, Driscoll CF, editors. Clinical applications of digital dental technology. Chichester: John Wiley & Sons, Inc; 2015.Google Scholar
  159. 159.
    Petersik A, Pflesser B, Tiede U, Höhne KH, Heiland M, Handels H. Realistic haptic interaction for computer simulation of dental surgery. Perspective in image-guided surgery. World Scientific. 2004:261–9.Google Scholar
  160. 160.
    Suebnukarn S, Haddawy P, Rhienmora P, Gajananan K. Haptic virtual reality for skill acquisition in endodontics. J Endod. 2010;36(1):53–5.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Suebnukarn S, Hataidechadusadee R, Suwannasri N, Suprasert N, Rhienmora P, Haddawy P. Access cavity preparation training using haptic virtual reality and microcomputed tomography tooth models. Int Endod J. 2011;44(11):983–9.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Ma Y, Xie L, Yang B, Tian W. Three-dimensional printing biotechnology for the regeneration of the tooth and tooth-supporting tissues. Biotechnol Bioeng. 2019;116(2):452–68.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Paulsen SJ, Miller JS. Tissue vascularization through 3D printing: will technology bring us flow? Dev Dyn. 2015;244(5):629–40.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Reymus M, Fotiadou C, Kessler A, Heck K, Hickel R, Diegritz C. 3D printed replicas for endodontic education. Int Endod J. 2018;52(1):123–30.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.Department of Conservative Dentistry and Periodontology, University Clinic of DentistryMedical University of ViennaViennaAustria

Personalised recommendations