Advertisement

Physical Add-Ons for Haptic Human-Surrounding Interaction and Sensorial Augmentation

  • Eva Lindell
  • Arthur Theil
  • Li Guo
  • Nasrine Olson
  • Oliver Korn
  • Nils-Krister PerssonEmail author
Conference paper
  • 571 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1253)

Abstract

Interaction and capturing information from the surrounding is dominated by vision and hearing. Haptics on the other side, widens the bandwidth and could also replace senses (sense switching) for impaired. Haptic technologies are often limited to point-wise actuation. Here, we show that actuation in two-dimensional matrices instead creates a richer input. We describe the construction of a full-body garment for haptic communication with a distributed actuating network. The garment is divided into attachable-detachable panels or add-ons that each can carry a two dimensional matrix of actuating haptic elements. Each panel adds to an enhanced sensoric capability of the human- garment system so that together a 720° system is formed. The spatial separation of the panels on different body locations supports semantic and theme-wise separation of conversations conveyed by haptics. It also achieves directional faithfulness, which is maintaining any directional information about a distal stimulus in the haptic input.

Keywords

Smart textiles Haptic communication Sense technology Directional faithfulness Multi-panel 

Notes

Acknowledgments

This work has been partially funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 780814 SUITCEYES.

References

  1. 1.
    Stöhr, A., Lindell, A., Guo, L., Persson, N.-K.: Thermal textile pixels: the characterisation of temporal and spatial thermal. Materials 12(22), 3747 (2019)CrossRefGoogle Scholar
  2. 2.
    Lederman, S.J., Klatzky, R.L.: Haptic perception: a tutorial. Atten. Percept. Psychophys. 71, 1439–1459 (2009)CrossRefGoogle Scholar
  3. 3.
    Loomis, J.M., Lederman, S.J.: Tactual perception. In: Boff, K., Kaufman, L., Thomas, J. (eds.) Handbook of Perception and Human Performance, Organization, New York (1986)Google Scholar
  4. 4.
    Fernandes, A., Albuquerque, P.: Tactual perception: a review of experimental variables and procedures. Cogn. Process. 13, 285–301 (2012)CrossRefGoogle Scholar
  5. 5.
    Rantala, J., Raisamo, R., Lylykangas, J., Ahmaniemi, T., Raisamo, J., Rantala, J., Mäkelä, K., Salminen, K., Surakka, V.: The role of gesture types and spatial feedback in haptic communication. IEEE Trans. Haptics 4(4), 295–306 (2011)CrossRefGoogle Scholar
  6. 6.
    Chellali, A., Dumas, C., Milleville-Pennel, I.: Influence of Haptic Communication on a Shared Manual Task in a Collaborative Virtual Environment. Interact. Comput. 23(4), 317–328 (2011)CrossRefGoogle Scholar
  7. 7.
    Flemming, A.-L., Damen, S.: Definitions of deafblindness and congenital deafblindness. Res. Dev. Disabil. 35(10), 2568–2576 (2014)CrossRefGoogle Scholar
  8. 8.
    Lahtinen, R.M.: Haptices and Haptemes Helsinki Paperback (2008)Google Scholar
  9. 9.
    Jones, L.A., Held, D.A.: Characterization of tactors used in vibrotactile displays. J. Comput. Inf. Sci. Eng. 8(4), 044501 (2008)CrossRefGoogle Scholar
  10. 10.
    Ion, A., Wang, E.J., Baudisch, P.: Skin drag displays: dragging a physical tactor across the user’s skin produces a stronger tactile stimulus than vibrotactile. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI 2015). Association for Computing Machinery, New York, NY, USA, pp. 2501–2504 (2015)Google Scholar
  11. 11.
    Kim, K., Colgate, J.E., Peshkin, M.A., Santos-Munné, J.J. Makhlin, A.: A miniature tactor design for upper extremity prosthesis. In: Frontiers in the Convergence of Bioscience and Information Technologies, Jeju City, pp. 537–542 (2007)Google Scholar
  12. 12.
    Bliss, J., Crane, H., Mansfield, P.: Information available in brief tactile presentations. Percept. Psychophys. 1, 273–283 (1966)CrossRefGoogle Scholar
  13. 13.
    Strasnick, E., Cauchard, J.R., Landay J.A.: BrushTouch: exploring an alternative tactile method for wearable haptics. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (CHI 2017). Association for Computing Machinery, New York, NY, USA, pp. 3120–3125 (2017)Google Scholar
  14. 14.
    Maziz, A., Concas, A., Khaldi, A., Stålhand, J., Persson, N.-K., Jager, E.W.H.: Knitting and weaving artificial muscles. Sci. Adv. 3(1), e1600327 (2017)CrossRefGoogle Scholar
  15. 15.
    Olson, N., Urbanski, J., Persson, N.-K., Starosta-Sztuczka, J., Fuentes, M.: Sensor technology, gamification, haptic interfaces in an assistive wearable. In: 34th Annual Assistive Technology Conference Scientific/Research Proceedings, vol. 7 (2019)Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

Authors and Affiliations

  • Eva Lindell
    • 1
    • 2
  • Arthur Theil
    • 3
  • Li Guo
    • 1
    • 2
  • Nasrine Olson
    • 4
  • Oliver Korn
    • 3
  • Nils-Krister Persson
    • 1
    • 2
    Email author
  1. 1.Swedish School of Textiles, Polymeric E-textilesUniversity of BoråsBoråsSweden
  2. 2.Smart Textiles, Smart Textiles Technology LabUniversity of BoråsBoråsSweden
  3. 3.Affective and Cognitive InstituteOffenburg University of Applied SciencesOffenburgGermany
  4. 4.Swedish School of Library and Information ScienceUniversity of BoråsBoråsSweden

Personalised recommendations