Lewis Acid−Base Pairs for Polymerization Catalysis: Recent Progress and Perspectives

  • Miao HongEmail author
Part of the Molecular Catalysis book series (MOLCAT, volume 2)


Lewis pair polymerization (LPP), catalyzed by frustrated Lewis pairs (FLPs), interacting LPs (ILPs), or classical Lewis adducts (CLAs), has become a very powerful tool for efficient, controlled, and selective polymerizations of heteroatom-containing polar monomers since its inception in 2010. The unique cooperative/synergetic monomer activation by both Lewis acid (LA) and Lewis base (LB) sites of LP catalysts not only gives this new polymerization methodology a high visibility from the beginning, but also brings about a variety of novel polymeric materials that cannot be efficiently realized by traditional polymerization techniques. This chapter highlights the very recent progress made in this rapidly expanding field since the last comprehensive review in 2018, with a special emphasis on the LP-mediated polymerization of polar vinyl monomers and ring-opening (co)polymerization of cyclic esters and epoxides.


Lewis pair polymerization Frustrated Lewis pair Classical Lewis adduct Ring-opening polymerization Polar vinyl monomer 



β-angelica lactone (Scheme 8.12)


Allyl glycidyl ether (Scheme 8.15)


Allyl methacrylate (Scheme 8.1)


1,4-benzenedimethanol (Scheme 8.16)


Butylated hydroxytoluene


1,2-Butylene oxide (Scheme 8.15)


n-Butyl acrylate (Scheme 8.8)


tert-Butyl acrylate (Scheme 8.8)




Classical Lewis adduct


ε-Caprolactone (Scheme 8.1)




Double high and double multiple


N,N-Dimethyl acrylamide (Scheme 8.1)


Molecular weight distribution/dispersity


Ethylene oxide (Schemes 8.15)


Ethyl methacrylate


Frustrated Lewis pairs


3-Fluoropyridine (Scheme 8.14)


Indenone (Scheme 8.11)


Lewis pair polymerization


l-Lactide (Scheme 8.1)


Methyl crotonate (Scheme 8.10)


Interacting Lewis pairs


Lewis base


Lewis acid

α-Methylene-γ-butyrolactone (Scheme 8.1)
Scheme 8.1

An equilibrium between CLAs, ILPs, and FLPs (a); A generic chain initiation step to generate the zwitterionic active species and subsequent propagation steps to produce polymer products in LPP of polar vinyl monomers (b) and in LP-mediated ROP of cyclic esters (c); A list of selected monomers investigated in the previous LPPs (d)


(E,E)-Methyl sorbate (Scheme 8.1)


N‑Heterocyclic carbene


N-Heterocyclic olefin


O-Carboxyanhydrides (Scheme 8.13, 8.14)


Propylene oxide (Scheme 8.15)


ω-Pentadecalactone (Scheme 8.1)


Pentaerythritol (Scheme 8.16)


Ring-opening (co)polymerization


Room temperature


Semifluorinated methacrylate


Glass transition temperature


Onset degradation temperature


Melting temperature




1,5,7-Triazabicyclododecene (Scheme 8.16)


tert-Butyl glycidyl ether (Scheme 8.15)


4-Vinylbenzyl methacrylate (Scheme 8.1)


Vinyl methacrylate (Scheme 8.1)


δ-Valerolactone (Scheme 8.1)


Methyl methacrylate (Scheme 8.1)


1,8-Diazabicyclo[5.4.0]undec-7-ene (Scheme 8.16)


1,3-Di-tert-butylimidazolin-2-ylidene (Scheme 8.6)


Initiation efficiency = Mn(calcd)/Mn(exptl), where Mn(calcd) = MW(monomer) × [monomer]0/[initiator(catalyst)]0 × conversion (%) + MW(end groups)


γ-Methyl-α-methylene-γ-butyrolactone (Scheme 8.1)


7-Methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (Scheme 8.16)


Magnesium bis(hexamethyldisilazide) (Scheme 8.15)


Turnover frequency = moles of substrate (monomer) consumed per mole of catalyst (initiator) per hour



This work was supported by the National Natural Science Foundation of China (Y8502112G0, E0502112G0, 21821002), the Thousand Talents Plan for Young Scholars of China, and K. C. Wong Education Foundation.


  1. 1.
    Müller AHE, Matyjaszewski K (2009) Controlled and Living Polymerizations. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  2. 2.
    Grubbs RB, Grubbs RH (2017) 50th Anniversary Perspective: Living Polymerization—Emphasizing the Molecule in Macromolecules. Macromolecules 50:6979–6997.
  3. 3.
    Coates GW (2000) Precise Control of Polyolefin Stereochemistry Using Single-Site Metal Catalysts. Chem Rev 100:1223–1252.
  4. 4.
    Worch JC, Prydderch H, Jimaja S, Bexis P, Becker ML, Dove AP (2019) Stereochemical Enhancement of Polymer Properties. Nat Rev Chem 3:514–535.
  5. 5.
    Zhang X, Fevre M, Jones GO, Waymouth RM (2018) Catalysis as an Enabling Science for Sustainable Polymers. Chem Rev 118:839–885.
  6. 6.
    Chen EYX (2013) Polymerization by Classical and Frustrated Lewis Pairs, In Frustrated Lewis Pairs II: Expanding the Scope. In: Stephan DW, Erker G (eds) 334:239–260.
  7. 7.
    Li X, Chen C, Wu J (2018) Lewis Pair Catalysts in the Polymerization of Lactide and Related Cyclic Esters. Molecules 23:189.
  8. 8.
    Zhao W, He J, Zhang Y (2019) Lewis Pairs Polymerization of Polar Vinyl Monomers. Sci Bull 64:1830–1840.  
  9. 9.
    Hong M, Chen J, Chen EYX (2018) Polymerization of Polar Monomers Mediated by Main-Group Lewis Acid-Base Pairs. Chem Rev 118:10551–10616.
  10. 10.
    Jupp AR, Stephan DW (2019) New Directions for Frustrated Lewis Pair Chemistry. Trends Chem 1:35–48.
  11. 11.
    Stephan DW (2016) The Broadening Reach of Frustrated Lewis Pair Chemistry. Science 354:aaf7229.
  12. 12.
    Stephan DW, Erker G (2015) Frustrated Lewis Pair Chemistry: Development and Perspectives. Angew Chem Int Ed 54:6400–6441.
  13. 13.
    Stephan DW (2015) Frustrated Lewis Pairs: From Concept to Catalysis. Acc Chem Res 48:306–316.
  14. 14.
    Stephan DW, Erker G (2010) Frustrated Lewis Pairs: Metal-Free Hydrogen Activation and More. Angew Chem Int Ed 49:46–76.
  15. 15.
    Zhang Y, Miyake GM, Chen EYX (2010) Alane-Based Classical and Frustrated Lewis Pairs in Polymer Synthesis: Rapid Polymerization of MMA and Naturally Renewable Methylene Butyrolactones into High-Molecular-Weight Polymers. Angew Chem Int Ed 49:10158–10162.
  16. 16.
    Vlček P, Lochmann L (1999) Anionic Polymerization of (Meth)Acrylate Esters in the Presence of Stabilizers of Active Centres. Prog Polym Sci 24:793–873.  
  17. 17.
    Vanbeylen M, Bywater S, Smets G, Szwarc M, Worsfold DJ (1988) Developments in Anionic-Polymerization - A Critical Review. Adv Polym Sci 86:87–143.
  18. 18.
    Brown HA, Waymouth RM (2013) Zwitterionic Ring-Opening Polymerization for the Synthesis of High Molecular Weight Cyclic Polymers. Acc Chem Res 46:2585–2596.
  19. 19.
    Kamber NE, Jeong W, Waymouth RM, Pratt RC, Lohmeijer BGG, Hedrick JL (2007) Organocatalytic Ring-Opening Polymerization. Chem Rev 107:5813–5840.
  20. 20.
    Fèvre M, Pinaud J, Gnanou Y, Vignolle J, Taton D (2013) N-Heterocyclic Carbenes (NHCs) as Organocatalysts and Structural Components in Metal-Free Polymer Synthesis. Chem Soc Rev 42:2142–2172.
  21. 21.
    Chen EYX (2009) Coordination Polymerization of Polar Vinyl Monomers by Single-Site Metal Catalysts. Chem Rev 109:5157–5214.
  22. 22.
    Soller BS, Salzinger S, Rieger B (2016) Rare Earth Metal-Mediated Precision Polymerization of Vinylphosphonates and Conjugated Nitrogen-Containing Vinyl Monomers. Chem Rev 116:1993–2022.
  23. 23.
    Sarazin Y, Carpentier JF (2015) Discrete Cationic Complexes for Ring-Opening Polymerization Catalysis of Cyclic Esters and Epoxides. Chem Rev 115:3564–3614.
  24. 24.
    Xu T, Chen EYX (2014) Probing Site Cooperativity of Frustrated Phosphine/Borane Lewis Pairs by a Polymerization Study. J Am Chem Soc 136:1774–1777.
  25. 25.
    Jia YB, Ren WM, Liu SJ, Xu T, Wang YB, Lu XB (2014) Controlled Divinyl Monomer Polymerization Mediated by Lewis Pairs: A Powerful Synthetic Strategy for Functional Polymers. ACS Macro Lett 3:896–899.
  26. 26.
    Knaus MGM, Giuman MM, Pöthig A, Rieger B (2016) End of Frustration: Catalytic Precision Polymerization with Highly Interacting Lewis Pairs. J Am Chem Soc 138:7776–7781.
  27. 27.
    Hosoi Y, Takasu A, Matsuoka S, Hayashi M (2017) N-Heterocyclic Carbene Initiated Anionic Polymerization of (E,E)-Methyl Sorbate and Subsequent Ring-Closing to Cyclic Poly(Alkyl Sorbate). J Am Chem Soc 139:15005–15012.
  28. 28.
    Wang Q, Zhao W, Zhang S, He J, Zhang Y, Chen EYX (2018) Living Polymerization of Conjugated Polar Alkenes Catalyzed by N-Heterocyclic Olefin-Based Frustrated Lewis Pairs. ACS Catal 8:3571–3578.
  29. 29.
    Xu P, Yao Y, Xu X (2017) Frustrated Lewis Pair-Like Reactivity of Rare-Earth Metal Complexes: 1,4-Addition Reactions and Polymerizations of Conjugated Polar Alkenes. Chem Eur J 23:1263–1267.
  30. 30.
    Xu P, Xu X (2018) Homoleptic Rare-Earth Aryloxide Based Lewis Pairs for Polymerization of Conjugated Polar Alkenes. ACS Catal 8:198–202.
  31. 31.
    Piedra-Arroni E, Ladavière C, Amgoune A, Bourissou D (2013) Ring-Opening Polymerization with Zn(C6F5)2-Based Lewis Pairs: Original and Efficient Approach to Cyclic Polyesters. J Am Chem Soc 135:13306–13309.
  32. 32.
    Naumann S, Scholten PBV, Wilson JA, Dove AP (2015) Dual Catalysis for Selective Ring-Opening Polymerization of Lactones: Evolution Toward Simplicity. J Am Chem Soc 137:14439–14445.
  33. 33.
    Wang Q, Zhao W, He J, Zhang Y, Chen EYX (2017) Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C6F5)3 Lewis Pairs: Structures of Intermediates, Kinetics, and Mechanism. Macromolecules 50:123–136.
  34. 34.
    Zhang H, Nie Y, Zhi X, Du H, Yang J (2017) Controlled Ring-Opening Polymerization of α-Amino Acid N-Carboxy-Anhydride by Frustrated Amine/Borane Lewis Pairs. Chem Commun 53:5155–5158.
  35. 35.
    Zhang D, Boopathi SK, Hadjichristidis N, Gnanou Y, Feng X (2016) Metal-Free Alternating Copolymerization of CO2 with Epoxides: Fulfilling “Green” Synthesis and Activity. J Am Chem Soc 138:11117–11120.
  36. 36.
    Yang JL, Wu HL, Li Y, Zhang XH, Darensbourg DJ (2017) Perfectly Alternating and Regioselective Copolymerization of Carbonyl Sulfide and Epoxides by Metal-Free Lewis Pairs. Angew Chem Int Ed 56:5774–5779.
  37. 37.
    Ji HY, Wang B, Pan L, Li YS (2018) Lewis Pairs for Ring-Opening Alternating Copolymerization of Cyclic Anhydrides and Epoxides. Green Chem 20:641–648.
  38. 38.
    Bai Y, He J, Zhang Y (2018) Ultra-High-Molecular-Weight Polymers Produced by the “Immortal” Phosphine-Based Catalyst System. Angew Chem Int Ed 57:17230–17234.
  39. 39.
    Jia YB, Wang YB, Ren WM, Xu T, Wang J, Lu XB (2014) Mechanistic Aspects of Initiation and Deactivation in N-Heterocyclic Olefin Mediated Polymerization of Acrylates with Alane as Activator. Macromolecules 47:1966–1972.
  40. 40.
    He J, Zhang Y, Falivene L, Caporaso L, Cavallo L, Chen EYX (2014) Chain Propagation and Termination Mechanisms for Polymerization of Conjugated Polar Alkenes by [Al]-Based Frustrated Lewis Pairs. Macromolecules 47:7765–7774.
  41. 41.
    Bai Y, Wang H, He J, Zhang YT (2020) Rapid and Scalable Access to Sequence-Controlled DHDM Multiblock Copolymers by FLP Polymerization. Angew Chem Int Ed 59:11613–11619.
  42. 42.
    Zhao W, Wang Q, He J, Zhang Y (2019) Chemoselective and Living/Controlled Polymerization of Polar Divinyl Monomers by N-Heterocyclic Olefin Based Classical and Frustrated Lewis Pairs. Polym Chem 10:4328–4335.
  43. 43.
    Chen J, Chen EYX (2015) Lewis pair Polymerization of Acrylic Monomers by N-Heterocyclic Carbenes and B(C6F5)3. Isr J Chem 55:216–225.
  44. 44.
    Gowda RR, Chen EYX (2017) Chemoselective Lewis Pair Polymerization of Renewable Multivinyl-Functionalized γ-Butyrolactones. Philos Trans R Soc A 375:20170003.
  45. 45.
    Xu P, Wu L, Dong L, Xu X (2018) Chemoselective Polymerization of Polar Divinyl Monomers with Rare-Earth/Phosphine Lewis Pairs. Molecules 23:360.
  46. 46.
    Zhang P, Zhou H, Lu XB (2019) Living and Chemoselective (Co)polymerization of Polar Divinyl Monomers Mediated by Bulky Lewis Pairs. Macromolecules 52:4520–4525.
  47. 47.
    Zhang Y, Miyake GM, John MG, Falivene L, Caporaso L, Cavallo L, Chen EYX (2012) Lewis Pair Polymerization by Classical and Frustrated Lewis Pairs: Acid, Base and Monomer Scope and Polymerization Mechanism. Dalton Trans 41:9119–9134.
  48. 48.
    Wang H, Wang Q, He J, Zhang Y (2019) Living Polymerization of Acrylamides Catalysed by N-Heterocyclic Olefin-Based Lewis Pairs. Polym Chem 10:3597–3603.
  49. 49.
    Beckett MA, Brassington DS, Coles SJ, Hursthouse MB (2000) Lewis Acidity of Tris(pentafluorophenyl)borane: Crystal and Molecular Structure of B(C6F5)3·OPEt3. Inorg Chem Commun 3:530–533.  
  50. 50.
    Heiden ZM, Lathem AP (2015) Establishing the Hydride Donor Abilities of Main Group Hydrides. Organometallics 34:1818–1827.
  51. 51.
    Wang X, Hong M (2020) Precise Control of Molecular Weight and Stereospecificity in Lewis Pair Polymerization of Semifluorinated Methacrylates: Mechanistic Studies and Stereocomplex Formation. Macromolecules 53:4659–4669.
  52. 52.
    Weger M, Grötsch RK, Knaus MG, Giuman MM, Mayer DC, Altmann PJ, Mossou E, Dittrich B, Pöthig A, Rieger B (2019) Non-Innocent Methylene Linker in Bridged Lewis Pair Initiators. Angew Chem Int Ed 58:9797–9801.
  53. 53.
    McGraw ML, Clarke RW, Chen EYX (2020) Compounded Sequence Control in Polymerization of One-Pot Mixtures of Highly Reactive Acrylates by Differentiating Lewis Pairs. J Am Chem Soc 142:5969–5973.
  54. 54.
    Hillmyer MA (2017) The Promise of Plastics from Plants. Science 358:868–870.
  55. 55.
    Zhu Y, Romain C, Williams CK (2016) Sustainable Polymers from Renewable Resources. Nature 540:354–362.
  56. 56.
    Bomgardner MM (2014) Biobased Polymers. Chem Eng News 92:10–14Google Scholar
  57. 57.
    Hong M, Chen EYX (2019) Future Directions for Sustainable Polymers. Trends Chem 1:148–151.
  58. 58.
    Yao T, Xu P, Xu X (2019) Scandium Complexes Containing β-Diketiminato Ligands with Pendant Phosphanyl Groups: Competition Between Sc/γ-C [4+2] Cycloaddition and Sc/P Frustrated Lewis Pair Reactions. Dalton Trans 48:7743–7754.
  59. 59.
    McGraw ML, Chen EYX (2018) Catalytic Lewis Pair Polymerization of Renewable Methyl Crotonate to High-Molecular-Weight Polymers. ACS Catal 8:9877–9887.
  60. 60.
    Clarke RW, McGraw ML, Gowda RR, Chen EYX (2020) Lewis Pair Polymerization of Renewable Indenone to Erythro-Ditactic High-Tg Polymers with an Upcycling Avenue. Macromolecules 53:640–648.
  61. 61.
    Wang XJ, Hong M (2020) Lewis-Pair-Mediated Selective Dimerization and Polymerization of Lignocellulose-Based β-Angelica Lactone into Biofuel and Acrylic Bioplastic. Angew Chem Int Ed 59:2664–2668.
  62. 62.
    Hillmyer MA, Tolman WB (2014) Aliphatic Polyester Block Polymers: Renewable, Degradable, and Sustainable. Acc Chem Res 47:2390–2396.
  63. 63.
    Lecomte P, Jérôme C (2011) Recent Developments in Ring-Opening Polymerization of Lactones. In: Rieger B., Künkel A., Coates G., Reichardt R., Dinjus E., Zevaco T. (eds) Synthetic Biodegradable Polymers. Adv Polym Sci 245:173–217.
  64. 64.
    Dechy-Cabaret O, Martin-Vaca B, Bourissou D (2004) Controlled Ring-Opening Polymerization of Lactide and Glycolide. Chem Rev 104:6147–6176.
  65. 65.
    Thomas CM (2010) Stereocontrolled Ring-Opening Polymerization of Cyclic Esters: Synthesis of New Polyester Microstructures. Chem Soc Rev 39:165–173.
  66. 66.
    Stanford MJ, Dove AP (2010) Stereocontrolled Ring-Opening Polymerisation of Lactide. Chem Soc Rev 39:486–494.
  67. 67.
    Dove AP (2012) Organic Catalysis for Ring-Opening Polymerization. ACS Macro Lett 1:1409–1412.
  68. 68.
    Fèvre M, Vignolle J, Gnanou Y, Taton D (2012) Organocatalyzed Ring-Opening Polymerizations. In: Möller M, Matyjaszewski K (eds) Polymer Science: A Comprehensive Reference. Elsevier, Amsterdam, 4:67–115.  
  69. 69.
    Nie Y, Wang P, Du H, Meng W, Yang J (2018) An Efficient Strategy for Achieving Controlled Ring-Opening Polymerization of O-Carboxyanhydrides via Amine Initiation in Collaboration with Metal Alkoxide Catalysis. Polym Chem 9:5014–5023.
  70. 70.
    Jiang J, Cui Y, Lu Y, Zhang B, Pan X, Wu J (2020) Weak Lewis Pairs as Catalysts for Highly Isoselective Ring-Opening Polymerization of Epimerically Labile rac-O-Carboxyanhydride of Mandelic Acid. Macromolecules 53:946–955.
  71. 71.
    Walther P, Krauß A, Naumann S (2019) Lewis Pair Polymerization of Epoxides via Zwitterionic Species as a Route to High-Molar-Mass Polyethers. Angew Chem Int Ed 58:10737–10741.
  72. 72.
    Chen Y, Shen J, Liu S, Zhao J, Wang W, Zhang G (2018) High Efficiency Organic Lewis Pair Catalyst for Ring-Opening Polymerization of Epoxides with Chemoselectivity. Macromolecules 51:8286–8297.
  73. 73.
    Zhang CJ, Duan HY, Hu LF, Zhang CH, Zhang XH (2018) Metal-Free Route to Precise Synthesis of Poly(Propylene Oxide) and its Blocks with High Activity. ChemSusChem 11:4209–4213.
  74. 74.
    Liu S, Bai T, Ni K, Chen Y, Zhao J, Ling J, Ye X, Zhang G (2019) Biased Lewis Pairs: a General Catalytic Approach to Ether-Ester Block Copolymers with Unlimited Ordering of Sequences. Angew Chem Int Ed 58:15478–15487.
  75. 75.
    Ji HY, Song DP, Wang B, Pan L, Li YS (2019) Organic Lewis Pairs for Selective Copolymerization of Epoxides with Anhydrides to Access Sequence-Controlled Block Copolymers. Green Chem 21:6123–6132.
  76. 76.
    Yang JL, Wang HL, Hu LF, Hong X, Zhang XH (2019) A Double-Site Lewis Pair for Highly Active and Living Synthesis of Sulfur-Containing Polymers. Polym Chem 10:6555–6560.
  77. 77.
    Altmann HJ, Clauss M, König S, Frick-Delaittre E, Koopmans C, Wolf A, Guertler C, Naumann S, Buchmeiser MR (2019) Synthesis of Linear Poly(oxazolidin-2-one)s by Cooperative Catalysis Based on N-Heterocyclic Carbenes and Simple Lewis Acids. Macromolecules 52:487–494.

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina

Personalised recommendations