Frustrated Lewis Pairs Based on Transition Metals

  • Nereida Hidalgo
  • Macarena G. Alférez
  • Jesús CamposEmail author
Part of the Molecular Catalysis book series (MOLCAT, volume 2)


The concept of frustration and its application to bond activation and catalysis over the last decade has paved the way to a new era in the field of main group chemistry. In terms of catalysis, the introduction of transition metals as integrating components of frustrated designs has emerged as a promising approach to overcome the main limitations of main group FLP systems. Herein we have tried to summarize the most relevant results in this flourishing field, particularly those described over the last five years (187 references are included). It is our aim to provide a Chapter that will serve as an illustrative outline to those already working in the area of frustrated Lewis pairs and also as an inspiring guide to newcomers. After a general introduction covering the main goals associated to the idea of designing metallic FLPs, a subsequent section deals with transition metal frustrated Lewis pairs that incorporate a single transition metal center. A wide variety of recent examples based on early, mid- and late transition metals, as well as rare-earth elements is presented. The next topic involves the rather limited and exotic examples in which the two components of the FLP are based on transition metals. The connection of these systems to polarized heterobimetallic species is examined in detail. Bond activation processes and catalytic applications are discussed along the text, with particular emphasis on mechanistic aspects.


Frustrated Lewis pairs Transition metal frustrated Lewis pairs Metal–ligand cooperation Bimetallic compounds Cooperative chemistry Metal–metal bond 


  1. 1.
    Welch GC, San Juan RR, Masuda JD, Stephan DW (2006) Reversible Metal-Free Hydrogen Activation. Science 314:1124–1128.
  2. 2.
    Spikes GH, Fettinger JC, Power PP (2005) Facile Activation of Dihydrogen by an Unsaturated Heavier Main Group Compound. J Am Chem Soc 127:12232–12233.
  3. 3.
    Frey GD, Lavallo B, Donnadieu B, Schoeller WW, Bertrand G (2007) Facile Splitting of Hydrogen and Ammonia by Nucleophilic Activation at a Single Carbon Center. Science 316:439–441.
  4. 4.
    Power PP (2010) Main-Group Elements as Transition Metals. Nature 463:171–177.
  5. 5.
    Chatt J, Duncanson LA (1953) Olefin Coordination Compounds. Part III. Infrared Spectra and Structure: Attempted Preparation of Acetylene Complexes. J Chem Soc 2939–2947.
  6. 6.
    Peng Y, Brynda M, Ellis BD, Fettinger JC, Rivarda E, Power PP (2008) Addition to H2 to Distannynes Under Ambient Conditions. Chem Commun 6042–6044.
  7. 7.
    Stephan DW (2012) "Frustrated Lewis Pair" Hydrogenations. Org Biomol Chem 10:5740–5746.
  8. 8.
    Scott DJ, Fuchter MJ, Ashley AE (2017) Designing Effective ‘Frustrated Lewis Pair’ Hydrogenation Catalysts. Chem Soc Rev 46:5689–5700.
  9. 9.
    Chapman AM, Haddow MF, Wass DF (2011) Frustrated Lewis pairs Beyond the Main Group: Cationic Zirconocene-Phosphinoaryloxide Complexes and Their Application in Catalytic Dehydrogenation of Amine Boranes. J Am Chem Soc 133:8826–8829.
  10. 10.
    Chapman AM, Haddow MF, Wass DF (2011) Frustrated Lewis Pairs Beyond the Main Group: Synthesis, Reactivity, and Small Molecule Activation with Cationic Zirconocene–Phosphinoaryloxide Complexes. J Am Chem Soc 133:18463–18478.
  11. 11.
    Chapman AM, Haddow MF and Wass DF (2012) Cationic Group 4 Metallocene–(O-Phosphanylaryl)oxido Complexes: Synthetic Routes to Transition-Metal Frustrated Lewis Pairs. Eur J Inorg Chem 1546−1554.
  12. 12.
    Xu X, Frőhlich R, Daniliuc CG, Kehr G, Erker G (2012) Reactions of a Methylzirconocene Cation with Phosphinoalkynes: An Alternative Pathway for Generating Cp2Zr(II) Systems. Chem Commun 48:6109−6111.
  13. 13.
    Xu X, Kehr G, Daniliuc CG, Kehr G, Erker G (2013) Reactions of a Cationic Geminal Zr+/P Pair with Small Molecules. J Am Chem Soc 135:6465–6476.
  14. 14.
    Wass DF, Chapman AM (2013) Frustrated Lewis Pairs Beyond the Main Group: Transition Metal-Containing Systems. In: Erker G, Stephan D (eds) Frustrated Lewis Pairs II. Topics in Current Chemistry. Springer, Berlin, Heidelberg, p 261−280.
  15. 15.
    Flynn SR, Wass DF (2013) Transition Metal Frustrated Lewis Pairs. ACS Catal 3:2574–2581.
  16. 16.
    Lambic NS, Sommer RD, Ison EA (2016) Transition-Metal Oxos as the Lewis Basic Component of Frustrated Lewis Pairs. J Am Chem Soc 138:4832–4842.
  17. 17.
    Zwettler N, Walg SP, Belaj F, Mösch-Zanetti NC (2018) Heterolytic Si-H Bond Cleavage at a Molybdenum-Oxido-Based Lewis Pair. Chem Eur J 24:7149–7160.
  18. 18.
    Erker G (2011) Organometallic Frustrated Lewis Pair Chemistry. Dalton Trans 40:7475–7483.
  19. 19.
    Bouhadir G, Bourissou D (2016) Complexes of Ambiphilic Ligands: Reactivity and Catalytic Applications. Chem Soc Rev 45:1065–1079.
  20. 20.
    Bullock RM, Chambers GM (2017) Frustration Across the Periodic Table: Heterolytic Cleavage of Dihydrogen by Metal Complexes. Phil Trans R Soc a 375:20170002.
  21. 21.
    Whited MT (2012) Metal–Ligand Multiple Bonds as Frustrated Lewis Pairs for C-H Functionalization. Beilstein J Org Chem 8:1554–1563.
  22. 22.
    Arndt S, Rudolph M, Hashmi ASK (2017) Gold-Based Frustrated Lewis Acid/Base Pairs (FLPs). Gold Bull 50:267–282.
  23. 23.
    Lu G, Zhang P, Sun D, Wang L, Zhou K, Wang Z-X, Guo G-C (2014) Gold Catalyzed Hydrogenations of Small Imines and Nitriles: Enhanced Reactivity of Au Surface Toward H2 via Collaboration with a Lewis Base. Chem Sci 5:1082–1090.
  24. 24.
    Zhao X, Wang J, Yang M, Lei N, Li L, Hou B, Miao S, Pan X, Wang A, Zhang T (2017) Selective Hydrogenolysis of Glycerol to 1,3-propanediol: Manipulating the Frustrated Lewis Pairs by Introducing Gold to Pt/WOx. Chemsuschem 10:819–824.
  25. 25.
    Fiorio JL, López N, Rossi LM (2017) Gold−Ligand-Catalyzed Selective Hydrogenation of Alkynes into cis-Alkenes via H2 Heterolytic Activation by Frustrated Lewis Pairs. ACS Catal 7:2973–2980.
  26. 26.
    Bachmeier A, Esselborn J, Hexter SV, Krämer T, Klein K, Happe T, McGrady JE, Myers WK, Armstrong FA (2015) How Formaldehyde Inhibits Hydrogen Evolution by [FeFe]-Hydrogenases: Determination by 13C ENDOR of Direct Fe–C Coordination and Order of Electron and Proton Transfers. J Am Chem Soc 137:5381–5389.
  27. 27.
    Brooke EJ, Evans RM, Islam STA, Roberts GM, Wehlin SAM, Carr SB, Phillips SEV, Armstrong FA (2017) Importance of the Active Site Canopy. Residues in an O2-Tolerant [NiFe]-Hydrogenase. Biochemistry 56:132–142.
  28. 28.
    Kalz KF, Brinkmeier A, Dechert S, Mata RA, Meyer F (2014) Functional Model for the [Fe] Hydrogenase Inspired by the Frustrated Lewis Pair Concept. J Am Chem Soc 136:16626–16634.
  29. 29.
    Schindler T, Lux M, Peters M, Scharf LT, Osseili H, Maron L, Tauchert ME (2015) Synthesis and Reactivity of Palladium Complexes Featuring a Diphosphinoborane Ligand. Organometallics 34:1978–1984.
  30. 30.
    Cowie BE, Emslie DJH (2014) Platinum Complexes of a Borane-Appended Analogue of 1,1’- Bis(diphenylphosphino)ferrocene: Flexible Borane Coordination Modes and in situ Vinylborane Formation. Chem Eur J 20:16899–16912.
  31. 31.
    Frank N, Hanau K, Langer R (2014) Metal−Ligand Cooperation in H2 Activation with Iron Complexes Bearing Hemilabile Bis(diphenylphosphino)amine Ligands. Inorg Chem 53:11335–11343.
  32. 32.
    Devillard M, Bouhadir G, Bourissou D (2015) Cooperation Between Transition Metals and Lewis Acids: A Way to Activate H2 and H-E Bonds. Angew Chem Int Ed 54:730–732.
  33. 33.
    Higashi T, Kusumoto S, Nozaki K (2019) Cleavage of Si-H, B-H, and C-H Bonds by Metal-Ligand Cooperation. Chem Rev 119:10393–10402.
  34. 34.
    Verhoeven DGA, Moret M-E (2016) Metal–Ligand Cooperation at Tethered π-Ligands. Dalton Trans 45:15762–15778.
  35. 35.
    Khusnutdinova JR, Milstein D (2015) Metal-Ligand Cooperation. Angew Chem Int Ed 54:12236–12273.
  36. 36.
    Li C, Agarwal J, Schaefer HF (2014) The Remarkable [ReH9]2−Dianion: Molecular Structure and Vibrational Frequencies. J Phys Chem B 118:6482–6490.
  37. 37.
    Lu Z, Ye H, Wang H (2012) New Organoboranes in “Frustrated Lewis Pair” Chemistry. In: Erker G, Stephan D (eds) Frustrated Lewis Pairs II. Topics in Current Chemistry. Springer, Berlin, Heidelberg, p 59−80.
  38. 38.
    Keep KP (2016) A Quantitative Scale of Oxophilicity and Thiophilicity. Inorg Chem 55:9461–9470.
  39. 39.
    Weiss M, Peters R (2015) Bimetallic Catalysis: Cooperation of Carbophilic Metal Centers. In: Peters R (ed) Cooperative Catalysis: Designing Efficient Catalysts for Synthesis. Wiley-VCH, Weinheim, pp 227–262.
  40. 40.
    Tsipis AC (2017) DFT Challenge of Intermetallic Interactions: From Metallophilicity and Metallaromaticity to Sextuple Bonding. Coord Chem Rev 345:229–262.
  41. 41.
    Belkova NV, Epstein LM, Shubina ES (2008) On Peculiarities of Hydrogen Bonding and Proton Transfer Equilibria of Organic Versus Organometallic Bases. ARKIVOC 4:120–138.
  42. 42.
    Rivas JCM (2007) Cooperation of Metals and Hydrogen Bonding Groups in Metal-Promoted Reactions. Curr Org Chem 11:1434–1449.
  43. 43.
    Yamamoto H (ed) (2000) Lewis Acids in Organic Synthesis. Wiley-VCH, Weinheim.
  44. 44.
    McCahill JSJ, Welch GC, Stephan DW (2007) Reactivity of ‘Frustrated Lewis Pairs’: Three-Component Reactions of Phosphines, a Borane and Olefins. Angew Chem Int Ed 46:4968–4971.
  45. 45.
    Chapman AM, Wass DF (2012) Cationic Ti(IV) and Neutral Ti(III) Titanocene–Phosphinoaryloxide Frustrated Lewis Pairs: Hydrogen Activation and Catalytic Amine-Borane Dehydrogenation. Dalton Trans 41:9067–9072.
  46. 46.
    Normand AT, Richard P, Balan C, Daniliuc CG, Kehr G, Erker G, Gendre PL (2015) Synthetic Endeavors Toward Titanium Based Frustrated Lewis Pairs with Controlled Electronic and Steric Properties. Organometallics 34:2000–2011.
  47. 47.
    Normand AT, Bonnin Q, Brandès S, Richard P, Fleurat-Lessard P, Devillers CH, Balan C, Gendre PL, Kehr G, Erker G (2019) The Taming of Redox-Labile Phosphidotitanocene Cations. Chem Eur J 25:2803–2815.
  48. 48.
    Fischer M, Barbul D, Schmidtmann M, Beckhaus R (2018) Convenient Synthesis of Cationic Titanium Complexes with Tridentate Cp, N, P-Ligand Framework: FLP-Like Reactivity at the Ti−N Bond and Unexpected Ligand Hydrogenation Reaction. Organometallics 37:1979–1991.
  49. 49.
    Fischer M, Schwitalla K, Baues S, Schmidtmann M, Beckhaus R (2019) FLP Behaviour of Cationic Titanium Complexes with Tridentate Cp, O, N-Ligands: Highly Efficient Syntheses and Activation Reactions of C-X Bonds (X = Cl, F). Dalton Trans 48:1516–1523.
  50. 50.
    Xu X, Kehr G, Daniliuc CG, Erker G (2013) 1,1-Carbozirconation: Unusual Reaction of an Alkyne with a Methyl Zirconocene Cation and Subsequent Frustrated Lewis Pair Like Reactivity. Angew Chem Int Ed 52:13629–13632.
  51. 51.
    Xu X, Kehr G, Daniliuc CG, Erker G (2013) Reactions of (Diphenylphosphinomethyl)Zirconocene Chloride with B(C6F5)3: Competition Between P/B and P/Zr+ Frustrated Lewis Pair Reactions. Organometallics 32:7306–7311.
  52. 52.
    Mo Z, Rit A, Campos J, Kolychev EL, Aldridge S (2016) Catalytic B-N Dehydrogenation Using Frustrated Lewis Pairs: Evidence for a Chain-Growth Coupling Mechanism. J Am Chem Soc 138:3306–3309.
  53. 53.
    Mo Z, Kolychev EL, Rit A, Campos J, Aldridge S (2015) Facile Reversibility by Design: Tuning Small Molecule Capture and Activation by Single Component Frustrated Lewis Pairs. J Am Chem Soc 137:12227–12230.
  54. 54.
    Ma G, Song G, Li ZH (2018) Designing Metal-Free Frustrated Lewis Pairs Catalyst for the Efficient Dehydrogenation of Ammonia Borane. Chem Eur J 24:13238–13245.
  55. 55.
    Boudjelel M, Sosa Carrizo ED, Mallet-Ladeira S, Massou S, Miqueu K, Bouhadir G, Bourissou D (2018) Catalytic Dehydrogenation of (Di)amine-Boranes with a Geometrically Constrained Phosphine-Borane Lewis Pair. ACS Catal 8:4459–4464.
  56. 56.
    Metters OJ, Flynn SR, Dowds CK, Sparkes HA, Manners I, Wass DF (2016) Catalytic Dehydrocoupling of Amine−Boranes Using Cationic Zirconium(IV)−Phosphine Frustrated Lewis Pairs. ACS Catal 6:6601–6611.
  57. 57.
    Treichel PM, Johnson JW, Wagner KP (1975) Electrochemical Oxidations of Various Indenyl-Iron Complexes. J Organomet Chem 88:227–230.
  58. 58.
    Habib A, Tanke RS, Holt EM, Crabtree RH (1989) Ring Slip in Associative Reactions of Some Indenyl and Phenylcyclopentadienyl Iridium Complexes. Organometallics 8:1225–1231.
  59. 59.
    Liu Y, Kehr G, Daniliuc CG, Erker G (2017) Utilizing the TEMPO Radical in Zirconocene Cation and Hydrido Zirconocene Chemistry. Organometallics 36:3407–3414.
  60. 60.
    Budzelaar PHM, Hughes DL, Bochmann M, Macchionic A, Rocchigiani L (2020) H2 Activation by Zirconaziridinium Ions: σ-Bond Metathesis Versus Frustrated Lewis Pairs Reactivity. Chem Commun, Accepted Manuscript,.
  61. 61.
    Xu X, Kehr G, Daniliuc CG, Erker G (2015) Frustrated Lewis Pair Behavior of [Cp2ZrOCR2CH2PPh2]+ Cations. Organometallics 34:2655–2661.
  62. 62.
    Jian Z, Daniliuc CG, Kehr G, Erker G (2017) Frustrated Lewis Pair vs Metal−Carbon σ-Bond Insertion Chemistry at an O-Phenylene-Bridged Cp2Zr+/PPh2 System. Organometallics 36:424–434.
  63. 63.
    Normand AT, Daniliuc CG, Wibbeling B, Kehr G, Le Gendre P, Erker G (2016) Insertion Reactions of Neutral Phosphidozirconocene Complexes as a Convenient Entry into Frustrated Lewis Pair Territory. Chem Eur J 22:4285–4293.
  64. 64.
    Metters OJ, Forrest SJK, Sparkes HA, Manners I, Wass DF (2016) Small Molecule Activation by Intermolecular Zr(IV)-Phosphine Frustrated Lewis Pairs. J Am Chem Soc 138:1994–2003.
  65. 65.
    Rocchigiani L, Ciancaleoni G, Zuccaccia C, Macchioni A (2014) Probing the Association of Frustrated Phosphine−Borane Lewis Pairs in Solution by NMR Spectroscopy. J Am Chem Soc 136:112–115.
  66. 66.
    Flynn SR, Metters OJ, Manners I, Wass DF (2016) Zirconium-Catalyzed Imine Hydrogenation Via a Frustrated Lewis Pair Mechanism. Organometallics 35:847–850.
  67. 67.
    Zhang S, Appel AM, Bullock RM (2017) Reversible Heterolytic Cleavage of the H−H Bond by Molybdenum Complexes: Controlling the Dynamics of Exchange Between Proton and Hydride. J Am Chem Soc 139:7376–7387.
  68. 68.
    Hulley EB, Welch KD, Appel AM, DuBois DL, Bullock RM (2013) Rapid, Reversible Heterolytic Cleavage of Bound H2. J Am Chem Soc 135:11736–11739.
  69. 69.
    Hulley EB, Helm ML, Bullock RM (2014) Heterolytic Cleavage of H2 by Bifunctional Manganese (I) Complexes: Impact of Ligand Dynamics, Electrophilicity, and Base Positioning. Chem Sci 5:4729–4741.
  70. 70.
    Liu T, DuBois DL, Bullock RM (2013) An Iron Complex with Pendent Amines as a Molecular Electrocatalyst for Oxidation of Hydrogen. Nat Chem 5:228–233.
  71. 71.
    Liu T, Wang X, Hoffmann C, DuBois DL, Bullock RM (2014) Heterolytic Cleavage of Hydrogen by an Iron Hydrogenase Model: An Fe-H⋅⋅⋅H-N Dihydrogen Bond Characterized by Neutron Diffraction. Angew Chem Int Ed 53:5300–5304.
  72. 72.
    Liu T, Liao Q, Hagan MO, Hulley EB, DuBois DL, Bullock RM (2015) Iron Complexes Bearing Diphosphine Ligands with Positioned Pendant Amines as Electrocatalysts for the Oxidation of H2. Organometallics 34:2747–2764.
  73. 73.
    Fontecilla-Camps JC, Volbeda A, Cavazza C, Nicolet Y (2007) Structure/Function Relationships of [NiFe]- and [FeFe]-Hydrogenases. Chem Rev 107:4273–4303.
  74. 74.
    Lubitz W, Ogata H, Rüdiger O, Reijerse E (2014) Hydrogenases. Chem Rev 114:4081–4148.
  75. 75.
    Zhang S, Bullock RM (2015) Molybdenum Hydride and Dihydride Complexes Bearing Diphosphine Ligands with a Pendant Amine: Formation of Complexes with Bound Amines. Inorg Chem 54:6397–6409.
  76. 76.
    Melen RL (2018) A Step Closer to Metal-Free Dinitrogen Activation: A New Chapter in the Chemistry of Frustrated Lewis Pairs. Angew Chem Int Ed 57:880–882.
  77. 77.
    Tang C, Liang Q, Jupp AR, Johnstone TC, Neu RC, Song D, Grimme S, Stephan DW (2017) 1,1-Hydroboration and a Borane Adduct of Diphenyldiazomethane: A Potential Prelude to FLP-N2 Chemistry. Angew Chem Int Ed 56:16588–16592.
  78. 78.
    Geri JB, Shanahan JP, Szymczak NK (2017) Testing the Push−Pull Hypothesis: Lewis Acid Augmented N2 Activation at Iron. J Am Chem Soc 139:5952–5956.
  79. 79.
    Simonneau A, Turrel R, Vendier L, Etienne M (2017) Group 6 Transition-Metal/Boron Frustrated Lewis Pair Templates Activate N2 and Allow its Facile Borylation and Silylation. Angew Chem Int Ed 56:12268–12272.
  80. 80.
    Rokob TA, Pápai I (2013) Hydrogen Activation by Frustrated Lewis Pairs: Insights From Computational Studies. In: Erker G, Stephan D (eds) Frustrated Lewis Pairs I. Topics in Current Chemistry. Springer, Berlin, Heidelberg, p 157–212.
  81. 81.
    Paradies J (2019) Mechanisms in Frustrated Lewis Pair-Catalyzed Reactions. Eur J Org Chem 283−294.
  82. 82.
    Rocchigiani L (2015) Experimental Insights into the Structure and Reactivity of Frustrated Lewis Pairs. Isr J Chem 55:134–149.
  83. 83.
    Liu L, Lukose B, Jaque P, Ensing B (2019) Reaction Mechanism of Hydrogen Activation by Frustrated Lewis Pairs. Green Energy Environ 4:20–28.
  84. 84.
    Hoffman BM, Lukoyanov D, Yang Z-Y, Dean DR, Seefeldt LC (2014) Mechanism of Nitrogen Fixation by Nitrogenase: The Next Stage. Chem Rev 114:4041–4062.
  85. 85.
    Thai TT, Mérel DS, Poater A, Gaillard S, Renaud JL (2015) Highly Active Phosphine-Free Bifunctional Iron Complex for Hydrogenation of Bicarbonate and Reductive Amination. Chem Eur J 21:7066–7070.
  86. 86.
    Seck C, Mbaye MD, Coufourier S, Lator A, Lohier JF, Poater A, Ward TR, Gaillard S, Renaud JL (2017) Alkylation of Ketones Catalyzed by Bifunctional Iron Complexes: From Mechanistic Understanding to Application. ChemCatChem 9:4410–4416.
  87. 87.
    Lator A, Gaillard QG, Mérel DS, Lohier JF, Gaillard S, Poater A, Renaud JL (2019) Room-Temperature Chemoselective Reductive Alkylation of Amines Catalyzed by a Well-Defined Iron (II) Complex Using Hydrogen. J Org Chem 84:6813–6829.
  88. 88.
    Conley BL, Pennington-Boggio MK, Boz E, Williams TJ (2010) Discovery, Applications and Catalytic Mechanisms of Shvo’s Catalyst. Chem Rev 110:2294–2312.
  89. 89.
    Klare HFT, Oestreich M, Ito J-I, Nishiyama H, Ohki Y, Tatsumi K (2011) Cooperative Catalytic Activation of Si−H Bonds by a Polar Ru−S Bond: Regioselective Low-Temperature C−H Silylation of Indoles Under Neutral Conditions by a Friedel−Crafts Mechanism. J Am Chem Soc 133:3312–3315.
  90. 90.
    Königs CDF, Klare HFT, Ohki Y, Tatsumi K, Oestreich M (2012) Base-Free Dehydrogenative Coupling of Enolizable Carbonyl Compounds with Silanes. Org Lett 14:2842–2845.
  91. 91.
    Hermeke J, Klare HFT, Oestreich M (2014) Direct Catalytic Access to N-Silylated Enamines from Enolizable Imines and Hydrosilanes by Base-Free Dehydrogenative Si—N Coupling. Chem Eur J 20:9250–9254.
  92. 92.
    Königs CDF, Müller MF, Aiguabella N, Klare HFT, Oestreich M (2013) Catalytic Dehydrogenative Si–N Coupling of Pyrroles, Indoles, Carbazoles as well as Anilines with Hydrosilanes without Added Base. Chem Commun 49:1506–1508.
  93. 93.
    Königs CDF, Klare HFT, Oestreich M (2013) Catalytic 1,4-Selective Hydrosilylation of Pyridines and Benzannulated Congeners. Angew Chem Int Ed 52:10076–10079.
  94. 94.
    Metsänen TT, Oestreich M (2015) Temperature-Dependent Chemoselective Hydrosilylation of Carbon Dioxide to Formaldehyde or Methanol Oxidation State. Organometallics 34:543–546.
  95. 95.
    Stahl T, Klare HFT, Oestreich M (2013) C(sp3)–F bond Activation of CF3-Substituted Anilines with Catalytically Generated Silicon Cations: Spectroscopic Evidence for a Hydride-Bridged Ru–S Dimer in the Catalytic Cycle. J Am Chem Soc 135:1248–1251.
  96. 96.
    Bähr S, Oestreich M (2017) Hidden Enantioselective Hydrogenation of N-Silyl Enamines and Silyl Enol Ethers in Net C═N and C═O Hydrosilylations Catalyzed by Ru−S Complexes with One Monodentate Chiral Phosphine Ligand. Organometallics 36:935–943.
  97. 97.
    Webbolt S, Maji MS, Irran E, Oestreich M (2017) A Tethered Ru–S Complex with an Axial Chiral Thiolate Ligand for Cooperative Si–H Bond Activation: Application to Enantioselective Imine Reduction. Chem Eur J 23:6213–6219.
  98. 98.
    Stahl T, Hrobárik P, Königs CDF, Ohki Y, Tatsumi K, Kemper S, Kaupp M, Klare HFT, Oestreich M (2015) Mechanism of the Cooperative Si–H Bond Activation at Ru–S Bonds. Chem Sci 6:4324–4334.
  99. 99.
    Ochi N, Matsumoto T, Dei T, Nakao Y, Sato H, Tatsumi K, Sakaki S (2015) Heterolytic Activation of Dihydrogen Molecule by Hydroxo-/Sulfido-Bridged Ruthenium−Germanium Dinuclear Complex. Theor Insights Inorg Chem 54:576–585.
  100. 100.
    Matsumoto T, Nakaya Y, Itakura N, Tatsumi K (2008) A Functional Hydrogenase Model: Reversible Interconversion of H2 and H2O by a Hydroxo/Sulfido-Bridged Dinuclear Ruthenium−Germanium Complex. J Am Chem Soc 130:2458–2459.
  101. 101.
    Rokob TA, Hamza A, Stirling A, Pápai I (2009) On the Mechanism of B(C6F5)3-Catalyzed Direct Hydrogenation of Imines: Inherent and Thermally Induced Frustration. J Am Chem Soc 131:2029–2036.
  102. 102.
    Owen GR (2012) Hydrogen Atom Storage Upon Z-class Borane Ligand Functions: An Alternative Approach to Ligand Cooperation. Chem Soc Rev 41:3535–3546.
  103. 103.
    Harman WH, Peters JC (2012) Reversible H2 Addition Across a Nickel–Borane Unit as a Promising Strategy for Catalysis. J Am Chem Soc 134:5080–5082.
  104. 104.
    Fong H, Moret M-E, Lee Y, Peters JC (2013) Heterolytic H2 Cleavage and Catalytic Hydrogenation by an Iron Metallaboratrane. Organometallics 32:3053–3062.
  105. 105.
    MacMillan SN, Hill Harman W, Peters JC (2014) Facile Si–H Bond Activation and Hydrosilylation Catalysis Mediated by a Nickel–Borane Complex. Chem Sci 5:590–597.
  106. 106.
    Harman WH, Lin T-P, Peters JC (2014) A d10 Ni–(H2) Adduct as an Intermediate in H-H Oxidative Addition Across a NiB Bond. Angew Chem Int Ed 53:1081–1086.
  107. 107.
    Nesbit MA, Suess DLM, Peters JC (2015) E−H Bond Activations and Hydrosilylation Catalysis with Iron and Cobalt Metalloboranes. Organometallics 34:4741–4752.
  108. 108.
    Forrest SJK, Clifton J, Fey N, Pringle PG, Sparkes HA, Wass DF (2015) Cooperative Lewis Pairs Based on Late Transition Metals: Activation of Small Molecules by Platinum(0) and B(C6F5)3. Angew Chem Int Ed 54:2223–2227.
  109. 109.
    Mistry K, Pringle PG, Sparkes HA, Wass DF (2020) Transition Metal Cooperative Lewis Pairs Using Platinum(0) Diphosphine Monocarbonyl Complexes as Lewis Bases. Organometallics 39:468–477.
  110. 110.
    Barnett BR, Moore CE, Rheingold AL, Figueroa JS (2014) Cooperative Transition Metal/Lewis Acid Bond-Activation Reactions by a Bidentate (Boryl)Iminomethane Complex: A Significant Metal-Borane Interaction Promoted by a Small Bite-Angle LZ Chelate. J Am Chem Soc 136:10262–10265.
  111. 111.
    Barnett BR, Neville ML, Moore CE, Rheingold AL, Figueroa JS (2017) Oxidative-Insertion Reactivity Across a Geometrically Constrained Metal→Borane interaction. Angew Chem Int Ed 56:7195–7199.
  112. 112.
    Friend CM, Hashmi ASK (2014) Gold Catalysis. Acc Chem Res 47:729–730.
  113. 113.
    Braun I, Asiri AM, Hashmi ASK (2013) Gold Catalysis 2.0. ACS Catal 3:1902–1907.
  114. 114.
    Rudolph M, Hashmi AS (2012) Gold Catalysis in Total Synthesis—an Update. Chem Soc Rev 41:2448–2462.
  115. 115.
    Krause N, Winter C (2011) Gold-Catalyzed Nucleophilic Cy clization of functionalized allenes: A powerful access to carbo- and heterocycles. Chem Rev  111:1994–2009.
  116. 116.
    Corma A, Leyva-Pérez A, Sabater MJ (2011) Gold-Catalyzed Carbon−Heteroatom Bond-Forming Reactions. Chem Rev 111:1657–1712.
  117. 117.
    Fîrstner A (2009) Gold and Platinum Catalysis—a Convenient Tool for Generating Molecular Complexity. Chem Soc Rev 38:3208–3221.
  118. 118.
    Obradors C, Echavarren AM (2014) Intriguing Mechanistic Labyrinths in Gold (I) Catalysis. Chem Commun 50:16–28.
  119. 119.
    Weber SG, Loos C, Rominger F, Straub BF (2012) Synthesis of an Extremely Sterically Shielding N-Heterocyclic Carbene Ligand. ARKIVOC (Gainesville, FL, U.S.) 3:226–242.
  120. 120.
    Arndt S, Hansmann MM, Motloch P, Rudolph M, Rominger F, Hashmi ASK (2017) Intramolecular Anti-Phosphinoauration of Alkynes: An FLP-M otivated Approach to Stable Aurated Phosphindolium Complexes. Chem Eur J 23:2542–2547.
  121. 121.
    Wang Z, Wang Y, Zhang L (2014) Soft Propargylic Deprotonation: Designed Ligand Enables Au-Catalyzed Isomerization of Alkynes to 1,3-Dienes. J Am Chem Soc 136:8887–8890.
  122. 122.
    Wang Z, Ying A, Fan Z, Hervieu C, Zhang L (2017) Tertiary Amino Group in Cationic Gold Catalyst: Tethered Frustrated Lewis Pairs that Enable Ligand-Controlled Regiodivergent and Stereoselective Isomerizations of Propargylic Esters. ACS Catal 5:3676–3680.
  123. 123.
    Li X, Ma X, Wang Z, Liu P-N, Zhang L (2019) Bifunctional Phosphine Ligand Enabled Gold-Catalyzed Alkynamide Cycloisomerization: Access to Electron-Rich 2-Aminofurans and their Diels–Alder Adducts. Angew Chem Int Ed 58:17180–17184.
  124. 124.
    Cheng X, Wang Z, Quintanilla CD, Zhang L (2019) Chiral Bifunctional Phosphine Ligand Enabling Gold-Catalyzed Asymmetric Isomerization of Alkyne to Allene and Asymmetric Synthesis of 2,5-Dihydrofuran. J Am Chem Soc 141:3787–3791.
  125. 125.
    Anwander R, Kobayashi S (1999). Kobayashi S (Eds), Lanthanides: Chemistry and Use in Organic Synthesis, Springer, Berlin, Heidelberg.
  126. 126.
    Berkefeld A, Piers WE, Parvez M, Castro L, Maron L, Eisenstein O (2012) Carbon Monoxide Activation via O-Bound CO Using Decamethylscandocinium−Hydridoborate Ion Pairs. J Am Chem Soc 134:10843–10851.
  127. 127.
    Berkefeld A, Piers WE, Parvez M, Castro L, Maron L, Eisenstein O (2013) Decamethylscandocinium-Hydrido-(Perfluorophenyl)-Borate: Fixation and Tandem Tris(Perfluorophenyl)-Borane Catalysed Deoxygenative Hydrosilation of Carbon Dioxide. Chem Sci 4:2152–2162.
  128. 128.
    Chang K, Xu X (2017) Frustrated Lewis Pair Behaviour of a Neutral Scandium Complex. Dalton Trans 46:4514–4517.
  129. 129.
    Chang K, Wang X, Fan Z, Xu X (2018) Reactions of Neutral Scandium/Phosphorus Lewis Pairs with Small Molecules. Inorg Chem 57:8568–8580.
  130. 130.
    Xu P, Yao Y, Xu X (2017) Frustrated Lewis Pair-Like Reactivity of Rare-Earth Metal Complexes: 1,4-Addition Reactions and Polymerizations of Conjugated Polar Alkenes. Chem Eur J 23:1263–1267.
  131. 131.
    Yao T, Xu P, Xu X (2019) Scandium Complexes Containing β-Diketiminato Ligands with Pendant Phosphanyl Groups: Competition Between Sc/γ-C [4 + 2] Cycloaddition and Sc/P Frustrated Lewis Pair Reactions. Dalton Trans 48:7743–7754.
  132. 132.
    Yasuda H (2002) Organo-Rare-Earth-Metal Initiated Living Polymerizations of Polar and Nonpolar Monomers. J Organomet Chem 647:128–138.
  133. 133.
    Yasuda H (2001) Rare-Earth-Metal-Initiated Polymerizations of (Meth)Acrylates and Block Copolymerizations of Olefins with Polar Monomers. J Polym Sci Part a Polym Chem 39:1955–1959.
  134. 134.
    Xu P, Xu X (2018) Homoleptic Rare-Earth Aryloxide Based Lewis Pairs for Polymerization of Conjugated Polar Alkenes. ACS Catal 8:198–202.
  135. 135.
    Xu P, Wu L, Dong L, Xu X (2018) Chemoselective Polymerization of Polar Divinyl Monomers with Rare-Earth/Phosphine Lewis Pairs. Molecules 2:360–369.
  136. 136.
    Chang K, Dong Y, Xu X (2019) Dihydrogen Activation by Intermolecular Rare-Earth Aryloxide/N-Heterocyclic Carbene Lewis Pairs. Chem Commun 55:12777–12780.
  137. 137.
    Arnold PL, Marr IA, Zlatogorsky S, Bellabarbac R, Toozec RP (2014) Activation of Carbon Dioxide and Carbon Disulphide by a Scandium N-Heterocyclic Carbene Complex. Dalton Trans 43:34–37.
  138. 138.
    Turner ZR, Bellabarba R, Tooze RP, Arnold PL (2010) Addition-Elimination Reactions Across the M−C Bond of Metal N-Heterocyclic Carbenes. J Am Chem Soc 132:4050–4051.
  139. 139.
    Arnold PL, Turner ZR, Germeroth AI, Casely IJ, Nichol GS, Bellabarba R, Tooze RP (2013) Carbon Monoxide and Carbon Dioxide Insertion Chemistry of f-Block N-Heterocyclic Carbene Complexes. Dalton Trans 42:1333–1337.
  140. 140.
    Arnold PL, Kerr RWF, Weetman C, Docherty SR, Rieb J, Cruickshank FL, Wang K, Jandl C, McMullon MW, Pöthig A, Kühn FE, Smith AD (2018) Selective and Catalytic Carbon Dioxide and Heteroallene Activation Mediated by Cerium N-Heterocyclic Carbene Complexes. Chem Sci 9:8035–8045.
  141. 141.
    Sun X, Su W, Shi K, Xie Z, Zhu C (2020) Triple Frustrated Lewis Pair-Type Reactivity on a Single Rare Earth Metal Center. Chem Eur J Accepted Manuscript.
  142. 142.
    Stephan DW (1989) Early-Late Heterobimetallics. Coord Chem Rev 95:41–107.
  143. 143.
    Wheatley N, Kalck P (1999) Structure and Reactivity of Early−Late Heterobimetallic Complexes. Chem Rev 99:3379–3420.
  144. 144.
    Gade LH (2000) Highly Polar Metal-Metal Bonds in “Early-Late” Heterodimetallic Complexes. Angew Chem Int Ed 39:2658–2678.;2-C
  145. 145.
    Cooper BG, Napoline JW, Thomas CM (2012) Catalytic Applications of Early/Late Heterobimetallic Complexes. Catal Rev 54:1–40.
  146. 146.
    Herberhold M, Jin G-X (1994) Heterodimetallic Complexes with an Unbridged, Polar Metal-Metal Bond. Angew Chem Int Ed 33:964–966.
  147. 147.
    Chapman AM, Flynn SR, Wass DF (2016) Unexpected Formation of Early Late Heterobimetallic Complexes from Transition Metal Frustrated Lewis Pairs. Inorg Chem 55:1017–1021.
  148. 148.
    Campos C (2017) Dihydrogen and Acetylene Activation by a Gold(I)/Platinum(0) Transition Metal Only Frustrated Lewis Pair. J Am Chem Soc 139:2944–2947.
  149. 149.
    Bauer J, Braunschweig H, Dewhurst RD (2012) Metal-Only Lewis Pairs with Transition Metal Lewis Bases. Chem Rev 112:4329–4346.
  150. 150.
    Hidalgo N, Moreno JJ, Pérez-Jiménez M, Maya C, López-Serrano J, Campos J (2020a) Evidence for Genuine Bimetallic Frustrated Lewis Pair Activation of Dihydrogen with Gold(I)/Platinum(0) Systems. Chem Eur J 26:5982–5993Google Scholar
  151. 151.
    Dang LX, Schenter GK, Chang T-M, Kathmann SM, Autrey T (2012) Role of Solvents on the Thermodynamics and Kinetics of Forming Frustrated Lewis Pairs. J Phys Chem Lett 3:3312–3319.
  152. 152.
    Hidalgo N, Bajo S, Moreno JJ, Navarro-Gilabert C, Mercado BQ, Campos J (2019) Reactivity of a Gold(I)/Platinum(0) Frustrated Lewis Pair with Germanium and Tin Dihalides. Dalton Trans 48:9127–9138.
  153. 153.
    Hidalgo N, Moreno JJ, Pérez-Jiménez M, Maya C, López-Serrano J, Campos J (2020) Tuning Activity and Selectivity During Alkyne Activation by Gold(I)/Platinum(0) Frustrated Lewis Pairs. Organometallics 39:2534–2544.
  154. 154.
    Dureen MA, Stephan DW (2009) Terminal Alkyne Activation by Frustrated and cC Classical Lewis Acid/Phosphine Pairs. J Am Chem Soc 131:8396–8397.
  155. 155.
    Pinkes JR, Steffey BD, Vites JC, Cutler AR (1994) Carbon Dioxide Insertion into the Fe-Zr and Ru-Zr Bonds of the Heterobimetallic Complexes Cp(CO)2M-Zr(Cl)Cp2: Direct Production of the µ-η1(C):η2 (O, O’)-CO2 Compounds Cp(CO)2M-CO2-Zr(Cl)Cp2. Organometallics 13:21–23.
  156. 156.
    Hanna TA, Baranger AM, Bergman RG (1995) Reaction of Carbon Dioxide and Heterocumulenes with an Unsymmetrical Metal-Metal bond. Direct Addition of Carbon Dioxide Across a Zirconium-Iridium Bond and Stoichiometric Reduction of Carbon Dioxide to Formate. J Am Chem Soc 117:11363–11364.
  157. 157.
    Baranger AM, Bergman RG (1994) Cooperative Reactivity in the Interactions of X-H bonds with a Zirconium-Iridium Bridging Imido Complex. J Am Chem Soc 116:3822–3835.
  158. 158.
    Memmler H, Kauper U, Gade LH, Scowen IJ, McPartlin M (1996) Insertion of X=C=Y Heteroallenes into Unsupported Zr–M Bonds (M = Fe, Ru). Chem Commun 1751–1752.
  159. 159.
    Schneider A, Gade LH, Breuning M, Bringmann G, Scowen IJ, McPartlin M (1998) Cooperative Reactivity of Unsupported Early−Late Heterobimetallics: Ring Opening and Subsequent Decarbonylation of Biaryllactones. Organometallics 17:1643–1645.
  160. 160.
    Gade LH, Memmler H, Kauper U, Schneider A, Fabre S, Bezougli I, Lutz M, Galka C, Scowen IJ, McPartlin M (2000) Cooperative Reactivity of Early-Late Heterodinuclear Transition Metal Complexes with Polar Organic Substrates. Chem Eur J 6:692–708.;2-2
  161. 161.
    Findeis B, Schubart M, Platzek C, Gade LH, Scowen I, McPartlin M (1996) A ‘Passe-Partout’ for the Stabilization of Highly Polar Unsupported M–M′ Bonds (M = Ti, Zr, Hf; M′= Fe, Ru) and α-Addition of the Metal Nucleophile–Electrophile Pairs to an Isocyanide. Chem Commun 219–220.
  162. 162.
    Pinkes JR, Tetrick SM, Landrum BE, Cutler AR (1998) Characterization of the μ-(η1-C: η2-S, S′)Dithiocarboxylate Complexes Cp(CO)2Fe–CS2–Zr(X)Cp2 (X=Cl, OCMe3); CS2 Insertion into the FeZr Bond of the Heterobimetallic Complex Cp(CO)2Fe–Zr(OCMe3)Cp2. J Organomet Chem 556:1–7.
  163. 163.
    Sisak A, Halmos E (2007) Reactions of Early–Late Heterobimetallics with Oxiranes: New Examples for Cooperative Reactivity. J Organomet Chem 92:1817–1824.
  164. 164.
    Uehara K, Hikichi S, Inagaki A, Akita M (2005) Xenophilic Complexes Bearing a TpR Ligand, [TpRM–M’Ln] [TpR =TpiPr2, Tp# (TpMe2,4-Br); M=Ni Co, Fe, Mn; M’Ln=Co(CO)4, Co(CO)3(PPh3), RuCp(CO)2]: The Two Metal Centers are Held Together not by Covalent Interaction but by Electrostatic Attraction. Chem Eur J 11:2788–2809.
  165. 165.
    Schmidt JAR, Lobkovsky EB, Coates GW (2005) Chromium(III) Octaethylporphyrinato Tetracarbonylcobaltate: a Highly Active, Selective, and Versatile Catalyst for Epoxide Carbonylation. J Am Chem Soc 127:11426–11435.
  166. 166.
    Krogman JP, Foxman BM, Thomas CM (2011) Activation of CO2 by a Heterobimetallic Zr/Co Complex. J Am Chem Soc 133:14582–14585.
  167. 167.
    Cooper BG, Fafard CM, Foxman BM, Thomas CM (2010) Electronic Factors Affecting Metal−Metal Interactions in Early/Late Heterobimetallics: Substituent Effects in Zirconium/Platinum Bis(phosphinoamide) Complexes. Organometallics 29:5179–5186.
  168. 168.
    Riddlestone IM, Rajabi NA, Lowe JP, Mahon MF, Macgregor SA, Whittlesey MK (2016) Activation of H2 over the Ru−Zn Bond in the Transition Metal−Lewis Acid Heterobimetallic Species [Ru(IPr)2(CO)ZnEt]+. J Am Chem Soc 35:11081–11084.
  169. 169.
    Jamali S, Abedanzadeh S, Khaledi NK, Samouei H, Hendi Z, Zacchini S, Kia R, Shahsavari HR (2016) A Cooperative Pathway for Water Activation Using a Bimetallic Pt0–CuI System. Dalton Trans 45:17644–17651.
  170. 170.
    Hidalgo N, Maya C, Campos J (2019) Cooperative Activation of X–H (X = H, C, O, N) Bonds by a Pt(0)/Ag(I) Metal-Only Lewis Pair. Chem commun. 55:8812–8815.
  171. 171.
    Zhao J, Goldman AS, Hartwig JF (2005) Oxidative Addition of Ammonia to Form a Stable Monomeric Amido Hydride Complex. Science 307:1080–1082.
  172. 172.
    Fafard CM, Adhikari D, Foxman BM, Mindiola J, Ozerov OV (2007) Addition of Ammonia, Water, and Dihydrogen Across a Single Pd−Pd Bond. J Am Chem Soc 129:10318–10319.
  173. 173.
    Jayarathne U, Mazzacano T J, Bagherzadeh S, Mankad N P (2013) Heterobimetallic Complexes with Polar, Unsupported Cu−Fe and Zn−Fe Bonds Stabilized by N-Heterocyclic Carbenes. Organometallic. 32:3986–3992.
  174. 174.
    Banerjee S, Karunananda M K, Bagherzadeh S, Jayarathne U, Parmelee S R, Waldhart G W, Mankad N P (2014) Synthesis and Characterization of Heterobimetallic Complexes with Direct Cu–M Bonds (M = Cr, Mn, Co, Mo, Ru, W) Supported by N-Heterocyclic Carbene Ligands: A Toolkit for Catalytic Reaction Discovery. Inorg. Chem. 53:11307–11315.
  175. 175.
    Karunananda MK, Vázquez FX, Alp EE, Bi W, Chattopadhyay S, Shibatade T, Mankad NP (2014) Experimental Determination of Redox Cooperativity and Electronic Structures in Catalytically Active Cu–Fe and Zn–Fe Heterobimetallic Complexes. Dalton Trans 43:13661–13671.
  176. 176.
    Jayarathne U, Parmelee SR, Mankad NP (2014) Small Molecule Activation Chemistry of Cu–Fe Heterobimetallic Complexes Toward CS2 and N2O. Inorg Chem 53:7730–7737.
  177. 177.
    Karunananda MK, Parmelee SR, Waldhart GW, Mankad NP (2015) Experimental and Computational Characterization of the Transition State for C-X Bimetallic Oxidative Addition at a Cu–Fe Reaction Center. Organometallics 34:3857–3864.
  178. 178.
    Karunananda MK, Mankad NP (2017) Heterobimetallic H2 Addition and Alkene/Alkane Elimination Reactions Related to the Mechanism of E-Selective Alkyne Semihydrogenation. Organometallics 36:220–227.
  179. 179.
    Mankad NP (2018) Diverse Bimetallic Mechanisms Emerging from Transition Metal Lewis Acid/Base Pairs: Development of Co-Catalysis with Metal Carbenes and Metal Carbonyl Anions. Chem Commun 54:1291–1302.
  180. 180.
    Zhang Y, Karunananda MK, Yu HC, Clark KJ, Williams W, Mankad NP, Ess DH (2019) Dynamically Bifurcating Hydride Transfer Mechanism and Origin of Inverse Isotope Effect for Heterodinuclear AgRu-Catalyzed Alkyne Semihydrogenation. ACS Catal 9:2657–2663.
  181. 181.
    Karunananda MK, Mankad NP (2015) E-Selective Semi-Hydrogenation of Alkynes by Heterobimetallic Catalysis. J Am Chem Soc 137:14598–14601.
  182. 182.
    Mazzacano TJ, Mankad NP (2013) Base Metal Catalysts for Photochemical C-H Borylation that Utilize Metal–Metal Cooperativity. J Am Chem Soc 135:17258–17261.
  183. 183.
    Parmelee SR, Mazzacano TJ, Zhu Y, Mankad NP, Keith JA (2015) A Heterobimetallic Mechanism for C-H Borylation Elucidated from Experimental and Computational Data. ACS Catal 5:3689–3699.
  184. 184.
    Cheng LJ, Mankad NP (2019) Heterobimetallic Control of Regioselectivity in Alkyne Hydrostannylation: Divergent Syntheses of α- and (E)-β-Vinylstannanes via Cooperative Sn–H Bond Activation. J Am Chem Soc 141:3710–3716.
  185. 185.
    Devillard M, Declercq R, Nicolas E, Ehlers AW, Backs J, Saffon-Merceron N, Bouhadir G, Slootweg JC, Uhl W, Bourissou D (2016) A Significant but Constrained Geometry Pt→Al Interaction: Fixation of CO2 and CS2, Activation of H2 and PhCONH2. J Am Chem Soc 138:4917–4926.
  186. 186.
    Chen Y, Sakaki S (2017) Mo–Mo Quintuple Bond is Highly Reactive in H–H, C–H, and O–H σ-Bond Cleavages Because of the Polarized Electronic Structure in Transition State. Inorg. Chem. 56:4011–4020.
  187. 187.
    Fontaine F-G, Stephan DW (2017) On the Concept of Frustrated Lewis Pairs. Phil Trans R Soc a 375:20170004.

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  • Nereida Hidalgo
    • 1
  • Macarena G. Alférez
    • 1
  • Jesús Campos
    • 1
    Email author
  1. 1.Instituto de Investigaciones Químicas (IIQ). Consejo Superior de Investigaciones Científicas (CSIC)University of SevillaSevillaSpain

Personalised recommendations