Decision-Making with Probabilistic Reasoning in Engineering Design

  • Stefan PlappertEmail author
  • Paul Christoph Gembarski
  • Roland Lachmayer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12117)


The goal of decision making is to select the most suitable option from a number of possible alternatives. Which is easy, if all possible alternatives are known and evaluated. This case is rarely encountered in practice; especially in product development, decisions often have to be made under uncertainty. As uncertainty cannot be avoided or eliminated, actions have to be taken to deal with it. In this paper a tool from the field of artificial intelligence, decision networks, is used. Decision networks utilize probabilistic reasoning to model uncertainties with probabilities. If the influence of uncertainty cannot be avoided, a variation of the product is necessary so that it adjusts optimally to the changed situation. In contrast, robust products are insensitive to the influence of uncertainties. An application example from the engineering design has shown, that a conclusion about the robustness of a product for possible scenarios can be made by the usage of the decision network. It turned out that decision networks can support the designer well in making decisions under uncertainty.


Probabilistic reasoning Decision-making Engineering design Decision network Bayesian network 


  1. 1.
    Suh, N.P.: Complexity: Theory and Applications. Oxford University Press, Oxford (2005). On DemandGoogle Scholar
  2. 2.
    Gembarski, P.C., Lachmayer, R.: A business typological framework for the management of product complexity. In: Bellemare, J., Carrier, S., Nielsen, K., Piller, F.T. (eds.) Managing Complexity. SPBE, pp. 235–247. Springer, Cham (2017). Scholar
  3. 3.
    Antonsson, E.K., Otto, K.N.: Imprecision in engineering design. J. Vibr. Acoust. 117(B), 25–32 (1995). Scholar
  4. 4.
    Plappert, S., Gembarski, P.C., Lachmayer, R.: The use of knowledge-based engineering systems and artificial intelligence in product development: a snapshot. In: Świątek, J., Borzemski, L., Wilimowska, Z. (eds.) ISAT 2019. AISC, vol. 1051, pp. 62–73. Springer, Cham (2020). Scholar
  5. 5.
    Gembarski, P.C., Bibani, M., Lachmayer, R.: Design catalogues: knowledge repositories for knowledge-based-engineering applications. In: Marjanović, D., Štorga, M., Pavković, N., Bojčetić, N., Škec, S. (eds.) Proceedings of the DESIGN 2016 14th International Design Conference, pp. 2007–2016 (2016)Google Scholar
  6. 6.
    Hazelrigg, G.A.: A framework for decision-based engineering design. J. Mech. Des. 120(4), 653–658 (1998). Scholar
  7. 7.
    Pahl, G., Beitz, W.: Konstruktionslehre, 1st edn. Springer, Berlin (1977). Scholar
  8. 8.
    Lenders, M.: Beschleunigung der Produktentwicklung durch Lösungsraum-Management. Apprimus-Verlag (2009)Google Scholar
  9. 9.
    Dostatni, E., Diakun, J., Grajewski, D., Wichniarek, R., Karwasz, A.: Multi-agent system to support decision-making process in design for recycling. Soft. Comput. 20(11), 4347–4361 (2016). Scholar
  10. 10.
    Wiebel, M., Eifler, T., Mathias, J., Kloberdanz, H., Bohn, A., Birkhofer, H.: Modellierung von Unsicherheit in der Produktentwicklung. In: Jeschke, S., Jakobs, E.M., Dröge, A. (eds.) Exploring Uncertainty, pp. 245–269, Springer Gabler, Wiesbaden (2013).
  11. 11.
    Kreye, M.E., Goh, Y.M., Newnes, L.B.: Manifestation of uncertainty – a classification. In: DS 68-6: Proceedings of the 18th International Conference on Engineering Design (ICED 2011), Impacting Society through Engineering Design, pp. 96–107, Lyngby/Copenhagen, Denmark (2011)Google Scholar
  12. 12.
    De Weck, O., Eckert, C., Clarkson, J.: A classification of uncertainty for early product and system design. In: DS 42: Proceedings of ICED 2007, the 16th International Conference on Engineering Design, pp.159–160, Paris, France (2007)Google Scholar
  13. 13.
    Chalupnik, M.J., Wynn, D.C., Clarkson, P.J.: Approaches to mitigate the impact of uncertainty in development processes. In: DS 58-1: Proceedings of ICED 09, the 17th International Conference on Engineering Design, pp. 459–470, Palo Alto, CA, USA (2009)Google Scholar
  14. 14.
    Ullman, D.G.: Robust decision-making for engineering design. J. Eng. Des. 12(1), 3–13 (2001). Scholar
  15. 15.
    Ertel, W.: Grundkurs Künstliche Intelligenz – Eine praxisorientierte Einführung, 4th edn. Springer, Wiesbaden (2016).
  16. 16.
    Jordan, M.I. (eds) Learning in Graphical Models, pp. 1–5. Springer (1999).
  17. 17.
    Russel, S.J., Norvig, P.: Artificial Intelligence – A Modern Approach, 3rd edn. Pearson, London (2016)Google Scholar
  18. 18.
    Zhu, J.Y., Deshmukh, A.: Application of Bayesian decision networks to life cycle engineering in Green design and manufacturing. Eng. Appl. Artif. Intell. 16(2), 91–103 (2003). Scholar
  19. 19.
    Moullec, M.L., Bouissou, M., Jankovic, M., Bocquet, J.C.: Product architecture generation and exploration using Bayesian networks. In: DS 70 - Proceedings of DESIGN 2012, the 12th International Design Conference, pp. 1761–1770, Dubrovnik, Croatia (2012)Google Scholar
  20. 20.
    Murphy, K.P.: The Bayes net toolbox for matlab. Comput. Sci. Stat. 33(2), 1024–1034 (2001)Google Scholar
  21. 21.
    Vetter, G. (eds) Handbuch Dosieren, 2nd edn. Vulkan-Verlag, Essen (2002).

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Product DevelopmentLeibniz University of HannoverHannoverGermany

Personalised recommendations