Advertisement

Stieltjes Integrals Considered as Lengths

  • Karl Menger
Chapter
  • 69 Downloads

Abstract

The Stieltjes integral
$$\begin{array}{*{20}{c}} {\int\limits_{a}^{b} {f(x)dg(x)} } & {or briefly, \int\limits_{a}^{b} {fdg} }\\\end{array}$$
is defined as follows: We divide the interval [a, b] into a finite number of intervals
$$a = {{x}_{0}} < {{x}_{1}} <\ldots< {{x}_{{n - 1}}} < {{x}_{n}} = b.$$

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Karl Menger
    • 1
  1. 1.ChicagoUSA

Personalised recommendations