Advertisement

Commentary on the Algebra of Analysis and Algebra of Functions

  • A. Sklar
Chapter
  • 66 Downloads

Abstract

Karl Menger’s interest in the Algebra of Analysis (which later evolved into the Algebra of Functions) grew out of his experience teaching calculus to large classes of potential naval officers at Notre Dame University during the Second World War. Now throughout his life, Menger was impelled to uncover the basic structure underlying any mathematical area he was involved with, and to express this structure in explicit axiomatic form. So, since calculus is predicated on the behavior of functions under various operations, he resolved to elucidate the fundamental properties of these operations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

References to Menger

  1. [Ml]
    Algebra of Analysis. Notre Dame Mathematical Lectures, Vol. 3, 1944.Google Scholar
  2. [M2]
    Tri-operational Algebra. Reports of Math. Colloq. Notre Dame, Indiana 5/6 (1944) 3–10.Google Scholar
  3. [M3]
    General Algebra of Analysis. Reports of Math. Colloq. Notre Dame, Indiana 7 (1946) 46–60.Google Scholar
  4. [M4]
    Calculus. A Modern Approach, Ginn and Company, Boston, 1955.Google Scholar
  5. [M5]
    An Axiomatic Theory of Functions and Fluents. The Axiomatic Method With Special Reference to Geometry and Physics. Proceeding of an International Symposium held at the Univ. of California, Berkely, December 26, 1957 — January 4, 1958 (eds.) L. Henkin, P. Suppes, A. Tarski, Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam (1959) 454–473.Google Scholar
  6. [M6]
    The Algebra of Functions: Past, Present, Future. Rendiconti di Matematica 20 (1961) 409–430.MathSciNetGoogle Scholar
  7. [M7]
    On Substitutive Algebra and Its Syntax. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 10 (1964) 81–104.CrossRefMathSciNetGoogle Scholar
  8. [M8]
    Superassociative Systems and Logical Functors. Mathematische Annalen 157 (1964) 278–295.CrossRefMathSciNetGoogle Scholar
  9. [M9]
    Two Theorems on the Generation of Systems of Functions.Fundamenta Mathematicae 58 (1966) 229–240 (with H. I. Whitlock).CrossRefMathSciNetGoogle Scholar

Other References

  1. 1.
    J. Ballieul: Green’s Relations in Finite Function Semigroups. Aequat. Math. 7 (1972) 22–27.CrossRefMathSciNetGoogle Scholar
  2. 2.
    P. Calabrese: The Menger Algebras of 2-place Functions in the 2-valued logic. Notre Dame Journal of Formal Logic 7 (1966) 333–340.CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    D. Cargo: Green’s Relations in Function Systems and Applications, Ph. D., Dissertation, University of Massachusetts, 1968.Google Scholar
  4. 4.
    R. M. Dicker: The Substitutive Law. Proc. London Math. Soc. (3) 13 (1963) 493–510.CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    D. M. Foley: A Note on Seall’s Projective Substitution. J. Geom. 22 (1984) 193–195.CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    R. Isaacs: Iterates of Fractional Order. Canadian J. Math. 2 (1950) 409–416.MathSciNetzbMATHGoogle Scholar
  7. 7.
    W. P. Johnson: The Curious History of Faà di Bruno’s Formula. Amer. Math. Monthly 109 (2002) 217–234.MathSciNetzbMATHGoogle Scholar
  8. 8.
    R. Jónsson, A. Tarski: Boolean Algebras with Operators. Amer. J. Math. 73 (1951) 891–939.CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    J. F. Jurshak: Intrinsic Function Systems and the Axiomatization of Grammars of Functions. Ph. D. Dissertation, Illinois Institute of Technology, 1974.Google Scholar
  10. 10.
    V. Kafka: Axiomatics for Systems of Multiplace Functions. M. S. Thesis, Illinois Institute of Technology, 1965.Google Scholar
  11. 11.
    M. V. Lawson: Semigroups and Ordered Categories. J. Algebra 141 (1991) 442–462.CrossRefMathSciNetGoogle Scholar
  12. 12.
    M. A. McKiernan: On the n-th Derivatives of Composite Functions. Amer. Math. Monthly 63 (1956) 331–333.CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    M. A. McKiernan: The Functional Differential Equation Df = 1/ff. Proc. Amer. Math. Soc. 8 (1957) 230–233.MathSciNetzbMATHGoogle Scholar
  14. 14.
    M. A. McKiernan: Séries déitérateurs et leurs application aux équations fonctionnelles. C. R. Acad. Sci. Paris 246 (1958) 2331–2334. Le prolongement analytique des séries d’itérateurs; ibid. 246 (1958) 2564–2567.MathSciNetzbMATHGoogle Scholar
  15. 14’.
    M. A. McKiernan: On the convergence of series of iterates. Publ. Math. Debrecen 10 (1963) 30–39.MathSciNetzbMATHGoogle Scholar
  16. 15.
    W. Nöbauer: Ober die Darstellung von universellen Algebren durch Funktionenalgebren. Publ. Math. Debrecen 10 (1963) 151–154.zbMATHGoogle Scholar
  17. 16.
    R. Peters: Two Remarks Concerning Menger’s and Schultz’ Postulates for the Substitutive Algebra of the 2-place Functions in the 2-valued Calculus of Propositions. Notre Dame J. Formal Logic 5 (1964) 125–128.CrossRefzbMATHGoogle Scholar
  18. 17.
    R. E. Rice, B. Schweizer, A. Sklar: When is f (f (z)) = az 2+ bz + c? Amer. Math. Monthly 82 (1980) 252–263.zbMATHGoogle Scholar
  19. 18.
    J. Robinson: General Recursive Functions. Proc, Amer. Math. Soc. 1 (1950) 703–718.MathSciNetGoogle Scholar
  20. 19.
    R. M. Robinson: Primitive Recursive Functions. Bull. Amer. Math. Soc. 53 (1947) 925–942.CrossRefMathSciNetzbMATHGoogle Scholar
  21. 20.
    I. G. Rosenberg: On Generating Large Classes of Sheffer Functions. Aequat. Math. 17 (1978) 164–181.MathSciNetzbMATHGoogle Scholar
  22. 21.
    B. M. Schein: Restrictive-multiplicative Algebras of Transformations (in Russian). Izvest. Vyss. Ucebn. Zaved. Matem. 4 (1970) 91–102.Google Scholar
  23. 22.
    B. M. Schein: Relation Algebras and Function Semigroups. Semigroup Forum 1 (1970) 1–62.CrossRefMathSciNetzbMATHGoogle Scholar
  24. 23.
    B. M. Schein, V. S. Trohimenko: Algebras of Multiplace Functions. Semigroup Forum, 17 (1979) 1–64.CrossRefMathSciNetzbMATHGoogle Scholar
  25. 24.
    D. Schweigert: On Prepolynomially Complete Algebras. J. London Math. Soc. (2) 20 (1979) 179–185.CrossRefMathSciNetzbMATHGoogle Scholar
  26. 25.
    B. Schweizer, A. Sklar: The Algebra of Functions. (I) Math. Annalen 139 (1960) 366–382; (II) Ibid. 143 (1961) 440–447; (III) Ibid. 161 (1965) 171–196.Google Scholar
  27. 26.
    B. Schweizer, A. Sklar: Function Systems. Math Annalen 172 (1967) 1–16.CrossRefMathSciNetzbMATHGoogle Scholar
  28. 27.
    B. Schweizer, A. Sklar: The Axiomatic Characterization of Functions. Zeitschr. Math. Logik Grundl. Math. 23 (1977) 373–382.CrossRefzbMATHGoogle Scholar
  29. 28.
    B. Schweizer, A. Sklar: A Grammar of Functions. (I) Aequat. Math. 2 (1968) 62–85; (II) Ibid. 3 (1969) 15–43.zbMATHGoogle Scholar
  30. 29.
    R. Seall: Connections Between Projective Geometry and Superassociative Algebra. J. Geometry 4 (1974) 11–33.CrossRefMathSciNetzbMATHGoogle Scholar
  31. 30.
    H. L. Skala: The Irreducible Generating Sets of 2-place Functions in the 2-valued Logic. Notre Dame J. Formal Logic 7 (1966) 341–343.CrossRefMathSciNetzbMATHGoogle Scholar
  32. 31.
    A. Sklar: Canonical Decompositions, Stable Functions and Fractional Iterates. Aequat. Math. 3 (1969) 118–129.CrossRefMathSciNetzbMATHGoogle Scholar
  33. 32.
    A. Sklar: A Functional Equation Definition of “Orbit” (abstract). Aequat. Math. 56 (1998) 300.Google Scholar
  34. 33.
    R. Tambs Lyche: Sur l’équation fonctionnelle d’Abel. Fund. Math. 5 (1924) 331–332.zbMATHGoogle Scholar
  35. 34.
    H. I. Whitlock: A Composition Algebra for Multiplace Functions. Math. Annalen 151 (1964) 167–178.CrossRefMathSciNetzbMATHGoogle Scholar
  36. 35.
    D. Zupnik: Polyadic Semigroups. Publ. Math. Debrecen 14 (1965) 273–279.MathSciNetzbMATHGoogle Scholar
  37. 36.
    D. Zupnik: On Interassociativity and Related Questions. Aequat. Math. 6 (1971) 141–148.CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • A. Sklar

There are no affiliations available

Personalised recommendations