High Frequency Data Analysis in an Emerging and a Developed Market

  • Zoltán Palágyi
  • Gábor Kőrösi
  • Rosario N. Mantegna
Conference paper


We compare distributional properties of high frequency (tick by tick) returns of stocks traded at the NASDAQ, NYSE, and BSE (Budapest Stock Exchange). In particular, we model returns with a mixture of a degenerate (zero) and a symmetric stable distribution. We measure time with the number of successive price changes on the market and study the convergence of the index of stability on increasing time horizons. We apply results to calculate expected waiting times to reach given levels of value at risk.

Key words

High-frequency data Stable distributions Value at risk 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Campbell, J. Y., Lo, A. W., MacKinlay, A. C. (1997) The Econometrics of Financial Markets. Princeton University, New JerseyzbMATHGoogle Scholar
  2. 2.
    Engle, R. F. (2000) The Econometrics of Ultra-High-Frequency Data. Econometrica 68, 1–22zbMATHCrossRefGoogle Scholar
  3. 3.
    Engle, R. F., Russel, J. R. (1998) Autoregressive Conditional Duration: a New Model for Irregularly Spaced Transaction Data. Econometrica 66, 1127–1162MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Gopikrishnan, P., Meyer, M., Amaral, L., Stanley, H. E. (1998) Inverse Cubic Law for the Distribution of Stock Price Variations. The European Physical Journal B 3, 139–140ADSCrossRefGoogle Scholar
  5. 5.
    Mandelbrot, B. (1963) The Variation of Certain Speculative Prices. The Journal of Business 36, 394–419CrossRefGoogle Scholar
  6. 6.
    Mantegna, R. N., Stanley, H. E. (1994) Stochastic Process with Ultraslow Convergence to a Gaussian: The Truncated Lévy Flight. Physical Review Letters 73, 2946–2949MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    Mantegna, R. N., Stanley, H. E. (1995) Scaling Behaviour in the Dynamics of an Economic Index. Letters to Nature 376, 46–49ADSCrossRefGoogle Scholar
  8. 8.
    McCulloch, J. H. (1998) Numerical Approximation of the Symmetric Stable Distribution and Density. In: Adler, R. J., Feldman, R. E., Taqqu, M. S. eds. A Practical Guide to Heavy Tails, 489–499, Birkhäuser, BostonGoogle Scholar
  9. 9.
    Palágyi, Z., Mantegna, R. N. (1999) Empirical Investigation of Stock Price Dynamics in an Emerging Market. Physica A 269, 132–139ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 2002

Authors and Affiliations

  • Zoltán Palágyi
    • 1
  • Gábor Kőrösi
    • 2
  • Rosario N. Mantegna
    • 3
  1. 1.Department of MathematicsBudapest University of Economic Sciences and Public AdministrationBudapestHungary
  2. 2.Institute of EconomicsHungarian Academy of SciencesHungary
  3. 3.Dipartimento di Fisica e Tecnologie RelativeUniversità di PalermoPalermoItalia

Personalised recommendations