The Binding of Transition Metal Ions to DNA Oligonucleotides Studied by Nuclear Magnetic Resonance Spectroscopy

  • Einar Sletten
Part of the NATO ASI Series book series (ASEN2, volume 26)


Trace amounts of metals determine not only the course of malignancy, but they can be the cause of malignant transformation [1]. The molecular mechanism of metal ion carcinogenesis is still not well understood. Several theories have been proposed to explain the carcinogenic activities of the respective metals. However, at present, no unifying concept has been developed to explain why metals or metal-containing compounds induce cancer in animals. Especially puzzling is the fact that closely related metal species have widely different carcinogenic properties. In a comparison of metal carcinogenicity in humans based on several experimental factors Cr and Ni turned out to be the most potent carcinogens [2]


Proton Resonance Chemical Shift Change Paramagnetic Relaxation Paramagnetic Relaxation Enhancement Guanine Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andronikashvili, E. L. and Monaselidze, J. R. (1973) Human leukemia and trace elements, in H. Sigel (ed.). Metal Ions in Biological Systems, Marcel Dekker, New York. pp. 167–206.Google Scholar
  2. 2.
    Flessel, C P., Furst, A. and Radding, S. B. (1973) A comparison of carcinogenic metals, in H. Sigel (ed.). Metal Ions in Biological Systems, Marcel Dekker, New York, pp. 23–54.Google Scholar
  3. 3.
    Eichhorn, G.L. and Shin, Y.A. (1968) The Relative Effect of Various Meta Ions on DNA Helicity. J. Am.Chem Soc. 90, 7323–7328.CrossRefGoogle Scholar
  4. 4.
    Sip, M., Schwartz, A. Vovelle, F., Ptak, M. and Leng, M. (1992) Distortions Induced in DNA by cis Platinum Interstrand Adducts, Biochemistry 31, 2508–2513.CrossRefGoogle Scholar
  5. 5.
    Narasimhan, V. and Bryan, A. M. (1984) Conformational Effects on DNA Polymers Due to Physiological Concentrations of Divalent Metal Ions, Inorg. Chim. (1984) 91, L39–41.CrossRefGoogle Scholar
  6. 6.
    Behling, R. W. and Kearns, D. R. (1986) 1H Two-Dimetisional Nuclear Overhauser Effect and Relaxation Studies of Poly(dA)-Poly(dT), Biochemistry 25, 3335–3346.CrossRefGoogle Scholar
  7. 7.
    Froystein, N., and Sletten, E. (1991) The Binding of Mn(II) and Zn(II) to the Synthetic Oligonucleotide [d(CGCGAATTCGCG)]2. Acta Chem. Scand. 45, 219–225.CrossRefGoogle Scholar
  8. 8.
    Froystein, N., Davis, J. T., Reid, B. R. and Sletten, E. (1993) Sequence-Selective Metal Ion Binding to DNA Oligonucleotides, Acta Chem. Scand. 47, 649–657.CrossRefGoogle Scholar
  9. 9.
    Froystein, N., and Sletten, E. (1994) Interaction of Mercury(II) with the DNA Dodecamer CGCGAATTCGCG. A lH and 15N NMR Study, J. Am Chem. Soc. (1994) 116, 3240–3250.CrossRefGoogle Scholar
  10. 10.
    Steinkopf, S. and Sletten, E. (1994) Sequence-Selective Metal Ion Binding to DNA Hexamers. Acta Chem. Scand. 48, 388–392.CrossRefGoogle Scholar
  11. 11.
    Steinkopf, S., Garoufis, A., Nerdal, W. and Sletten, E. (1995) Sequence-Selective Metal Ion binding to DNA Oligomers, Acta Chem. Scand., 49, 495–502.CrossRefGoogle Scholar
  12. 12.
    Steinkopf, S., Nerdal, W., Kolstad, A. and Sletten, E. (1996) Sequence-Selective Interaction Between Mercury(II) Ions and the Dodecamer [d(GCCGATATCGGC)]2. Acta Chem. Scand. (in presGoogle Scholar
  13. 13.
    Rance, M., Sorensen, O. W., Bodeiihausen, G., Wagner, G., Ernst, R. R. and Wüthrich, K. (1983) Improved Spectral Resolution in COSY 1H NMR Spectra of Proteins via Double Quantum Filtering, Biochem. Biophys. Res. Commun., 117, 479–485.CrossRefGoogle Scholar
  14. 14.
    Jeener, J., Meier, B. H., Bachman, P., and Ernst, R. R. (1979) Investigation of exchange processes by two-dimensional NMR spectroscopy, J. Chan. Phys., 71, 4546–4553.CrossRefGoogle Scholar
  15. 15.
    Neuhaus, D. and Williamson, M. (1989) The Nuclear Overhauser Effect in Structural and Confonnatioual Analysis, VCH. New York.Google Scholar
  16. 16.
    Kowalewski, J., Nordenskiold, L., Benetis, N. and Westlund, P. O. (1985) Prog. NMR Spectrosc. 17, 141–185.CrossRefGoogle Scholar
  17. 17.
    Navon, G. and Valensin, G. (1987) Nuclear Relaxation Times as a Source of Structural Information, in H. Sigel (ed.) Metal Ions in Biological Systems, Marcel Dekker. New York. pp. 1–45.Google Scholar
  18. 18.
    Buncel, E., Boone, C. and Joly, H. (1986) Metal Ion-Biomolecule Interactions. Part 13. NMR Evidence for the Fonnation of the Mixed Ligand Thymidine-Mercury-Guanosine Complex. A Model for a Putative Hg(II) Interstrand Crosslinking Structure of DNA, Inorg. Chim. Acta, 125, 167–172.CrossRefGoogle Scholar
  19. 19.
    Young, P. R., Nandi, U. S. and Kallenbach, N. R. (1982) Binding of Mercury(II) to Poly(dA-dT) Studied by Proton Nuclear Magnetic Resonance, Biochemistry, 21, 62–66.CrossRefGoogle Scholar
  20. 20.
    Sigel, H., Massoud, S. S. and Corfu, N. A. (1994) Comparison of the Extent of Macrochelate Formation in Complexes of Divalent Metal Ions with Guanosine (GMP2−), Inosine (IMP2−), and Adenosine 5′-Monophosphate (AMP2−)-The Crucial Role of N7 Basicity in Metal Ion — Nucleic Base Recognition, J. Am. Chem. Soc, 116, 2958–2971.CrossRefGoogle Scholar
  21. 21.
    Jia, Z., Zon, G. and Marzilli, L. G. (1991) Multinuclear NMR Investigation of Zn2+ Binding to a Dodecamer Oligodeoxyribonucleotide: Insights from 13C NMR Spectroscopy. Inorg. Chem. 30, 228–239.CrossRefGoogle Scholar
  22. 22.
    Katz, S. (1963) The Reversible Reaction of Hg(II) and Double-Stranded Polynucleotides, Biochim. Biophys. Acta, 68, 240–253.CrossRefGoogle Scholar
  23. 23.
    Yamane, T. and Davidson, N. (1961) On the Complexing of Deoxyribonucleic Acid (DNA) by Mercuric Ion, J. Am. Chem. Soc. 83, 2599–2607.CrossRefGoogle Scholar
  24. 24.
    Gruenwedel, D. W. and Cruikshank, M. K. (1990) Mercury-Induced DNA Polymorphism: Probing the Conformation of Hg(II)-DNA via Staphylococcal Nuclease Digestion and Circular Dichroism Measurements, Biochemistry 29, 2110–2116.CrossRefGoogle Scholar
  25. 25.
    Williams, M. N. and Crothers, D. M. (1975) Binding Kinetics of Mercury(II) to Polyribonucleotides, Biochemistry 14, 1944–1951.CrossRefGoogle Scholar
  26. 26.
    Lavery, R., Pullman, B. and Zakrzewska, K. (1982) Intrinsic Electrostatic Properties and Base Sequence Effects in the Structure of Oligonucleotides, Biophys. Chem. 15, 343–351.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • Einar Sletten
    • 1
  1. 1.Department of ChemistryUniversity of BergenBergenNorway

Personalised recommendations