Bioethanol Production: Generation-Based Comparative Status Measurements

  • Bikash Kumar
  • Nisha Bhardwaj
  • Komal Agrawal
  • Pradeep VermaEmail author
Part of the Clean Energy Production Technologies book series (CEPT)


Bioethanol is a major renewable biofuel obtained from different waste biomass. It can potentially substitute the depleting and pollution-causing fossil fuels. It can endow with energy security along with environmental protection over fossil fuels. Biofuels can be classified into four different generations (G), i.e., first generation (1G), second generation (2G), third generation (3G), and fourth generation (4G) based on the groups of feedstocks used. Bioethanol can be produced from all groups of feedstocks; therefore, ethanol obtained from respective group can be named after that generation, i.e., 1G-, 2G-, 3G-, and 4G-based bioethanol. Different microorganisms which can efficiently convert waste biomass into bioethanol are studied, and several biotechnological techniques have been applied for enhancing the production. Similarly, different pretreatment technologies, fermentation processes, and experimental design have been implemented for maximally utilizing the waste and converting it to bioethanol. There are several factors which affect various steps of bioethanol production which affect the final ethanol yield. Therefore, this chapter gives an insight onto current status measurements of 1G, 2G, 3G, and 4G bioethanol production with a focus on using different feedstock and associated technologies, role of microorganisms, factors affecting overall bioethanol production, and current global scenario along with limitations and future prospects.


Bioethanol Biomass Status measurements 

List of Abbreviation


first generation


second generation


third generation


fourth generation


sweet potato residues


very high gravity fermentation


separate hydrolysis and fermentation


separate hydrolysis and co-fermentation


simultaneous saccharification and fermentation



Authors acknowledge the Department of Biotechnology, Government of India, for financially supporting the work (BT/PR7333/PBD/26/373/2012). B.K. acknowledges Jawaharlal Nehru Memorial Fund, New Delhi, CSIR-SRF for providing Doctoral Studies Scholarship. K.A. acknowledges the financial support provided by Central University of Rajasthan, Ajmer, India. N.B. gratefully acknowledges University Grants Commission, Government of India, for providing RGNF fellowship.


  1. Aditiya HB, Mahlia TMI, Chong WT et al (2016) Second generation bioethanol production: a critical review. Renew Sust Energ Rev 66:631–653CrossRefGoogle Scholar
  2. AFDC (2018) Alternative fuels data center: maps and data.
  3. Agbor VB, Cicek N, Sparling R et al (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685CrossRefGoogle Scholar
  4. Agência Nacional doPetróleo (2015) Oil, natural gas and biofuels statistical yearbook 2018.
  5. Aiyejagbara MO, Aderemi BO, Ameh AO et al (2016) Production of Bioethanol from Elephant Grass (Pennisetum purpureum) Stem. Int J Innov Math Stat Energy Policies 4:1–9Google Scholar
  6. Akanksha K, Sukumaran RK, Pandey A et al (2016) Material balance studies for the conversion of sorghum stover to bioethanol. Biomass Bioenergy 85:48–52CrossRefGoogle Scholar
  7. Al-Hasan M (2003) Effect of ethanol unleaded gasoline blends on engine performance and exhaust emission. Energy Convers Manag 44:1547–1561CrossRefGoogle Scholar
  8. Alkasrawi M, Galbe M, Zacchi G (2002) Recirculation of process streams in fuel ethanol production from softwood based on simultaneous saccharification and fermentation. Biotechnol Fuels Chem 98–100:849–861CrossRefGoogle Scholar
  9. Alvira P, Tomás-Pejó E, Ballesteros MJ, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861CrossRefGoogle Scholar
  10. Aro E (2016) From first generation biofuels to advanced solar biofuels. Ambio 45:24–31. CrossRefGoogle Scholar
  11. Aydemir E, Demirci S, Dogan A et al (2014) Genetic modifications of Saccharomyces cerevisiae for ethanol production from starch fermentation: a review. J Bioprocess Biotech 4(7):1–8CrossRefGoogle Scholar
  12. Bai FW, Anderson WA, Moo-Young M (2008) Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 26:89–105CrossRefGoogle Scholar
  13. Balat M (2009) New biofuel production technologies. Energy Educ Sci Technol Part A 22:147–161Google Scholar
  14. Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 52:858–875CrossRefGoogle Scholar
  15. Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86:2273–2282CrossRefGoogle Scholar
  16. Ban-Koffi L, Han Y (1990) Alcohol production from pineapple waste. World J Microbiol Biotechnol 6:281–284CrossRefGoogle Scholar
  17. Barcelos CA, Maeda RN, Betancur GJV, Pereira N Jr (2011) Ethanol production from sorghum grains [Sorghum bicolor (L.) Moench]: evaluation of the enzymatic hydrolysis and the hydrolysate fermentability. Braz J Chem Eng 28:597–604CrossRefGoogle Scholar
  18. Bayraktar H (2005) Experimental and theoretical investigation of using gasoline-ethanol blends in spark-ignition engines. Renew Energy 30:1733–1747CrossRefGoogle Scholar
  19. Bayrock DP, Ingledew WM (2001) Application of multistage continuous fermentation for production of fuel alcohol by very-high-gravity fermentation technology. J Ind Microbiol Biotechnol 27:87–93CrossRefGoogle Scholar
  20. Behera S, Ray RC (2015) Batch ethanol production from cassava (Manihot esculenta Crantz.) flour using Saccharomyces cerevisiae cells immobilized in calcium alginate. Ann Microbiol 65:779–783CrossRefGoogle Scholar
  21. Belboom S, Bodson B, Léonard A (2015) Does the production of Belgian bioethanol fit with European requirements on GHG emissions? Case of wheat. Biomass Bioenergy 74:58–65CrossRefGoogle Scholar
  22. Besada V, Andrade JM, Schultze F, González JJ (2009) Heavy metals in edible seaweeds commercialised for human consumption. J Mar Syst 75:305–313CrossRefGoogle Scholar
  23. Białas W, Szymanowska D, Grajek W (2010) Fuel ethanol production from granular corn starch using Saccharomyces cerevisiae in a long term repeated SSF process with full stillage recycling. Bioresour Technol 101:3126–3131CrossRefGoogle Scholar
  24. Bibi R, Ahmad Z, Imran M et al (2017) Algal bioethanol production technology: a trend towards sustainable development. Renew Sust Energ Rev 71:976–985CrossRefGoogle Scholar
  25. Borines MG, de Leon RL, Cuello JL (2013) Bioethanol production from the macroalgae Sargassum spp. Bioresour Technol 138:22–29Google Scholar
  26. Breisha GZ (2010) Production of 16% ethanol from 35% sucrose. Biomass Bioenergy 34:1243–1249CrossRefGoogle Scholar
  27. Brosse N, Dufour A, Meng X et al (2012) Miscanthus: a fast-growing crop for biofuels and chemicals production. Biofuels Bioprod Biorefin 6:580–598Google Scholar
  28. Buckow R, Weiss U, Heinz V, Knorr D (2007) Stability and catalytic activity of α-amylase from barley malt at different pressure--temperature conditions. Biotechnol Bioeng 97:1–11CrossRefGoogle Scholar
  29. Burphan T, Tatip S, Limcharoensuk T et al (2018) Enhancement of ethanol production in very high gravity fermentation by reducing fermentation-induced oxidative stress in Saccharomyces cerevisiae. Sci Rep 8(13069):1–11Google Scholar
  30. Burton T, Lyons H, Lerat Y, et al (2009) A review of the potential of marine algae as a source of biofuel in Ireland, pp 1–88Google Scholar
  31. Cardona CA, Quintero JA, Paz IC (2010) Production of bioethanol from sugarcane bagasse: status and perspectives. Bioresour Technol 101:4754–4766CrossRefGoogle Scholar
  32. Cazetta ML, Celligoi M, Buzato JB, Scarmino IS (2007) Fermentation of molasses by Zymomonas mobilis: effects of temperature and sugar concentration on ethanol production. Bioresour Technol 98:2824–2828CrossRefGoogle Scholar
  33. CBU (2007) Carbon capture and storage_the “fourth generation” Biofuels-crop biotech update, ISAAA.
  34. Chandel AK, Chan ES, Rudravaram R et al (2007) Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol Mol Biol Rev 2:14–32Google Scholar
  35. Chandrasekaran M, Bahkali AH (2013) Valorization of date palm (Phoenix dactylifera) fruit processing by-products and wastes using bioprocess technology--Review. Saudi J Biol Sci 20:105–120CrossRefGoogle Scholar
  36. Chang J-W, Lin Y-H, Huang L-Y, Duan K-J (2011) The effect of fermentation configurations and FAN supplementation on ethanol production from sorghum grains under very-high-gravity conditions. J Taiwan Inst Chem Eng 42:1–4CrossRefGoogle Scholar
  37. Chaturvedi V, Verma P (2013) An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3 Biotech 3:415–431. CrossRefGoogle Scholar
  38. Chen M, Smith PM, Wolcott MP (2016) US biofuels industry: a critical review of the opportunities and challenges. Bioprod Bus 1:42–59Google Scholar
  39. Cheng-Wu Z, Zmora O, Kopel R, Richmond A (2001) An industrial-size flat plate glass reactor for mass production of Nannochloropsis sp.(Eustigmatophyceae). Aquaculture 195:35–49CrossRefGoogle Scholar
  40. Cherney J, Small E (2016) Industrial hemp in North America: production, politics and potential. Agronomy 6(4):1–24CrossRefGoogle Scholar
  41. Chniti S, Djelal H, Hassouna M, Amrane A (2014) Residue of dates from the food industry as a new cheap feedstock for ethanol production. Biomass Bioenergy 69:66–70CrossRefGoogle Scholar
  42. Danquah M, Liu B, Harun R (2011) Analysis of process configurations for bioethanol production from microalgal biomass. In: Progress in biomass and bioenergy production. InTechGoogle Scholar
  43. Demirbas A (2009) Political, economic and environmental impacts of biofuels: a review. Appl Energy 86:S108–S117CrossRefGoogle Scholar
  44. Demirbas A (2005) Bioethanol from cellulosic materials: a renewable motor fuel from biomass. Energy Sources 27:327–337CrossRefGoogle Scholar
  45. Demirbas MF (2011) Biofuels from algae for sustainable development. Appl Energy 88:3473–3480CrossRefGoogle Scholar
  46. Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266CrossRefGoogle Scholar
  47. Dogaris I, Vakontios G, Kalogeris E et al (2009) Induction of cellulases and hemicellulases from Neurospora crassa under solid-state cultivation for bioconversion of sorghum bagasse into ethanol. Ind Crop Prod 29:404–411CrossRefGoogle Scholar
  48. Duff SJB, Murray WD (1996) Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresour Technol 55:1–33CrossRefGoogle Scholar
  49. Duvernay WH, Chinn MS, Yencho GC (2013) Hydrolysis and fermentation of sweet potatoes for production of fermentable sugars and ethanol. Ind Crop Prod 42:527–537CrossRefGoogle Scholar
  50. Dziugan P, Balcerek M, Pielech-Przybylska K, Patelski P (2013) Evaluation of the fermentation of high gravity thick sugar beet juice worts for efficient bioethanol production. Biotechnol Biofuels 6(158):1–10Google Scholar
  51. Ekefre DE, Mahapatra AK, Latimore M Jr et al (2017) Evaluation of three cultivars of sweet sorghum as feedstocks for ethanol production in the Southeast United States. Heliyon 3(e00490):1–18Google Scholar
  52. El-sayed WMM (2016) Evaluation of bioethanol production from Ulva lactuca by Saccharomyces cerevisiae. Journal of Biotechnol Biomater 6(2):1–10. CrossRefGoogle Scholar
  53. Elemike EE, Oseghale OC, Okoye AC (2015) Utilization of cellulosic cassava waste for bio-ethanol production. J Environ Chem Eng 3:2797–2800CrossRefGoogle Scholar
  54. Enquist-Newman M, Faust AME, Bravo DD et al (2014) Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature 505(7482):239–243CrossRefGoogle Scholar
  55. Eom I-Y, Yu J-H, Jung C-D, Hong K-S (2015) Efficient ethanol production from dried oil palm trunk treated by hydrothermolysis and subsequent enzymatic hydrolysis. Biotechnol Biofuels 8(83):1–11Google Scholar
  56. Fengel D, Wegener G (2011) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin, pp 1–613Google Scholar
  57. Foerster H (2010) Granular starch hydrolysis (GSHE) for conversion of grains to ethanol. In: Prezentacja: Near-term opportunities for biorefineries symposium, Champaign, Il, p 2010Google Scholar
  58. Furlan FF, Tonon Filho R, Pinto FHPB et al (2013) Bioelectricity versus bioethanol from sugarcane bagasse: is it worth being flexible? Biotechnol Biofuels 6:142CrossRefGoogle Scholar
  59. Gerbens-Leenes PW, Van Lienden AR, Hoekstra AY, der Meer TH (2012) Biofuel scenarios in a water perspective: the global blue and green water footprint of road transport in 2030. Glob Environ Chang 22:764–775CrossRefGoogle Scholar
  60. Girio FM, Fonseca C, Carvalheiro F et al (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800CrossRefGoogle Scholar
  61. Graves T, Narendranath NV, Dawson K, Power R (2006) Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash. J Ind Microbiol Biotechnol 33(6):469–474CrossRefGoogle Scholar
  62. Grima EM, Belarbi E-H, Fernández FGA et al (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515CrossRefGoogle Scholar
  63. Gris LRS, de Paim AC, Farenzena M, Trierweiler JO (2013) Laboratory apparatus to evaluate microalgae production. Braz J Chem Eng 30:487–497CrossRefGoogle Scholar
  64. Gryta M (2012) Effectiveness of water desalination by membrane distillation process. Membranes (Basel) 2:415–429CrossRefGoogle Scholar
  65. Hadar Y (2013) Sources for lignocellulosic raw materials for the production of ethanol. In: Lignocellulose conversion. Springer, Berlin, pp 21–38CrossRefGoogle Scholar
  66. Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF et al (2006) Bio-ethanol – the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556. CrossRefGoogle Scholar
  67. Hahn-Hägerdal B, Karhumaa K, Jeppsson M, Gorwa-Grauslund MF (2007) Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. In: Biofuels. Springer, Berlin, pp 147–177CrossRefGoogle Scholar
  68. Hamelinck CN, Van Hooijdonk G, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle-and long-term. Biomass Bioenergy 28:384–410CrossRefGoogle Scholar
  69. Hamley-Bennett C, Lye GJ, Leak DJ (2016) Selective fractionation of sugar beet pulp for release of fermentation and chemical feedstocks; optimisation of thermo-chemical pre-treatment. Bioresour Technol 209:259–264CrossRefGoogle Scholar
  70. Han B, Wang L, Li S et al (2010) Ethanol production from sweet sorghum stalks by advanced solid state fermentation (ASSF) technology. Chin J Biotechnol 26:966–973Google Scholar
  71. Hara T, Tanoue K (2006) Laminar flame speed of ethanol, n-heptane, iso-octane air mixtures. JSAE Pap 20068518Google Scholar
  72. Hargreaves PI, Barcelos CA, da Costa ACA, Pereira N Jr (2013) Production of ethanol 3G from Kappaphycus alvarezii: evaluation of different process strategies. Bioresour Technol 134:257–263Google Scholar
  73. Harun R, Danquah MK, Forde GM (2010) Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol 85:199–203Google Scholar
  74. Harun R, Jason WSY, Cherrington T, Danquah MK (2011) Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Appl Energy 88:3464–3467CrossRefGoogle Scholar
  75. Hassan SS, Williams GA, Jaiswal AK (2019) Moving towards the second generation of lignocellulosic biorefineries in the EU: drivers, challenges, and opportunities. Renew Sust Energ Rev 101:590–599CrossRefGoogle Scholar
  76. Hessami MJ, Cheng SF, Ambati RR et al (2019) Bioethanol production from agarophyte red seaweed, Gelidium elegans, using a novel sample preparation method for analysing bioethanol content by gas chromatography. 3 Biotech 9(1):25CrossRefGoogle Scholar
  77. Ho S-H, Huang S-W, Chen C-Y et al (2013) Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol 135:191–198CrossRefGoogle Scholar
  78. Hoover R (2001) Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydr Polym 45:253–267CrossRefGoogle Scholar
  79. Humbird D, Aden A (2009) Biochemical production of ethanol from corn stover: 2008 state of technology model. NREL/TP-510-46214, pp 1–16Google Scholar
  80. Izmirlioglu G, Demirci A (2012) Ethanol production from waste potato mash by using Saccharomyces cerevisiae. Appl Sci 2:738–753CrossRefGoogle Scholar
  81. John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193CrossRefGoogle Scholar
  82. Johnston DB, McAloon AJ (2014) Protease increases fermentation rate and ethanol yield in dry-grind ethanol production. Bioresour Technol 154:18–25CrossRefGoogle Scholar
  83. Jung KA, Lim S-R, Kim Y, Park JM (2013) Potentials of macroalgae as feedstocks for biorefinery. Bioresour Technol 135:182–190CrossRefGoogle Scholar
  84. Kagan J (2015) Third and fourth generation biofuels_technologies, markets and economics through 2015.
  85. Kalogiannis K, Matsakas L, Aspden J et al (2018) Acid assisted organosolv delignification of beechwood and pulp conversion towards high concentrated cellulosic ethanol via high gravity enzymatic hydrolysis and fermentation. Molecules 23:1647CrossRefGoogle Scholar
  86. Kar Y, Deveci H (2006) Importance of P-series fuels for flexible-fuel vehicles (FFVs) and alternative fuels. Energy Sources Part A 28:909–921CrossRefGoogle Scholar
  87. Kaur S, Kaushal N, Oberoi HS, Phutela R (2018) Comparative study of simultaneous saccharification and fermentation (SSF) and separate hydrolysis and fermentation (SHF) for rice wine production by Pichia kudriavezii. Int J Food Ferment Technol 8:45–50Google Scholar
  88. Kawa-Rygielska J, Pietrzak W (2014) Ethanol fermentation of very high gravity (VHG) maize mashes by Saccharomyces cerevisiae with spent brewer’s yeast supplementation. Biomass Bioenergy 60:50–57CrossRefGoogle Scholar
  89. Keshwani DR, Cheng JJ (2009) Switchgrass for bioethanol and other value-added applications: a review. Bioresour Technol 100:1515–1523CrossRefGoogle Scholar
  90. Kim H, Ra CH, Kim S-K (2013) Ethanol production from seaweed (Undaria pinnatifida) using yeast acclimated to specific sugars. Biotechnol Bioprocess Eng 18:533–537CrossRefGoogle Scholar
  91. Kim JK, Um B-H, Kim TH (2012) Bioethanol production from micro-algae, Schizocytrium sp., using hydrothermal treatment and biological conversion. Korean J Chem Eng 29:209–214CrossRefGoogle Scholar
  92. Kim M, Day DF (2011) Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. J Ind Microbiol Biotechnol 38:803–807CrossRefGoogle Scholar
  93. Kim N-J, Li H, Jung K et al (2011) Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour Technol 102:7466–7469CrossRefGoogle Scholar
  94. Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26:361–375CrossRefGoogle Scholar
  95. Kuhad RC, Singh A (1993) Lignocellulose biotechnology: current and future prospects. Crit Rev Biotechnol 13:151–172CrossRefGoogle Scholar
  96. Kumar S, Gupta R, Kumar G et al (2013) Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresour Technol 135:150–156CrossRefGoogle Scholar
  97. Kumar S, Singh N, Prasad R (2010) Anhydrous ethanol: a renewable source of energy. Renew Sust Energ Rev 14:1830–1844CrossRefGoogle Scholar
  98. Kumari D, Singh R (2018a) Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renew Sust Energ Rev 90:877–891. CrossRefGoogle Scholar
  99. Kumari D, Singh R (2018b) Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renew Sust Energ Rev 90:877–891CrossRefGoogle Scholar
  100. Lamsal BP, Wang H, Johnson LA (2011) Effect of corn preparation methods on dry-grind ethanol production by granular starch hydrolysis and partitioning of spent beer solids. Bioresour Technol 102:6680–6686CrossRefGoogle Scholar
  101. Laopaiboon L, Nuanpeng S, Srinophakun P et al (2009) Ethanol production from sweet sorghum juice using very high gravity technology: effects of carbon and nitrogen supplementations. Bioresour Technol 100:4176–4182CrossRefGoogle Scholar
  102. Laopaiboon L, Thanonkeo P, Jaisil P, Laopaiboon P (2007) Ethanol production from sweet sorghum juice in batch and fed-batch fermentations by Saccharomyces cerevisiae. World J Microbiol Biotechnol 23:1497–1501CrossRefGoogle Scholar
  103. Lareo C, Ferrari MD, Guigou M et al (2013) Evaluation of sweet potato for fuel bioethanol production: hydrolysis and fermentation. Springerplus 2(493):1–11Google Scholar
  104. Lee JY, Kim YS, Um BH, Oh K (2013) Pretreatment of Laminaria japonica for bioethanol production with extremely low acid concentration. Renew Energy 54:196–200CrossRefGoogle Scholar
  105. Lee OK, Lee EY (2016) Sustainable production of bioethanol from renewable brown algae biomass. Biomass Bioenergy 92:70–75CrossRefGoogle Scholar
  106. Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25:335–361CrossRefGoogle Scholar
  107. Li S, Li G, Zhang L et al (2013) A demonstration study of ethanol production from sweet sorghum stems with advanced solid state fermentation technology. Appl Energy 102:260–265CrossRefGoogle Scholar
  108. Liang L, Zhang Y, Zhang L et al (2008) Study of sugarcane pieces as yeast supports for ethanol production from sugarcane juice and molasses. J Ind Microbiol Biotechnol 35:1605–1613CrossRefGoogle Scholar
  109. Liew WH, Hassim MH, Ng DKS (2014) Review of evolution, technology and sustainability assessments of biofuel production. J Clean Prod 71:11–29CrossRefGoogle Scholar
  110. Lim Y, Jang Y, Kim K (2013) Production of a high concentration of ethanol from potato tuber by high gravity fermentation. Food Sci Biotechnol 22:441–448CrossRefGoogle Scholar
  111. Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642CrossRefGoogle Scholar
  112. Liu Z, Ho S-H, Hasunuma T et al (2016) Recent advances in yeast cell-surface display technologies for waste biorefineries. Bioresour Technol 215:324–333CrossRefGoogle Scholar
  113. Loow Y-L, Wu TY, Jahim JM et al (2016) Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose 23:1491–1520CrossRefGoogle Scholar
  114. Lynd LR (1996) Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Annu Rev Energy Environ 21:403–465CrossRefGoogle Scholar
  115. Mahdy A, Mendez L, Ballesteros M, González-Fernández C (2014) Enhanced methane production of Chlorella vulgaris and Chlamydomonas reinhardtii by hydrolytic enzymes addition. Energy Convers Manag 85:551–557CrossRefGoogle Scholar
  116. Marin D, Posadas E, Cano P et al (2018) Seasonal variation of biogas upgrading coupled with digestate treatment in an outdoors pilot scale algal-bacterial photobioreactor. Bioresour Technol 263:58–66CrossRefGoogle Scholar
  117. Marx S, Brandling J, van der Gryp P (2012) Ethanol production from tropical sugar beet juice. Afr J Biotechnol 11:11709–11720CrossRefGoogle Scholar
  118. Maryana R, Ma’rifatun D, Wheni AI et al (2014) Alkaline pretreatment on sugarcane bagasse for bioethanol production. Energy Procedia 47:250–254CrossRefGoogle Scholar
  119. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232CrossRefGoogle Scholar
  120. Mathew AK, Abraham A, Mallapureddy KK, Sukumaran RK (2018) Lignocellulosic biorefinery wastes, or resources? In: Waste biorefinery. Elsevier, pp 267–297Google Scholar
  121. Mayzuhroh A, Arindhani S, Caroenchai C, others (2016) Studies on bioethanol production of commercial baker’s and alcohol yeast under aerated culture using sugarcane molasses as the media. Agric Agric Sci Procedia 9:493–499Google Scholar
  122. McBride J, Brevnova E, Mellon M, et al (2018) Yeast expressing cellulases for simultaneous saccharification and fermentation using cellulose. US2012129229Google Scholar
  123. McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83:47–54CrossRefGoogle Scholar
  124. McLeod JG, May WE, Salmon DF et al (2010) Changes in ethanol production potential due to species, cultivar and location on the Canadian prairie. Can J Plant Sci 90:163–171CrossRefGoogle Scholar
  125. Meinita MDN, Marhaeni B, Winanto T et al (2013) Comparison of agarophytes (Gelidium, Gracilaria, and Gracilariopsis) as potential resources for bioethanol production. J Appl Phycol 25:1957–1961CrossRefGoogle Scholar
  126. Mishra V, Dubey A, Prajapti SK (2017) Algal biomass pretreatment for improved biofuel production. In: Algal biofuels. Springer, Cham, pp 259–280CrossRefGoogle Scholar
  127. Modenbach AA, Nokes SE (2013) Enzymatic hydrolysis of biomass at high-solids loadings-a review. Biomass Bioenergy 56:526–544CrossRefGoogle Scholar
  128. Mohapatra S, Ray RC, Ramachandran S (2019) Bioethanol from bio-renewable feedstocks: technology, economics, and challenges. In: Bioethanol production from food crops. Elsevier, London, pp 3–27CrossRefGoogle Scholar
  129. Mojović L, Nikolić S, Rakin M, Vukasinović M (2006) Production of bioethanol from corn meal hydrolyzates. Fuel 85:1750–1755CrossRefGoogle Scholar
  130. Montagnac JA, Davis CR, Tanumihardjo SA (2009) Nutritional value of cassava for use as a staple food and recent advances for improvement. Compr Rev Food Sci Food Saf 8:181–194CrossRefGoogle Scholar
  131. Moshi AP, Hosea KMM, Elisante E et al (2015) High temperature simultaneous saccharification and fermentation of starch from inedible wild cassava (Manihot glaziovii) to bioethanol using Caloramator boliviensis. Bioresour Technol 180:128–136CrossRefGoogle Scholar
  132. Mosier NS, Ileleji KE (2015) How fuel ethanol is made from corn. In: Bioenergy, pp 379–384CrossRefGoogle Scholar
  133. Muktham R, Bhargava SK, Bankupalli S, Ball AS (2016) A review on 1st and 2nd generation bioethanol production-recent progress. J Sustain Bioenergy Syst 6:72–92CrossRefGoogle Scholar
  134. Mussatto SI, Dragone G, Guimarães PMR et al (2010) Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 28:817–830CrossRefGoogle Scholar
  135. Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sust Energ Rev 14:578–597CrossRefGoogle Scholar
  136. Nanssou PAK, Nono YJ, Kapseu C (2016) Pretreatment of cassava stems and peelings by thermohydrolysis to enhance hydrolysis yield of cellulose in bioethanol production process. Renew Energy 97:252–265CrossRefGoogle Scholar
  137. Nguyen C-N, Le T-M, Chu-Ky S (2014) Pilot scale simultaneous saccharification and fermentation at very high gravity of cassava flour for ethanol production. Ind Crop Prod 56:160–165CrossRefGoogle Scholar
  138. Nguyen MT, Choi SP, Lee J et al (2009) Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. J Microbiol Biotechnol 19:161–166CrossRefGoogle Scholar
  139. Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37:52–68CrossRefGoogle Scholar
  140. Nikolić S, Mojović L, Pejin D et al (2010) Production of bioethanol from corn meal hydrolyzates by free and immobilized cells of Saccharomyces cerevisiae var. ellipsoideus. Biomass Bioenergy 34:1449–1456CrossRefGoogle Scholar
  141. Njoku SI, Uellendahl H, Ahring BK (2013) Comparing oxidative and dilute acid wet explosion pretreatment of Cocksfoot grass at high dry matter concentration for cellulosic ethanol production. Energy Sci Eng 1:89–98CrossRefGoogle Scholar
  142. NREL (2010) Bioenergy reducing enzyme costs increases the market potential of biofuels.
  143. Obata O, Akunna J, Bockhorn H, Walker G (2016) Ethanol production from brown seaweed using non-conventional yeasts. Bioethanol 2:134–145CrossRefGoogle Scholar
  144. Pandey A, Soccol CR, Mitchell D (2000) New developments in solid state fermentation: I-bioprocesses and products. Process Biochem 35:1153–1169CrossRefGoogle Scholar
  145. Paridah MT, Basher AB, SaifulAzry S, Ahmed Z (2011) Retting process of some bast plant fibres and its effect on fibre quality: a review. Bioresources 6:5260–5281Google Scholar
  146. Peng F, Ren J-L, Xu F et al (2009) Comparative study of hemicelluloses obtained by graded ethanol precipitation from sugarcane bagasse. J Agric Food Chem 57:6305–6317CrossRefGoogle Scholar
  147. Phitsuwan P, Permsriburasuk C, Waeonukul R et al (2016) Evaluation of fuel ethanol production from aqueous ammonia-treated rice straw via simultaneous saccharification and fermentation. Biomass Bioenergy 93:150–157CrossRefGoogle Scholar
  148. Pickett J, Anderson D, Bowles D et al (2008) Sustainable bio-fuels: prospects and challenges. The Royal Society, London, pp 1–90Google Scholar
  149. Pirwitz K, Rihko-Struckmann L, Sundmacher K (2016) Valorization of the aqueous phase obtained from hydrothermally treated Dunaliella salina remnant biomass. Bioresour Technol 219:64–71CrossRefGoogle Scholar
  150. Plumier BM, Danao M-GC, Rausch KD, Singh V (2015) Changes in unreacted starch content in corn during storage. J Stored Prod Res 61:85–89CrossRefGoogle Scholar
  151. Pradeep P, Reddy OVS (2010) High gravity fermentation of sugarcane molasses to produce ethanol: effect of nutrients. Indian J Microbiol 50:82–87CrossRefGoogle Scholar
  152. Puligundla P, Smogrovicova D, Obulam VSR, Ko S (2011) Very high gravity (VHG) ethanolic brewing and fermentation: a research update. J Ind Microbiol Biotechnol 38:1133–1144CrossRefGoogle Scholar
  153. Rabemanolontsoa H, Saka S (2016) Various pretreatments of lignocellulosics. Bioresour Technol 199:83–91CrossRefGoogle Scholar
  154. Rajandran K (2013) Bioethanol production from cassava by fermentation process using Saccharomyces Cerevisiae. Universiti Malaysia Pahang, pp 1–24.Google Scholar
  155. Rakin M, Mojovic L, Nikolic S et al (2009) Bioethanol production by immobilized Sacharomyces cerevisiae var. ellipsoideus cells. Afr J Biotechnol 8(3):464–471Google Scholar
  156. Ramirez MB, Ferrari MD, Lareo C (2016) Fuel ethanol production from commercial grain sorghum cultivars with different tannin content. J Cereal Sci 69:125–131CrossRefGoogle Scholar
  157. Ravagnani M, Reis MHM, Maciel Filho R, Wolf-Maciel MR (2010) Anhydrous ethanol production by extractive distillation: a solvent case study. Process Saf Environ Prot 88:67–73CrossRefGoogle Scholar
  158. Ray RC, Swain MR (2011) Bioethanol, bioplastics and other fermented industrial products from cassava starch and flour. In: Cassava farming, uses econ impacts. Nova, Hauppauge, pp 1–32Google Scholar
  159. Razmovski R, Vučurović V (2012) Bioethanol production from sugar beet molasses and thick juice using Saccharomyces cerevisiae immobilized on maize stem ground tissue. Fuel 92:1–8CrossRefGoogle Scholar
  160. Reina L, Botto E, Mantero C et al (2016) Production of second generation ethanol using Eucalyptus dunnii bark residues and ionic liquid pretreatment. Biomass Bioenergy 93:116–121CrossRefGoogle Scholar
  161. Reyimu Z, Ízšimen D (2017) Batch cultivation of marine microalgae Nannochloropsis oculata and Tetraselmis suecica in treated municipal wastewater toward bioethanol production. J Clean Prod 150:40–46CrossRefGoogle Scholar
  162. RFA (2015) Going Global 2015 Bioethanol Industry Outlook. Renew Fuel AssocGoogle Scholar
  163. Rizza LS, Smachetti MES, Do Nascimento M et al (2017) Bioprospecting for native microalgae as an alternative source of sugars for the production of bioethanol. Algal Res 22:140–147CrossRefGoogle Scholar
  164. Robert D, Perlack LLW, Turhollow AF, et al (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Oak Ridge Natl LabGoogle Scholar
  165. Rodriguez LA, Toro ME, Vazquez F et al (2010) Bioethanol production from grape and sugar beet pomaces by solid-state fermentation. Int J Hydrog Energy 35:5914–5917CrossRefGoogle Scholar
  166. Romani A, Garrote G, López F, Parajó JC (2011) Eucalyptus globulus wood fractionation by autohydrolysis and organosolv delignification. Bioresour Technol 102:5896–5904CrossRefGoogle Scholar
  167. Rubens C (2008) Fourth-generation biofuels.
  168. Rulli MC, Bellomi D, Cazzoli A et al (2016) The water-land-food nexus of first-generation biofuels. Sci Rep 6(22521):1–10Google Scholar
  169. Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5:337–353CrossRefGoogle Scholar
  170. Salazar-Ordóñez M, Pérez-Hernández PP, Martin-Lozano JM (2013) Sugar beet for bioethanol production: an approach based on environmental agricultural outputs. Energy Policy 55:662–668CrossRefGoogle Scholar
  171. Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194CrossRefGoogle Scholar
  172. Sanchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295CrossRefGoogle Scholar
  173. Sangodoyin AY, Amori AA (2013) Aerobic composting of cassava peels using cowdung, sewage sludge and poultry manure as supplements. Eur Int J Sci Technol 2:22–34Google Scholar
  174. Sankh SN, Deshpande PS, Arvindekar AU (2011) Improvement of ethanol production using Saccharomyces cerevisiae by enhancement of biomass and nutrient supplementation. Appl Biochem Biotechnol 164:1237–1245CrossRefGoogle Scholar
  175. Santana ÁL, Meireles MAA (2014) New starches are the trend for industry applications: a review. Food Public Heal 4:229–241CrossRefGoogle Scholar
  176. Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37:19–27CrossRefGoogle Scholar
  177. Sarris D, Papanikolaou S (2016) Biotechnological production of ethanol: biochemistry, processes and technologies. Eng Life Sci 16:307–329CrossRefGoogle Scholar
  178. Sasaki K, Tsuge Y, Sasaki D et al (2015) Repeated ethanol production from sweet sorghum juice concentrated by membrane separation. Bioresour Technol 186:351–355CrossRefGoogle Scholar
  179. Saunders J, Izydorczyk M, Levin DB (2011) Limitations and challenges for wheat-based bioethanol production. In: Economic effects of biofuel production. InTech, pp 1–27Google Scholar
  180. Scholz MJ, Riley MR, Cuello JL (2013) Acid hydrolysis and fermentation of microalgal starches to ethanol by the yeast Saccharomyces cerevisiae. Biomass Bioenergy 48:59–65CrossRefGoogle Scholar
  181. Sekhon RS, Breitzman MW, Silva RR et al (2016) Stover composition in maize and sorghum reveals remarkable genetic variation and plasticity for carbohydrate accumulation. Front Plant Sci 7(822):1–10Google Scholar
  182. Semhaoui I, Zarguili I, Rezzoug SA et al (2017) Bioconversion of Moroccan Alfa (Stipa Tenacissima) by thermomechanical pretreatment combined to acid or alkali spraying for ethanol production. J Mater 8:2619–2631Google Scholar
  183. Shanavas S, Padmaja G, Moorthy SN et al (2011) Process optimization for bioethanol production from cassava starch using novel eco-friendly enzymes. Biomass Bioenergy 35:901–909CrossRefGoogle Scholar
  184. Shapouri H, Duffield JA, Wang MQ, others (2002) The energy balance of corn ethanol: an update. U.S. Department of Agriculture, Office of the Chief Economist, Office of Energy Policy and New Uses. Agricultural Economic Report No. 814, pp 1–19Google Scholar
  185. Shigechi H, Fujita Y, Koh J et al (2004) Energy-saving direct ethanol production from low-temperature-cooked corn starch using a cell-surface engineered yeast strain co-displaying glucoamylase and α-amylase. Biochem Eng J 18:149–153CrossRefGoogle Scholar
  186. Shigechi H, Uyama K, Fujita Y et al (2002) Efficient ethanol production from starch through development of novel flocculent yeast strains displaying glucoamylase and co-displaying or secreting α-amylase. J Mol Catal B Enzym 17:179–187CrossRefGoogle Scholar
  187. Shikida PFA, Finco A, Cardoso BF et al (2014) A comparison between ethanol and biodiesel production: the Brazilian and European experiences. In: Liquid biofuels: emergence, development and prospects. Springer, London, pp 25–53CrossRefGoogle Scholar
  188. Sindhu R, Gnansounou E, Binod P, Pandey A (2016) Bioconversion of sugarcane crop residue for value added products – an overview. Renew Energy 98:203–215CrossRefGoogle Scholar
  189. Singh A, Nigam PS, Murphy JD (2011) Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol 102:10–16CrossRefGoogle Scholar
  190. Singh V (2012) Effect of corn quality on bioethanol production. Biocatal Agric Biotechnol 1:353–355CrossRefGoogle Scholar
  191. Sivaramakrishnan R, Incharoensakdi A (2018) Utilization of microalgae feedstock for concomitant production of bioethanol and biodiesel. Fuel 217:458–466CrossRefGoogle Scholar
  192. Snoek T, Verstrepen KJ, Voordeckers K (2016) How do yeast cells become tolerant to high ethanol concentrations? Curr Genet 62:475–480CrossRefGoogle Scholar
  193. Sørensen A, Teller PJ, Hilstrøm T, Ahring BK (2008) Hydrolysis of Miscanthus for bioethanol production using dilute acid presoaking combined with wet explosion pre-treatment and enzymatic treatment. Bioresour Technol 99:6602–6607CrossRefGoogle Scholar
  194. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96CrossRefGoogle Scholar
  195. Srichuwong S, Fujiwara M, Wang X et al (2009) Simultaneous saccharification and fermentation (SSF) of very high gravity (VHG) potato mash for the production of ethanol. Biomass Bioenergy 33:890–898CrossRefGoogle Scholar
  196. Ethanol – SugarCane (2019). Accessed on 13/01/2019Google Scholar
  197. Szymanowska-Powalowska D, Lewandowicz G, Blaszczak W, Szwengiel A (2012) Structural changes of corn starch during fuel ethanol production from corn flour. Biotechnol J Biotechnol Comput Biol Bionanotechnol 93:333–341Google Scholar
  198. Szymanowska-Powałowska D, Lewandowicz G, Kubiak P, Błaszczak W (2014) Stability of the process of simultaneous saccharification and fermentation of corn flour. The effect of structural changes of starch by stillage recycling and scaling up of the process. Fuel 119:328–334CrossRefGoogle Scholar
  199. Takara D, Khanal SK (2015) Characterizing compositional changes of Napier grass at different stages of growth for biofuel and biobased products potential. Bioresour Technol 188:103–108CrossRefGoogle Scholar
  200. TCI (2018) In a first, SpiceJet operates India’s first biojet fuel flight.
  201. Thammasittirong SN-R, Thirasaktana T, Thammasittirong A, Srisodsuk M (2013) Improvement of ethanol production by ethanol-tolerant Saccharomyces cerevisiae UVNR56. Springerplus 2(583):1–5Google Scholar
  202. Thatoi H, Dash PK, Mohapatra S, Swain MR (2016) Bioethanol production from tuber crops using fermentation technology: a review. Int J Sustain Energy 35:443–468CrossRefGoogle Scholar
  203. Tikka C, Osuru HP, Atluri N et al (2013) Isolation and characterization of ethanol tolerant yeast strains. Bioinformation 9(8):421–425CrossRefGoogle Scholar
  204. Trivedi N, Gupta V, Reddy CRK, Jha B (2013) Enzymatic hydrolysis and production of bioethanol from common macrophytic green alga Ulva fasciata Delile. Bioresour Technol 150:106–112CrossRefGoogle Scholar
  205. Tye YY, Lee KT, Abdullah WNW, Leh CP (2016) The world availability of non-wood lignocellulosic biomass for the production of cellulosic ethanol and potential pretreatments for the enhancement of enzymatic saccharification. Renew Sust Energ Rev 60:155–172CrossRefGoogle Scholar
  206. Upadhyay A, Lama JP, Tawata S (2010) Utilization of pineapple waste: a review. J Food Sci Technol Nepal 6:10–18CrossRefGoogle Scholar
  207. Uthumporn U, Zaidul IS, Karim AA (2010) Hydrolysis of granular starch at sub-gelatinization temperature using a mixture of amylolytic enzymes. Food Bioprod Process 88:47–54CrossRefGoogle Scholar
  208. Vanhala P, Bergström I, Haaspuro T et al (2016) Boreal forests can have a remarkable role in reducing greenhouse gas emissions locally: land use-related and anthropogenic greenhouse gas emissions and sinks at the municipal level. Sci Total Environ 557:51–57CrossRefGoogle Scholar
  209. Verma P, Watanabe T, Honda Y, Watanabe T (2011) Microwave-assisted pretreatment of woody biomass with ammonium molybdate activated by H2O2. Bioresour Technol 102:3941–3945CrossRefGoogle Scholar
  210. Vohra M, Manwar J, Manmode R et al (2014) Bioethanol production: feedstock and current technologies. J Environ Chem Eng 2:573–584CrossRefGoogle Scholar
  211. Wahono SK, Rosyida VT, Afrizal A, Kismurtono M (2012) Residual sugar reduction concentration parameter at the product of simultaneous saccharification and fermentation process of second-generation bioethanol from bagasse cane. In: Proceeding of international conference on sustainable engineering and application. Yogyakarta, pp 27–30Google Scholar
  212. Wahono SK, Rosyida VT, Darsih C et al (2015) Optimization of simultaneous saccharification and fermentation incubation time using cellulose enzyme for sugarcane bagasse on the second-generation bioethanol production technology. Energy Procedia 65:331–336CrossRefGoogle Scholar
  213. Wang E-Q, Li S-Z, Tao L et al (2010) Modeling of rotating drum bioreactor for anaerobic solid-state fermentation. Appl Energy 87:2839–2845CrossRefGoogle Scholar
  214. Wang P, Chung T-S (2015) Recent advances in membrane distillation processes: membrane development, configuration design and application exploring. J Membr Sci 474:39–56CrossRefGoogle Scholar
  215. Wargacki AJ, Leonard E, Win MN et al (2012) An engineered microbial platform for direct biofuel production from brown macroalgae. Science (80-) 335:308–313CrossRefGoogle Scholar
  216. Wen Z-Y, Chen F (2003) Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol Adv 21:273–294CrossRefGoogle Scholar
  217. Wisselink HW, Toirkens MJ, Wu Q et al (2009) Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Appl Environ Microbiol 75:907–914CrossRefGoogle Scholar
  218. Wu F-C, Wu J-Y, Liao Y-J et al (2014) Sequential acid and enzymatic hydrolysis in situ and bioethanol production from Gracilaria biomass. Bioresour Technol 156:123–131CrossRefGoogle Scholar
  219. Wyman CE (2018) Ethanol production from lignocellulosic biomass: overview. In: Handbook on bioethanol. Routledge, pp 1–18Google Scholar
  220. Xiao D, Wu S, Zhu X et al (2010) Effects of soya fatty acids on cassava ethanol fermentation. Appl Biochem Biotechnol 160:410–420CrossRefGoogle Scholar
  221. Yanagisawa M, Nakamura K, Ariga O, Nakasaki K (2011) Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides. Process Biochem 46:2111–2116CrossRefGoogle Scholar
  222. Yang L, Liu Y, Ruan R et al (2011) Advances in production of 5-hydroxymethylfurfural from starch. Mod Chem Ind 31:332–337Google Scholar
  223. Yao C, Yang X, Roy Raine R et al (2009) The effects of MTBE/ethanol additives on toxic species concentration in gasoline flame. Energy Fuel 23:3543–3548CrossRefGoogle Scholar
  224. Yu J, Tan T, others (2008) Ethanol production by solid state fermentation of sweet sorghum using thermotolerant yeast strain. Fuel Process Technol 89:1056–1059CrossRefGoogle Scholar
  225. Yu M, Li J, Chang S et al (2016) Bioethanol production using the sodium hydroxide pretreated sweet sorghum bagasse without washing. Fuel 175:20–25CrossRefGoogle Scholar
  226. Zabed H, Faruq G, Boyce AN et al (2016a) Evaluation of high sugar containing corn genotypes as viable feedstocks for decreasing enzyme consumption during dry-grind ethanol production. J Taiwan Inst Chem Eng 58:467–475CrossRefGoogle Scholar
  227. Zabed H, Faruq G, Sahu JN et al (2016b) A comparative study on normal and high sugary corn genotypes for evaluating enzyme consumption during dry-grind ethanol production. Chem Eng J 287:691–703CrossRefGoogle Scholar
  228. Zabed H, Faruq G, Sahu JN et al (2014) Bioethanol production from fermentable sugar juice. Sci World J 2014(957102):1–11CrossRefGoogle Scholar
  229. Zabed H, Sahu JN, Suely A et al (2017) Bioethanol production from renewable sources: current perspectives and technological progress. Renew Sust Energ Rev 71:475–501CrossRefGoogle Scholar
  230. Zafar S (2018) Ethanol from lignocellulosic biomass. BioEnergy:
  231. Zhang Y-HP, Ding S-Y, Mielenz JR et al (2007) Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng 97:214–223CrossRefGoogle Scholar
  232. Zhu JY, Chandra MS, Gu F et al (2015) Using sulfite chemistry for robust bioconversion of douglas-fir forest residue to bioethanol at high titer and lignosulfonate: a pilot-scale evaluation. Bioresour Technol 179:390–397CrossRefGoogle Scholar
  233. Zhu JY, Pan X, Zalesny RS (2010) Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance. Appl Microbiol Biotechnol 87:847–857CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Bikash Kumar
    • 1
  • Nisha Bhardwaj
    • 1
  • Komal Agrawal
    • 1
  • Pradeep Verma
    • 1
    Email author
  1. 1.Bioprocess and Bioenergy Laboratory, Department of MicrobiologyCentral University of RajasthanAjmerIndia

Personalised recommendations