IPM in Protected Cultivation: Lending Pesticide-Free Produce

  • V. SridharEmail author
  • K. S. Nitin
  • P. Swathi
  • Akshay Kumar Chakravarthy


Protected cultivation of high-value vegetables, cut-flowers and certain fruits has tremendous potential to boost crop yields. Protected cultivation is amenable for the adoption of advanced, precise technologies, worldwide. Culture and production of crops under protected conditions is economically feasible. Farmers are convinced about the high-quality produce and better income through protected cultivation. Chemicals need to be avoided as far as possible under protected cultivation. Long-term, eco-friendly, sustainable crop protection methods are required to manage pests and diseases under protected cultivation. This chapter mentions examples of crops where protected cultivation has been largely successful.


Greenhouse Vegetables High-value commodity Sterile insect technology 



The authors are thankful to the authorities of ICAR-Indian Institute of Horticultural Research for their encouragement and support.


  1. Aguiar EL, Carvalho GD, Menezes EB, De-Carvalho GA (1995) Efficacy of clofentezine and abamectin in the control of two spotted spider mite, Tetranychus urticae (Koch) on rose plants. An Soc Entomol Bras 24(3):557–562Google Scholar
  2. Alford DV (2008) Pests and diseases of protected ornamental flower crops. In: Pests and diseases management handbook, pp 403–428Google Scholar
  3. Amozegarfard NP, Sheikhigarjan A, Baniameri V, Imani S (2010) Evaluation of susceptibility of the first instar nymphs and adults of Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) to neonicotinoid insecticides under laboratory conditions. J Entomol Soc Iran 31:13–24Google Scholar
  4. Anonymous (2006) Field evaluation of bio-efficacy of various botanical against aphid, Macrosiphoniella sanborni (Gillette) on chrysanthemum. Annual report: 2006-2007, Department of Entomology, BACA, AAU, Anand, pp 27–30Google Scholar
  5. Anonymous (2017) Integration of SIT with biocontrol for greenhouse insect pest management report of the first research coordination meeting of an FAO/IAEA coordinated research project held at IAEA Headquarters, Vienna, Austria, 3–7 July 2017, pp 57Google Scholar
  6. Antignus Y (2000) Manipulation of wavelength-dependent behaviour of insects: an IPM tool to impede insects and restrict epidemics of insect borne viruses. Virus Res 71:213–220CrossRefPubMedPubMedCentralGoogle Scholar
  7. Arancon NQ, Galvis PA, Edwards CA (2005) Suppression of insect pest populations and damage to plants by vermicomposts. Bioresour Technol 96(10):1137–1142CrossRefPubMedPubMedCentralGoogle Scholar
  8. Arancon NQ, Edwards CA, Yardim EN, Oliver TJ, Byrne RJ, Keeney G (2007) Suppression of two-spotted spider mite (Tetranychus urticae), mealy bug (Pseudococcus sp) and aphid (Myzus persicae) populations and damage by vermicomposts. Crop Prot 26(1):29–39CrossRefGoogle Scholar
  9. Arnó J, Sorribas R, Prat M, Matas M, Pozo C, Rodríguez D, Garreta A, Gómez R, Gabarra R (2009) Tuta absoluta, a new pest in IPM tomatoes in the northeast of Spain. IOBC/WPRS Bulletin 49:203–208Google Scholar
  10. Avilla C, Collar JL, Duque M, Perez P, Fereres A (1997) Impact of floating row covers on bell pepper yield and virus incidence. HortScience 32(5):882–883CrossRefGoogle Scholar
  11. Barbedo JGA (2014) Using digital image processing for counting whiteflies on soybean leaves. J Asia Pac Entomol 17(4):685–694CrossRefGoogle Scholar
  12. Batalla-Carrera L, Morton A, García-del-Pino F (2010) Efficacy of entomopathogenic nematodes against the tomato leafminer Tuta absoluta in laboratory and greenhouse conditions. BioControl 55(4):523–530CrossRefGoogle Scholar
  13. Ben-Dov Y (2005) Note: the solanum mealybug, Phenacoccus solani ferris (Hemiptera: Coccoidea: Pseudococcidae), extends its distribution range in the mediterranean basin. Phytoparasitica 33(1):15–16CrossRefGoogle Scholar
  14. Bennison J, Pope T, Greetham J, Evans T, Maher H (2012) Improved biological control of ‘problem’ aphids on protected herbs. IOBC/WPRS Bulletin 80:155–158Google Scholar
  15. Bethke JA, Paine TD (1991) Screen hole size and barriers for exclusion of insect pests of glasshouse crops. J Entomol Sci 26(1):169–177CrossRefGoogle Scholar
  16. Blumberg D, Van Driesche RG (2001) Encapsulation rates of three encyrtid parasitoids by three mealybug species (Homoptera: Pseudococcidae) found commonly as pests in commercial greenhouses. Biol Control 22(2):191–199CrossRefGoogle Scholar
  17. Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annu Rev Entomol 46(1):471–510CrossRefPubMedPubMedCentralGoogle Scholar
  18. Brownbridge M, Adamowicz (1995) Fungal pathogens of thrips. In: Lewis T (ed) Thrips of crop pests. CABI, Wallingford, pp 399–433Google Scholar
  19. Buckley R, Gullan P (1991) More aggressive ant species (Hymenoptera: Formicidae) provide better protection for soft scales and mealybugs (Homoptera: Coccidae, Pseudococcidae). Biotropica:282–286Google Scholar
  20. Buitenhuis R, Murphy G, Shipp L, Scott-Dupree C (2015) Amblyseius swirskii in greenhouse production systems: a floricultural perspective. Exp Appl Acarol 65(4):451–464CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cagnotti CL, Viscarret MM, Riquelme MB, Botto EN, Carabajal LZ, Segura DF, López SN (2012) Effects of X-rays on Tuta absoluta for use in inherited sterility programmes. J Pest Sci 85(4):413–421CrossRefGoogle Scholar
  22. Cagnotti CL, Andorno AV, Hernández CM, Paladino LC, Botto EN, López SN (2016) Inherited sterility in Tuta absoluta (Lepidoptera: Gelechiidae): pest population suppression and potential for combined use with a generalist predator. Fla Entomol 99(sp1):87–94CrossRefGoogle Scholar
  23. Carde RT, Minks AK (1995) Control of moth pests by mating disruption: successes and constraints. Annu Rev Entomol 40(1):559–585CrossRefGoogle Scholar
  24. Chauhan U, Gupta PR, Sharma A (2011) Management of the two spotted spider mite on carnation with the use of biopesticides and the predator Neoseiulus longispinosus (Evans) (Acari: Tetranychidae, Phytoseiidae). Zoosymposia 6(1):135–138CrossRefGoogle Scholar
  25. Chen Z, Dong F, Pan X, Xu J, Liu X, Wu X, Zheng Y (2016) Influence of uptake pathways on the stereoselective dissipation of chiral neonicotinoid sulfoxaflor in greenhouse vegetables. J Agric Food Chem 64(13):2655–2660CrossRefPubMedPubMedCentralGoogle Scholar
  26. Chiel E, Messika Y, Steinberg S, Antignus Y (2006) The effect of UV-absorbing plastic sheet on the attraction and host location ability of three parasitoids: Aphidius colemani, Diglyphus isaea and Eretmocerus mundus. BioControl 51(1):65–78CrossRefGoogle Scholar
  27. Chow A, Chau A, Heinz KM (2012) Reducing fertilization: a management tactic against western flower thrips on roses. J Appl Entomol 136(7):520–529CrossRefGoogle Scholar
  28. Cloyd RA, Sadof CS (2003) Seasonal abundance and the use of an action threshold for western flower thrips, in a cut carnation greenhouse. HortTechnology 13(3):497–500CrossRefGoogle Scholar
  29. Cocco A, Deliperi S, Delrio G (2012) Potential of mass trapping for Tuta absoluta management in greenhouse tomato crops using light and pheromone traps. IOBC-WPRS Bulletin 80:319–324Google Scholar
  30. Cocco A, Deliperi S, Delrio G (2013) Control of Tuta absoluta (Meyrick)(Lepidoptera: Gelechiidae) in greenhouse tomato crops using the mating disruption technique. J Appl Entomol 137(1–2):16–28CrossRefGoogle Scholar
  31. Conijn CGM, Groen NPA (1990) Physical, biological and chemical control of Taeniothrips simplex in gladiolus. In: V International Symposium on Flower Bulbs, vol 266, pp 539–546Google Scholar
  32. Culik MP, Gullan PJ (2005) A new pest of tomato and other records of mealybugs (Hemiptera: Pseudococcidae) from Espķrito Santo, Brazil. Zootaxa 964:1–8CrossRefGoogle Scholar
  33. Daane KM, Almeida RP, Bell VA, Walker JT, Botton M, Fallahzadeh M et al (2012) Biology and management of mealybugs in vineyards. In: Arthropod management in vineyards. Springer, Dordrecht, pp 271–307CrossRefGoogle Scholar
  34. Dadmal SM, Ghawade SM, Taral BW, Mahajan RK (1999) Efficacy of some chemical insecticides and plant products against rose thrips. Rhipiphorothrips Cruentatus (Hood). Agric Sci Digest Karnal 19(3):172–174Google Scholar
  35. Dassonville N, Thiellemans T, Gossett V (2013) FresaProtect and BerryProtect: mixes of parasitoids to control all common aphid species on protected soft fruit crops: product development and case studies from three years of experience. Asp Appl Biol 119:79–81Google Scholar
  36. Desneux N, Wajnberg E, Wyckhuys KA, Burgio G, Arpaia S, Narváez-Vásquez CA, Pizzol J (2010) Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J Pest Sci 83(3):197–215CrossRefGoogle Scholar
  37. Desneux N, Luna MG, Guillemaud T, Urbaneja A (2011) The invasive south American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. J Pest Sci 84(4):403–408CrossRefGoogle Scholar
  38. Dhananjaya Kumar KS, Nandihalli BS (2009) Evaluation of botanicals and myco pathogens in the management of mites and thrips under polyhouse condition. Karnataka J Agric Sci 22(3):696–697Google Scholar
  39. Dhembare AJ, Manisha D, Punam K (2011) Efficacy of some plant extracts against rose aphid Macrosiphum rosae formes (Davis). J Exp Zoo India 14(1):325–327Google Scholar
  40. Dhooria MS (1999) Two spotted spider mite, Tetranychus urticae a serious pest of roses in polyhouses and its control. J Acarol 14(1 & 2):84–87Google Scholar
  41. Díaz BM, Biurrún R, Moreno A, Nebreda M, Fereres A (2006) Impact of ultraviolet-blocking plastic films on insect vectors of virus diseases infesting crisp lettuce. HortScience 41(3):711–716CrossRefGoogle Scholar
  42. Emam AS (2016) Biological control of the Chrysanthemum Aphid, Macrosiphoniella sanborni (Gillete) by release Coccinella septempunctata l. on Chrysanthemum plants. J Plant Protect Pathol 7(5):291–295CrossRefGoogle Scholar
  43. Espinoza K, Valera DL, Torres JA, López A, Molina-Aiz FD (2016) Combination of image processing and artificial neural networks as a novel approach for the identification of Bemisia tabaci and Frankliniella occidentalis on sticky traps in greenhouse agriculture. Comput Electron Agric 127:495–505CrossRefGoogle Scholar
  44. Fatnassi H, Boulard T, Poncet C, Chave M (2006) Optimisation of greenhouse insect screening with computational fluid dynamics. Biosyst Eng 93(3):301–312CrossRefGoogle Scholar
  45. Franco JC, Zada A, Mendel Z (2009) Novel approaches for the management of mealybug pests. In: Biorational control of arthropod pests. Springer, Dordrecht, pp 233–278CrossRefGoogle Scholar
  46. Gerling D, Guershon M, Seplyarsky V (2016) Whiteflies of Israel, Ministry of Agriculture and Rural Development, Plant Protection and Inspection Services, IsraelGoogle Scholar
  47. Granara de Willink MC (2003) Nuevas citas y huéspedes de Phenacoccus para la Argentina (Hemiptera: Pseudococcidae). Rev Soc Entomol Arg 62(3–4):80–82Google Scholar
  48. Gregorio JT, Argente J, Díaz MA, Yuste A (2009) Aplicación de Beauveria bassiana en la lucha biológica contra Tuta absoluta. Agrıcola Vergel: Fruticultura, Horticultura, Floricultura 326:129–132Google Scholar
  49. Guleria SJ (2013) Field efficacy of biopesticides and pesticide combinations against whitefly infestation gerbera. Mun Ent Zool 8(2):895–899Google Scholar
  50. Guvvali T, Nirmala A, Rao BB (2017) Protected cultivation of fruit crops—a review. Int J Pure Appl Biosci 5(4):1628–1634CrossRefGoogle Scholar
  51. Halagatti SB (2006) Ecobiology and management of thrips and mite of rose under polyhouse condition. M.Sc. (Agri) Thesis, University of Agricultural Sciences, DharwadGoogle Scholar
  52. Hara AH, Mau RFL, Sato DM, Bushe BC (1987) Effect of seasons and insecticides on orchid thrips injury of anthuriums in Hawaii. Hortic Sci 22:77–79Google Scholar
  53. Harari AR, Zahavi T, Steinitz H (2015) Female detection of the synthetic sex pheromone contributes to the efficacy of mating disruption of the European grapevine moth, Lobesia botrana. Pest Manag Sci 71(2):316–322CrossRefPubMedPubMedCentralGoogle Scholar
  54. Hata TY, Hara AH (1992) Anthurium whitefly, Aleurotulus anthuricola Nakahara biology and control in Hawaii. Trop Pest Manag 38(2):152–154CrossRefGoogle Scholar
  55. Hayon I, Mendel Z, Dorchin N (2016) Predatory gall midges on mealybug pests–diversity, life history, and feeding behavior in diverse agricultural settings. Biol Control 99:19–27CrossRefGoogle Scholar
  56. Hegde JN, Chakravarthy AK, Nagamani MK, Prabhakar MS (2011) Management of thrips, Scirtothrips dorsalis Hood, on rose under open-field and protected conditions. J Hortic Sci 6(2):118–122Google Scholar
  57. International Federation of Organic Agriculture Movements (2014) Norms for organic production and processing. IFOAM basic standardsGoogle Scholar
  58. Jagdish EJ, Purnima AP (2011) Evaluation of selective botanicals and entomopathogens against Scirtothrips dorsalis Hood under polyhouse conditions on rose. J Biopest 4(1):81–85Google Scholar
  59. Jhansi Rani B (2001) Pest management in ornamental, medicinal and aromatic crops. In: Reddy PP, Verghese A, Krishna Kumar NK (eds) Integrated pest management in horticultural ecosystems. Capital Publishing Company, New Delhi, pp 46–76Google Scholar
  60. Jhansi Rani B, Jagan Mohan N (1997) Pest management in ornamental crops. In: Yadav S, Choudhary ML (eds) Progressive floriculture. House of Sarpan, Bangalore, pp 169–181Google Scholar
  61. Jhansi Rani B, Jagan Mohan N (1998) Cascade, a potential acaricide for management of two spotted mite on rose. Insect Environ 4(1):12Google Scholar
  62. Jhansi Rani B, Sridhar V (2003) Screening of polyhouse grown rose varieties for resistance to thrips, Scirtothrips dorsalis Hood. J Ornam Hortic 6(3):165–171Google Scholar
  63. Jhansi Rani B, Sridhar V (2005) Bio-efficacy of a new Acaricide, Bifenazate against the two spotted spider-mite, Tetranychus Urticae Koch on rose under protected cultivation. J Ornam Hortic 8(1):59–61Google Scholar
  64. Johansen NS, Vänninen I, Pinto DM, Nissinen AI, Shipp L (2011) In the light of new greenhouse technologies: 2. Direct effects of artificial lighting on arthropods and integrated pest management in greenhouse crops. Ann Appl Biol 159(1):1–27CrossRefGoogle Scholar
  65. Kadam JR, Mahajan PV, Chavan AP (2008) Studies on potential of Verticillium lecanii (Zimmermann) Viegas against sucking pests of gerbera. J Maharashtra Agric Univ 33(2):214–217Google Scholar
  66. Karmate BK, Chandele AG (1997) Bioefficacy of new acaricides against two spotted spider mite, Tetranychus urticae Koch on roses in polyhouse. Pestology 21(7):39–40Google Scholar
  67. Kathiriya VK, Bharpoda TM (2010) Bio-efficacy of some neem based formulations against aphid, Macrosiphoniella sanborni (G.) in Chrysanthemum, Chrysanthemum coronarium L. Green Farm 1(2):192–194Google Scholar
  68. Kerenyi-Nemestothy K, Tusandi CK (1985) Plant protection: a dangerous gerbera pest. Kerteszetes Szoleszet 3(13):6Google Scholar
  69. Kigathi R, Poehling HM (2012) UV-absorbing films and nets affect the dispersal of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). J Appl Entomol 136(10):761–771CrossRefGoogle Scholar
  70. Kırıșık M, Erler F (2017) Biological control agents used at commercial scale in greenhouse vegetable production areas in Antalya province. Medit Agric Sci 30(3):189–195Google Scholar
  71. Labanowski G, Mynett M (1990) Control of the gladiolus thrips, Taeniothrips simplex (Morison), on gladiolus crop. In: V International Symposium on Flower Bulbs, vol 266, pp 547–552Google Scholar
  72. Laila B, Rakibuzzaman M, Jahan MR, Liza FI, Uddin AJ (2019) Pest-exclusion net conditions for production of three brinjal varieties. Int J Bus Soc Sci Res 7(3):53–58Google Scholar
  73. Lee MS, Albajes R, Eizaguirre M (2014) Mating behaviour of female Tuta absoluta (Lepidoptera: Gelechiidae): polyandry increases reproductive output. J Pest Sci 87(3):429–439CrossRefGoogle Scholar
  74. Legarrea S, Velázquez E, Aguado P, Fereres A, Morales I, Rodríguez D, Viñuela E (2014) Effects of a photoselective greenhouse cover on the performance and host finding ability of Aphidius ervi in a lettuce crop. BioControl 59(3):265–278CrossRefGoogle Scholar
  75. Li M, Chen S, Liu F, Zhao L, Xue Q, Wang H, Bienvenido JF (2017) A risk management system for meteorological disasters of solar greenhouse vegetables. Precis Agric 18(6):997–1010CrossRefGoogle Scholar
  76. Little AG, Arellano C, Kennedy GG, Cardoza YJ (2011) Bottom-up effects mediated by an organic soil amendment on the cabbage aphid pests Myzus persicae and Brevicoryne brassicae. Entomol Exp Appl 139(2):111–119CrossRefGoogle Scholar
  77. Manju NK (2013). Management of thrips and mites in carnation using biorationals and new chemicals, thesis. Submitted. UAS, DharwadGoogle Scholar
  78. Messelink GJ, Bennison J, Alomar O, Ingegno BL, Tavella L, Shipp L, Wäckers FL (2014) Approaches to conserving natural enemy populations in greenhouse crops: current methods and future prospects. BioControl 59(4):377–393CrossRefGoogle Scholar
  79. Miranda JL, Gerardo BD, Tanguilig BT III (2014) Pest detection and extraction using image processing techniques. Int J Comp Commun Eng 3(3):189CrossRefGoogle Scholar
  80. Mitrea I, Mitrea R, Tuca O, Stan C (2009) Integrated pest and disease management in greenhouse Dianthus caryophyllus L. production. Acta Horticulturae 807(2):751–756CrossRefGoogle Scholar
  81. Mollá O, González-Cabrera J, Urbaneja A (2011) The combined use of Bacillus thuringiensis and Nesidiocoris tenuis against the tomato borer Tuta absoluta. BioControl 56(6):883–891CrossRefGoogle Scholar
  82. Mote UN, Mahajan PR, Kadam JR (2003) Bioefficacy of Verticillium lecanii (Zimm.) Viegas against sucking pests of gerbera in polyhouse. In: Green pesticides for insect pest management, pp 179–183Google Scholar
  83. Muhammad S, Hussain D, Anwar H, Saleem M, Ghouse G, Abbas M (2014) Predation efficacy of Menochilus sexmaculatus Fabricus (Coleoptera: Coccinellidae) against Macrosiphum rosae under laboratory conditions. J Entomol Zool Stud 2(3):160–163Google Scholar
  84. Murphy BC, Morisawa TA, Newman JP, Tjosvold SA, Parrella MP (1998) Fungal pathogen provides control of western flower thrips in greenhouse flowers. Calif Agric 52:32–36CrossRefGoogle Scholar
  85. Murphy G, Ferguson G, Shipp L (2003) Management of thrips in greenhouse crops. Factsheet. Ministry of Agriculture and Food, OntarioGoogle Scholar
  86. Nair VV, Regunath P, Visalakshy A (1991) Control of thrips, Scirtothrips dorsalis Hood on rose. Entomon 16(4):327–329Google Scholar
  87. Nitin KS (2018) Bio ecology and bio rational management of South American tomato moth, Tuta absoluta (Meyrick) on tomato, potato and eggplant. Ph.D. thesis, pp 182.
  88. Nitin KS, Chakravarthy AK, Sridhar V (2017a) First report of South American tomato moth, Tuta absoluta (Meyrick) on French bean from India. J Appl Hortic 19(3):253–254Google Scholar
  89. Nitin KS, Sridhar V, Kumar KP, Chakravarthy AK (2017b) Seasonal incidence of South American tomato moth, Tuta absoluta (Meyrick) (Gelechiidae: Lepidoptera) on tomato ecosystem. Int J Pure Appl Biosci 5:521–525CrossRefGoogle Scholar
  90. Norboo T, Ahmad H, Shankar U, Ganai SA, Khaliq N, Mondal A (2017) Seasonal incidence and management of red spider mite, Tetranychus urticae Koch. infesting Rose. Int J Curr Microbiol Appl Sci 6(9):2723–2729CrossRefGoogle Scholar
  91. Nordey T, Basset-Mens C, De Bon H, Martin T, Déletré E, Simon S et al (2017) Protected cultivation of vegetable crops in sub-Saharan Africa: limits and prospects for smallholders. A review. Agron Sustain Dev 37(6):53CrossRefGoogle Scholar
  92. Nucifora A, Calabretta CA (1986) Advances in integrated control of gerbera protected crops. Acta Hortic 176:191–197CrossRefGoogle Scholar
  93. Opendra K (1999) Insect growth regulating and antifeedant effects of neem extracts and azadirachtin on two aphis species of ornamental plants. J Biosci 24(1):85–90CrossRefGoogle Scholar
  94. Osborne LS, Barrett JE (2005) You can bank on it, banker plants can be used to rear natural enemies to help control greenhouse pests. Ornamental outlook, pp 26–27Google Scholar
  95. Osborne LS, Bolckmans ZL, Pena J (2004) Kinds of natural enemies. In: Heinz KM, Van Driesche RG, Parrella MP (eds) Biocontrol in protected culture. Ball Publishing, Batavia, pp 95–127Google Scholar
  96. Palumbo JC (2000) Seasonal abundance and control of the lettuce aphid, Nasonovia ribisnigri, on head lettuce in Arizona. Vegetable report, University of Arizona, College of Agriculture and Life Sciences.
  97. Pandolfo FM (1984) Chemical control test against the red spider (Tetranychus urticae Koch) on carnation in greenhouse. Inf Fitopatol 34(7/8):45–46Google Scholar
  98. Poe SL, Wilfret GJ (1972) Factors affecting spider mite population development in carnation: relative cultivar susceptibility and physical characteristics. Florida Agricultural Experiment Station, vol 4588, pp 384–387Google Scholar
  99. Potting RPJ, Van Der Gaag DJ, Loomans A, Van der Straten M, Anderson H, MacLeod A, Cambra GV (2013) Tuta absoluta, the tomato leaf miner moth or South American tomato moth. Ministry of Agriculture, Nature and Food Quality. Plant Protection Service of the Netherlands, UtrechtGoogle Scholar
  100. Premalatha K, Rajangam J (2011) Efficacy of yellow sticky traps against greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Aleyrodidae: Hemiptera) in gerbera. J Biopest 4(2):208–210Google Scholar
  101. Rajagopal D, Gowda K (1994) Efficacy of “Limonool” (neem based pesticide) on rose aphid, Macrosiphum rosae Linn. (Hemiptera: Aphididae). Lalbaugh 36(1–2):22–24Google Scholar
  102. Rathee M, Singh NV, Dalal PK, Mehra S (2018) Integrated pest management under protected cultivation: a review. J Entomol Zool Stud 6(2):1201–1208Google Scholar
  103. Reddy PP (2010) Ornamental crops. In: insects, mites and vertebrate pests and their management in horticultural crops. Scientific Publication, India, pp 201–237Google Scholar
  104. Reddy PP (2012a) Avermectins. In: Recent advances in crop protection. India, Springer, pp 13–24CrossRefGoogle Scholar
  105. Reddy PP (2012b) Organic farming for sustainable horticulture: principles and practices. Scientific Publication, India, p 249Google Scholar
  106. Reddy PP (2016) Chrysanthemum. In: Sustainable crop protection under protected cultivation. Springer, Singapore, pp 363–374CrossRefGoogle Scholar
  107. Rigakis N, Katsoulas N, Teitel M, Bartzanas T, Kittas C (2015) A simple model for ventilation rate determination in screenhouses. Energ Buildings 87:293–301CrossRefGoogle Scholar
  108. Rustia DJA, Lin TT (2017) An IoT-based wireless imaging and sensor node system for remote greenhouse pest monitoring. Chem Eng 58:601–606Google Scholar
  109. Sahayaraj, K. (2004). Role of predators in the control of horticultural crop pests of India, by M. Mani and A. Krishnamoorthy. Indian insect predators in biological control. Daya Publishing House, Delhi: 297–316Google Scholar
  110. Sánchez NE, Pereyra PC, Luna MG (2009) Spatial patterns of parasitism of the solitary parasitoid Pseudapanteles dignus (Hymenoptera: Braconidae) on Tuta absoluta (Lepidoptera: Gelechiidae). Environ Entomol 38(2):365–374CrossRefPubMedPubMedCentralGoogle Scholar
  111. Sathyan T, Dhanya MK, Preethy TT, Aswathy TS, Murugan M (2017) Relative efficacy of some newer molecules against thrips, Scirtothrips dorsalis Hood (Thysanoptera: Thripidae) on rose. J Entomol Zool Stud 5(3):703–706Google Scholar
  112. Shanowly M, Biswas AK (2009) Efficacy of some insecticides against Chrysanthemum aphid, Macrosiphoniella sanborni Gillette. J Interacademicia 13(1):47–51Google Scholar
  113. Singh DK, Panchbhaiya A (2018) First record of tomato leaf miner, an invasive pest in Uttarakhand, India under polyhouse condition. J Hill Agric 9(1):127–130CrossRefGoogle Scholar
  114. Sohi AS, Singh D (1995) Insect pests of ornamental plants. In: Chadha KL, Bhattacharjee SK (eds) Advances in horticulture, vol 12. Malhotra Publishing House, New Delhi, pp 916–961Google Scholar
  115. Somma S, Ruggeri LM (1998) Frankliniella occidentalis (Pergande) su vite da tavola. Inf Agrar 54(18):81–83Google Scholar
  116. Sood AK (2010) Integrated pest management under protected environment: principles and practices. Agropedia 29:13–21Google Scholar
  117. Sood AK, Kakar KL (1989) Biology and control of Chrysanthemum aphis, M. sanborni (Gillette). J Aphidol 3(1–2):173–177Google Scholar
  118. Sridhar V, Jhansi Rani B (2011) Bio-efficacy of Clofentezine50 SC against two spotted spider mite, Tetranychus urticae Koch on rose cv. First red in polyhouse. Pest Manag Hortic Ecosyst 17:127–131Google Scholar
  119. Sridhar V, Naik SO (2015) Efficacy of colour sticky traps for monitoring chilli thrips, Scirtothrips dorsalis Hood (Thysanoptera: Thripidae) on rose. Pest Manag Hortic Ecosyst 21(1):101–103Google Scholar
  120. Sridhar V, Vinesh LS, Mani M (2016) Ornamental plants. In: Mani M, Shivaraju C (eds) Mealybugs and their management in agricultural and horticultural crops. Springer, India, pp 495–523CrossRefGoogle Scholar
  121. Stafford DB, Tariq M, Wright DJ, Rossiter JT, Kazana E, Leather SR, Staley JT (2012) Opposing effects of organic and conventional fertilizers on the performance of a generalist and a specialist aphid species. Agric For Entomol 14(3):270–275CrossRefGoogle Scholar
  122. Stansly PA, Naranjo SE (2010) Bemisia: bionomics and management of a global pest. Springer, Netherlands, p 540CrossRefGoogle Scholar
  123. Steenbergen M, Abd-el-Haliem A, Bleeker P, Dicke M, Escobar-Bravo R, Cheng G et al (2018) Thrips advisor: exploiting thrips-induced defences to combat pests on crops. J Exp Bot 69(8):1837–1848CrossRefPubMedPubMedCentralGoogle Scholar
  124. Tkachuk VK, Mitrofanov VI, Soboleva LE (1983) Effectiveness of pyrethroid preparations for greenhouse whitefly control on gerbera. Bulletin Gosudarstvennogo Nikitskogo Botanicheskogo Sada 51:82–87Google Scholar
  125. Urbaneja A, Montón H, Mollá O (2009) Suitability of the tomato borer Tuta absoluta as prey for Macrolophus pygmaeus and Nesidiocoris tenuis. J Appl Entomol 133(4):292–296CrossRefGoogle Scholar
  126. Valunj AR, Pawar SA, Kadam UK, Khaire VM (1999) A new acaricide AC-303-630 (chlorfenapyr 10 EC) against carnation mite, Tetranychus cinnabarinus Boisd. Pest Manag Hortic Ecosyst 5(1):21–23Google Scholar
  127. Van Damme V, Berkvens N, Moerkens R, Berckmoes E, Wittemans L, De Vis R, De Clercq P (2015) Overwintering potential of the invasive leafminer Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) as a pest in greenhouse tomato production in Western Europe. J Pest Sci 88(3):533–541CrossRefGoogle Scholar
  128. van der Schaaf ED, Malis M, Ravensberg W (1991) The use of Verticillium lecanii against whitefly and thrips in glasshouse vegetables in Netherlands. In: Virus. Journal of Phytopathology, 154:293–302Google Scholar
  129. Wang CI, Lin RT (1984) Study on the quarantine treatments of insect pests on chrysanthemum cut flowers-the application of protection bags and the improved dipping methods. J Agric Res China 33(3):325–330Google Scholar
  130. Weintraub PG (2009) Physical control: an important tool in pest management programs. In: Ishaaya I, Horowitz AR (eds) Biorational control of arthropod pests. Springer, Dordrecht, pp 317–324CrossRefGoogle Scholar
  131. Weintraub PG, Pivonia S, Gera A (2008) Physical control of leafhoppers. J Econ Entomol 101(4):1337–1340CrossRefPubMedPubMedCentralGoogle Scholar
  132. Weintraub PG, Kleitman S, Mori R, Gan-Mor S, Ganot L, Palevsky E (2009) Novel application of pollen to augment the predator Amblyseius swirskii on greenhouse sweet pepper. IOBC/WPRS Bulletin 50:119–124Google Scholar
  133. Weintraub PG, Recht E, Mondaca LL, Harari AR, Diaz BM, Bennison J, Siebert MW (2017) Arthropod pest management in organic vegetable greenhouses. J Integr Pest Manag 8(1):1–14CrossRefGoogle Scholar
  134. Ye SD, Dun YH, Feng MG (2005) Time and concentration dependent interactions of Beauveria bassiana with sublethal rates of imidacloprid against the aphid pests Macrosiphoniellasanborni and Myzus persicae. Ann Appl Biol 146(4):459–468CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • V. Sridhar
    • 1
    Email author
  • K. S. Nitin
    • 2
  • P. Swathi
    • 1
  • Akshay Kumar Chakravarthy
    • 3
  1. 1.Division of Entomology and NematologyICAR-Indian Institute of Horticultural ResearchBangaloreIndia
  2. 2.Department of Conservation and Marine Sciences, Faculty of Applied ScienceCape Peninsula University of TechnologyCape TownSouth Africa
  3. 3.Society for Science and Technology Applications (SSTA)BangaloreIndia

Personalised recommendations