Integrated Nematode Management in Protected Cultivation

  • R. Umamaheswari
  • M. S. Rao
  • Akshay Kumar Chakravarthy
  • G. Nuthana Grace
  • M. K. Chaya
  • M. V. Nataraja


Application of polyhouse technology is gaining momentum for cultivating crops of high value as yield per square meter is enhanced. Constant higher temperature and humidity and use of high agronomic inputs provide ideal conditions for the introduction and rapid multiplication of diseases and pests especially plant parasitic nematodes. The root knot nematodes Meloidogyne spp. are the most destructive and difficult to manage in protected cultivation. Spreading from 10–60% of the area because of monoculturing, the yield losses go up to 45–50% under such environment. Therefore, the dynamics of plant parasitic nematodes has to be re-looked. As the accrued losses due to nematode pests are tangible, effective management strategy is required. Chemicals for the management of nematodes have been used under protected cultivation but fumigant methyl bromide was the best to manage nematode population. After its ban, there is a need to fill the gap by developing viable options for integrated nematode management—a blend of physical, cultural, biological and chemical tools.


Protected cultivation Nematodes Meloidogyne spp. Integrated nematode management 



Authors are thankful to the authorities of the ICAR, New Delhi and Google sources for retrieving select figures in this chapter.


  1. Anita B, Selvaraj N, Vijayakumar RM (2011) Associative effect of biofumigation and biocontrol agents in the management of root knot nematode Meloidogyne Hapla in gerbera. J Appl Hortic 13(2):154–156Google Scholar
  2. Anonymous (2015) Annual report 2014-2015, All India Coordinated Research Project (Vegetable Crops), ICAR-Indian Institute of Vegetable Research, Varanasi, India, pp 515–524Google Scholar
  3. Arnason JTB, Philogene JR, Morand P, Imrie K, Iyengar S, Duval F, Soucy-Breau C, Scaiano JC, Werstiuk NH, Hasspieler B, Downe AER (1989) Naturally occurring and synthetic thiophenes as photoactivated insecticides. ACS Symp Ser 387:164–172CrossRefGoogle Scholar
  4. Barbercheck ME, Von Broembsen SL (1986) Effects of soil solarization on plant-parasitic nematodes and Phytophthora cinnamomi in South Africa. Plant Dis 70(10):945–950CrossRefGoogle Scholar
  5. Black LL, Wu DL, Wang JF, Kalb T, Abbass D, Chen JH (2003) Grafting tomatoes for production in the hot-wet season, vol 3. Asian Vegetable Research & Development Center AVRDC Publication, Shanhua, p 551Google Scholar
  6. Calvert GM, Talaska G, Mueller CA, Ammenheuser MM, Au WW, Fajen JM et al (1998) Genotoxicity in workers exposed to methyl bromide. Mutat Res 417(2–3):115–128CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chellemi DO, Olson SM, Mitchell DJ (1994) Effects of soil solarization and fumigation on survival of soilborne pathogens of tomato in northern Florida. Plant Dis 78(12):1167–1172CrossRefGoogle Scholar
  8. Csinos AS, Webster TM, Sumner DR, Johnson AW, Dowler CC, Seebold KW (2002) Application and crop safety parameters for soil fumigants. Crop Prot 21(10):973–982CrossRefGoogle Scholar
  9. Daunay MC, Dalmasso A (1985) Multiplication de Meloidogyne javanica, M. incognita et M. arenaria sur divers Solarium (’). Revue Nématol 8(1):31–34Google Scholar
  10. Desaeger J, Csinos A (2006) Root-knot nematode management in double crop plasticulture vegetables. J Nematol 38:59–67PubMedPubMedCentralGoogle Scholar
  11. Desaeger J, Csinos A, Timper P, Hammes G, Seebold K (2004) Soil fumigation and oxamyl drip applications for nematode and insect control in vegetable plasticulture. Ann Appl Biol 145(1):59–70CrossRefGoogle Scholar
  12. Giannakou IO, Anastasiadis I (2005) Evaluation of chemical strategies as alternatives to methyl bromide for the control of root-knot nematodes in greenhouse cultivated crops. Crop Prot 24(6):499–506CrossRefGoogle Scholar
  13. Giannakou IO, Sidiropoulos A, Prophetou-Athanasiadou D (2002) Chemical alternatives to methyl bromide for the control of root-knot nematodes in greenhouses. Pest Manag Sci 58(3):290–296CrossRefPubMedPubMedCentralGoogle Scholar
  14. Giné A, González C, Serrano L, Sorribas FJ (2017) Population dynamics of Meloidogyne incognita on cucumber grafted onto the Cucurbita hybrid RS841 or ungrafted and yield losses under protected cultivation. Eur J Plant Pathol 148(4):795–805CrossRefGoogle Scholar
  15. Gommers FJ, Bakker J (1988) Physiological diseases induced by plant responses or products. In: Diseases of nematodes. CRC Press, Boca Raton, pp 3–22Google Scholar
  16. Hethelyi E, Danos B, Tetenyi P, Koczka I (1986) GC-MS analysis of the essential oils of four tagetes species and the anti-microbial activity of Tagetes minuta. Flavour Fragr J 1(4–5):169–173CrossRefGoogle Scholar
  17. Johnson AW, Golden AM, Auld DL, Sumner DR (1992) Effects of rapeseed and vetch as green manure crops and fallow on nematodes and soil-borne pathogens. J Nematol 24(1):117PubMedPubMedCentralGoogle Scholar
  18. Kacira M (2011) Greenhouse production in US: status, challenges, and opportunities. In: CIGR 2011 conference on sustainable bioproduction WEF, pp 19–23Google Scholar
  19. Katan J, Fishler G, Grinstein A (1983) Short-and long-term effects of soil solarization and crop sequence on Fusarium wilt and yield of cotton in Israel. Phytopathology 73(8):1215–1219CrossRefGoogle Scholar
  20. Khan AM, Saxena SK, Siddiqi ZA (1971) Efficacy of Tagetes erecta in reducing root infesting nematodes of tomato and okra. Indian Phytopathol 24:166–169Google Scholar
  21. Kokalis-Burelle N, Bausher MG, Rosskopf EN (2009) Greenhouse evaluation of capsicum rootstocks for management of Meloidogyne incognita on grafted bell pepper. Nematropica 39(1):121–132Google Scholar
  22. Krueger R, Dover KE, McSorley R, Wang KH (2007) Marigolds (Tagetes spp.) for nematode management. ENY-056 (NG045), Entomology & Nematology Department, Florida Cooperative Extension Service, University of Florida, GainesvilleGoogle Scholar
  23. Kumar RM, Rao MS, Chaya MK, Rajinikanth R, Prabu P, Kamalnath M (2013) Effect of Bacillus subtilis on suppression of disease complex in bell pepper (Capsicum annum L). Pest Manag Hort Ecosyst 19(2):211–215Google Scholar
  24. Lee JM (2003) Current status of grafted vegetable cultivation. Chron Horticult 43:13–19Google Scholar
  25. Malathrakis NE (1999) Soil fumigation with methyl bromide: advantages and disadvantages. In: Third international workshop on methyl bromide alternatives for the southern European countries. Agricultural Ministry of Greece, The European Commission DGXI, Crete, Greece, pp 46Google Scholar
  26. Marles RJ, Hudson JB, Graham EA, Soucy-Breau C, Morand P, Compadre RL, Arnason JT (1992) Structure-activity studies of photoactivated antiviral and cytotoxic tricyclic thiophenes. Photochem Photobiol 56(4):479–487CrossRefPubMedPubMedCentralGoogle Scholar
  27. Minuto AG, Clini C, Gullino ML (1999) Replacement of methyl bromide on vegetable crops in Italy. In: Third international workshop on methyl bromide alternatives. Agricultural Ministry of Greece, The European Commission DGXI, Crete, GreeceGoogle Scholar
  28. Monfort WS, Csinos AS, Desaeger J, Seebold K, Webster TM, Diaz-Perez JC (2007) Evaluating Brassica species as an alternative control measure for root-knot nematode (M. incognita) in Georgia vegetable plasticulture. Crop Prot 26(9):1359–1368CrossRefGoogle Scholar
  29. Morra L, Blitto M (2006) Evaluation of new rootstocks for resistance to soil-borne pathogens and productive behavior of pepper (Capsicum annuum L.). J Hortic Sci Biotech 81(3):518–524CrossRefGoogle Scholar
  30. Morra MJ, Kirkegaard JA (2002) Isothiocyanate release from soil-incorporated Brassica tissues. Soil Biol Biochem 34(11):1683–1690CrossRefGoogle Scholar
  31. Morra L, Mennella G, D’AMORE R (1992) Innesto della melanzana (Solanum melongena L.) quale mezzo per la difesa da patogeni tellurici e l’aumento delle rese. Il Contributo Colture Protette 12:85–93Google Scholar
  32. Nagesh M, Reddy PP (2005) Management of carnation and gerbera to control the root-knot nematode, Meloidogyne incognita, in commercial polyhouses. Nematol Mediterr 33(2):157–162Google Scholar
  33. Noling JW (2002) The practical realities of alternatives to methyl bromide: concluding remarks. Phytopathology 92:1373–1375CrossRefPubMedPubMedCentralGoogle Scholar
  34. Noling J, Becker JO (1994) The challenge of research and extension to define and implement alternatives to methyl bromide. J Nematol 26(4S):573PubMedPubMedCentralGoogle Scholar
  35. Oka Y, Offenbach R, Pivonia S (2004) Pepper rootstock graft compatibility and response to Meloidogyne javanica and M. incognita. J Nematol 36(2):137PubMedPubMedCentralGoogle Scholar
  36. Oloo G, Aguyoh JN, Tunya GO, Ombiri OJ (2009) Alternative management strategies for weeds and root knot nematodes (Meloidogyne spp) in rose plants grown under polyethylene covered tunnels. J Agric Biol Sci 4(3):23–28Google Scholar
  37. Patil J, Kumar A, Goel SR (2017) Incidence of plant-parasitic nematodes associated with polyhouses under protected cultivated in Haryana. Environ Ecol 35(3A):1870–1873Google Scholar
  38. Potter MJ, Davies K, Rathjen AJ (1998) Suppressive impact of glucosinolates in Brassica vegetative tissues on root lesion nematode Pratylenchus neglectus. J Chem Ecol 24(1):67–80CrossRefGoogle Scholar
  39. Pullman GS, Devay JE, Garber RH, Weinhold AR (1981) Soil solarization on Verticillium wilt of cotton and soil borne population of Verticillium dahliae, Pythium spp., Rhizoctonia solani and Thielaviopsis basicola. Phytopathology 71:954–959CrossRefGoogle Scholar
  40. Rahim AMF, Satour MM, Mickail KY, El Eraki SA (1988) Effectiveness of soil solarization in furrow irrigated Egyptian soils. Plant Dis 72:143–146CrossRefGoogle Scholar
  41. Rana A, Chandel YS, Chandel RS (2018) Effect of soil sterilants and neem cake on nematode fauna, microarthropods and soil mycoflora in cabbage under protected conditions. J Entomol Zoo Stud 6(4):1561–1568Google Scholar
  42. Rao MS (2013) Annual Report submitted to DST on Development and transfer of mass production of Bacillus spp. with nematophagous fungi for management of disease complex in certain vegetable crops and the dissemination of technology among farmers, Department of Science and Technology, New Delhi, IndiaGoogle Scholar
  43. Rao MS (2014) Annual Report submitted to DST on Development and transfer of mass production of Bacillus spp. with nematophagous fungi for management of disease complex in certain vegetable crops and the dissemination of technology among farmers, Department of Science and Technology, New Delhi, IndiaGoogle Scholar
  44. Rao TM (2015) ICAR-IIHR Annual Report 2014-15, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bengaluru, pp 81.
  45. Rao MS, Umamaheswari R, Chakravarty AK (2015) Plant parasitic nematodes: a major stumbling block for successful crop protection under protected conditions in India. Curr Sci 108(1):13–14Google Scholar
  46. Raoof MA, Rao NTG (1997) Effect of soil solarization on castor wilt. Indian J Plant Protect 25:154–159Google Scholar
  47. Rivard CL, O’Connell S, Peet MM, Louws FJ (2010) Grafting tomato with interspecific rootstock to manage diseases caused by Sclerotium rolfsii and southern root-knot nematode. Plant Dis 94(8):1015–1021CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sabir N, Singh B, Hasan M, Sumitha SD, Tanwar RK, Ahuja DB, Tomar BS, Bambawale OM, Khah EM (2010) Good Agricultural Practices (GAP) for IPM in protected cultivation. Technical Bulletin No. 23, National Centre for Integrated Pest Management (ICAR), LBS Building, Pusa Campus, New Delhi, p 16Google Scholar
  49. Schneider SM, Rosskopf EN, Leesch JG, Chellemi DO, Bull CT, Mazzola M (2003) United States Department of Agriculture—Agricultural Research Service research on alternatives to methyl bromide: pre-plant and post-harvest. Pest Manag Sci 59(6–7):814–826CrossRefPubMedPubMedCentralGoogle Scholar
  50. Sharma HK, Gaur HS, Singh B (2007) Nemic population dynamics in hybrid tomato, sweet pepper and hybrid cucumber under polyhouse cultivation. Indian J Nematol 37(2):161–164Google Scholar
  51. Sharma HK, Pankaj, Singh B (2009) Protected cultivation and nematode problem. Indian J Nematol 39(1):1–8Google Scholar
  52. Sharma HK, Pankaj, Singh AK (2015) Root knot problem in polyhouse and its remediation. In: Chawla G, Pankaj, Kumar H (eds) Proceedings of national symposium on nematode management: a challenge to Indian agriculture in a changing climate, held at YASHADA, Pune, 8–10 January 2015, p 36–37Google Scholar
  53. Sigüenza C, Schochow M, Turini T, Ploeg A (2005) Use of Cucumis metuliferus as a rootstock for melon to manage Meloidogyne incognita. J Nematol 37(3):276PubMedPubMedCentralGoogle Scholar
  54. Sikora RA, Bridge J, Starr JL (2005) Management practices: an overview of integrated nematode management technologies. In: Plant parasitic nematodes in subtropical and tropical agriculture, 2nd edn., pp 793–825Google Scholar
  55. Soule JA (1993) Tagetes minuta: a potential new herb from South America. In: Janick J, Simon JE (eds) New crops. Wiley, New York, pp 649–654Google Scholar
  56. Sudatmadji RW (1969) Studies on the effect of Tagetes species on plant parasitic nematodes. Stichting Frond Landbouw Export Bureau publicatie 47. H. Veenman Und Zonen N. V., Wageningen, p 132Google Scholar
  57. Thierfelder A, Friedt W (1995) Development of novel rapeseed varieties (Brassica napus) resistant against beet cyst nematodes (Heterodera schachtii). In: Ninth International Rapeseed Congress (GCIRC). Organizing Committee of the Ninth International Rapeseed Conference, Cambridge, pp 1208–1210Google Scholar
  58. Tyler J (1933) Reproduction without males in aseptic root cultures of the root-knot nematode. Hilgardia 7:373–388CrossRefGoogle Scholar
  59. Tzortzakakis EA, Petsas SE (2003) Investigation of alternatives to methyl bromide for management of Meloidogyne javanica on greenhouse grown tomato. Pest Manag Sci 59(12):1311–1320CrossRefPubMedPubMedCentralGoogle Scholar
  60. United Nations Environmental Programme (UNEP) (1992) Synthesis report of the methyl bromide interim scientific assessment and methyl bromide interim technology and economic assessment. In: Montreal Protocol Assess. UNEP, Nairobi, p 33Google Scholar
  61. Verma RK, Yogendra S, Soni KK (2005) Solarization of forest nursery soil for elimination of root pathogens and weeds. Indian J Trop Biodiv 13(2):81–86Google Scholar
  62. Wang KH, Hooks CR, Ploeg A (2007) Protecting crops from nematode pests: Using marigold as an alternative to chemical nematicides. In: Plant disease PD, vol. 35, Cooperative Extension Service, College of Agriculture and Human Resources, University of Hawaii at Manoa, pp 1–6Google Scholar
  63. Webster TM, Csinos AS, Johnson AW, Dowler CC, Sumner DR, Fery RL (2001) Methyl bromide alternatives in a bell pepper–squash rotation. Crop Prot 20(7):605–614CrossRefGoogle Scholar
  64. Zasada IA, Ferris H (2004) Nematode suppression with brassicaceous amendments: application based upon glucosinolate profiles. Soil Biol Biochem 36(7):1017–1024CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • R. Umamaheswari
    • 1
  • M. S. Rao
    • 1
  • Akshay Kumar Chakravarthy
    • 2
  • G. Nuthana Grace
    • 1
  • M. K. Chaya
    • 1
  • M. V. Nataraja
    • 3
  1. 1.Division of Entomology and NematologyICAR-Indian Institute of Horticultural ResearchBangaloreIndia
  2. 2.Society for Science and Technology Applications (SSTA)BangaloreIndia
  3. 3.Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighUSA

Personalised recommendations