Advertisement

History of Drug Reaction in Children Suffering from Cancer

  • Bisma Zafar
  • Maliha GhaffarEmail author
  • Hina Salahuddin
Chapter
  • 24 Downloads

Abstract

The purpose of this study is to provide the researchers with the bigger academic network for the understanding of the incorporated proof about current pharmacogenomics information on pediatric oncology and hematology. This primary assessment will help and guide the researchers and clinicians by giving a thought about the current situation of research, as far as customizing drug for kids with malignant growth (cancer). This study also describes the gene-drug associations with substantial and adequate power of association put forward by PharmGKB (Pharmacogenomics Knowledgebase). Some drugs with strong pharmacogenetic evidence like thiopurines and some with moderate pharmacogenetic evidence like vincristine are also discussed. Upcoming suggestions to achieve this objective will help to put forward the recommendations. Pharmacogenetic gene-drug link studies, thus, influence the reconsidering of study plans to produce sensible results. Genetic roots of oxidative force reaction or genome stability disturbing reaction were categorized as association with moderate evidence but have not yet been tested in children.

Keywords

Pediatrics Pharmacogenomics PharmGKB Thiopurine Irinotecan Cisplatin Methotrexate Cyclophosphamide and vincristine 

References

  1. 1.
    McLeod HL, Evans WE (2001) Pharmacogenomics: unlocking the human genome for better drug therapy. Annu Rev Pharmacol Toxicol 41:101–121CrossRefGoogle Scholar
  2. 2.
    Pritchard-Jones K, Dixon-Woods M, Naafs-Wilstra M, Valsecchi MG (2008) Improving recruitment to clinical trials for cancer in childhood. Lancet Oncol 9(4):392–399CrossRefGoogle Scholar
  3. 3.
    Mitchell AA, Lacouture PG, Sheehan JE, Kauffman RE, Shapiro S (1988) Adverse drug reactions in children leading to hospital admission. Pediatrics 82(1):24–29PubMedGoogle Scholar
  4. 4.
    MacNeil M, Eisenhauer E (1999) High-dose chemotherapy: is it standard management for any common solid tumor? Ann Oncol 10(10):1145–1161CrossRefGoogle Scholar
  5. 5.
    Nebert DW (1999) Pharmacogenetics and pharmacogenomics: why is this relevant to the clinical geneticist? Clin Genet 56(4):247–258CrossRefGoogle Scholar
  6. 6.
    Stevens A, Hanson D, Whatmore A, Destenaves B, Chatelain P, Clayton P (2013) Human growth is associated with distinct patterns of gene expression in evolutionarily conserved networks. BMC Genomics 14(1):547CrossRefGoogle Scholar
  7. 7.
    Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13(10):714CrossRefGoogle Scholar
  8. 8.
    Longley D, Johnston P (2005) Molecular mechanisms of drug resistance. J Pathol 205(2):275–292CrossRefGoogle Scholar
  9. 9.
    Bar-Shalom D, Rose K (2014) Pediatric formulations: a roadmap, vol 11. Springer, New YorkCrossRefGoogle Scholar
  10. 10.
    Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE (2003) Developmental pharmacology—drug disposition, action, and therapy in infants and children. N Engl J Med 349(12):1157–1167CrossRefGoogle Scholar
  11. 11.
    Leeder JS, Kearns GL (1997) Pharmacogenetics in pediatrics: implications for practice. Pediatr Clin N Am 44(1):55–77CrossRefGoogle Scholar
  12. 12.
    de Wildt SN, Kearns GL, Leeder JS, van den Anker JN (1999) Cytochrome P450 3A. Clin Pharmacokinet 37(6):485–505CrossRefGoogle Scholar
  13. 13.
    Brouwer KL, Aleksunes LM, Brandys B, Giacoia GP, Knipp G, Lukacova V, Meibohm B, Nigam SK, Rieder M, de Wildt SN, Pediatric Transporter Working Group (2015) Human ontogeny of drug transporters: review and recommendations of the pediatric transporter working group. Clin Pharmacol Ther 98(3):266–287CrossRefGoogle Scholar
  14. 14.
    Finkielstain GP, Forcinito P, Lui JC, Barnes KM, Marino R, Makaroun S, Nguyen V, Lazarus JE, Nilsson O, Baron J (2008) An extensive genetic program occurring during postnatal growth in multiple tissues. Endocrinology 150(4):1791–1800CrossRefGoogle Scholar
  15. 15.
    Knight KRG, Kraemer DF, Neuwelt EA (2005) Ototoxicity in children receiving platinum chemotherapy: underestimating a commonly occurring toxicity that may influence academic and social development. J Clin Oncol 23(34):8588–8596CrossRefGoogle Scholar
  16. 16.
    Kushner BH, Budnick A, Kramer K, Modak S, Cheung NKV (2006) Ototoxicity from high-dose use of platinum compounds in patients with neuroblastoma. Cancer 107(2):417–422CrossRefGoogle Scholar
  17. 17.
    Bleyer W, Fallavollita J, Robison L, Balsom W, Meadows A, Heyn R, Sitarz A, Ortega J, Miller D, Constine L (1990) Influence of age, sex, and concurrent intrathecal methotrexate therapy on intellectual function after cranial irradiation during childhood: a report from the Children’s Cancer Study Group. Pediatr Hematol Oncol 7(4):329–338CrossRefGoogle Scholar
  18. 18.
    Lazaryan M, Shasha-Zigelman C, Dagan Z, Berkovitch M (2015) Codeine should not be prescribed for breastfeeding mothers or children under the age of 12. Acta Paediatr 104(6):550–556CrossRefGoogle Scholar
  19. 19.
    Uppugunduri RS, Ansari M (2016) Commentary: a myriad aberrations on information of ontogeny of drug metabolizing enzymes in the pediatric population: an obstacle for personalizing drug therapy in the pediatric population. Drug Metab Lett 10(2):72–74CrossRefGoogle Scholar
  20. 20.
    Whirl-Carrillo M, McDonagh EM, Hebert J, Gong L, Sangkuhl K, Thorn C, Altman RB, Klein TE (2012) Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 92(4):414–417CrossRefGoogle Scholar
  21. 21.
    Szumlanski C, Otterness D, Her C, Lee D, Brandriff B, Kelsell D, Spurr N, Lennard L, Wieben E, Weinshilboum R (1996) Thiopurine methyltransferase pharmacogenetics: human gene cloning and characterization of a common polymorphism. DNA Cell Biol 15(1):17–30CrossRefGoogle Scholar
  22. 22.
    Weinshilboum RM, Sladek SL (1980) Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am J Hum Genet 32(5):651PubMedPubMedCentralGoogle Scholar
  23. 23.
    Collie-Duguid E, Pritchard S, Powrie R, Sludden J, Collier D, Li T, McLeod H (1999) The frequency and distribution of thiopurine methyltransferase alleles in Caucasian and Asian populations. Pharmacogenetics 9(1):37–42CrossRefGoogle Scholar
  24. 24.
    Appell ML, Berg J, Duley J, Evans WE, Kennedy MA, Lennard L, Marinaki T, McLeod HL, Relling MV, Schaeffeler E, Schwab M, Weinshilboum R, Yeoh AE, McDonagh EM, Hebert JM, Klein TE, Coulthard SA (2013) Nomenclature for alleles of the thiopurine methyltransferase gene. Pharmacogenet Genomics 23(4):242CrossRefGoogle Scholar
  25. 25.
    Relling MV, Hancock ML, Rivera GK, Sandlund JT, Ribeiro RC, Krynetski EY, Pui CH, Evans WE (1999) Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J Natl Cancer Inst 91(23):2001–2008CrossRefGoogle Scholar
  26. 26.
    Mlakar V, Huezo-Diaz Curtis P, Satyanarayana Uppugunduri C, Krajinovic M, Ansari M (2016) Pharmacogenomics in pediatric oncology: review of gene—drug associations for clinical use. Int J Mol Sci 17(9):1502CrossRefGoogle Scholar
  27. 27.
    Relling M, Gardner E, Sandborn W, Schmiegelow K, Pui CH, Yee S, Stein CM, Carrillo M, Evans WE, Klein TE, Clinical Pharmacogenetics Implementation Consortium (2011) Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin Pharmacol Ther 89(3):387–391CrossRefGoogle Scholar
  28. 28.
    Swen J, Nijenhuis M, de Boer A, Grandia L, Maitland-van der Zee A-H, Mulder H, Rongen GA, van Schaik RH, Schalekamp T, Touw DJ, van der Weide J, Wilffert B, Deneer VH, Guchelaar HJ (2011) Pharmacogenetics: from bench to byte—an update of guidelines. Clin Pharmacol Ther 89(5):662–673CrossRefGoogle Scholar
  29. 29.
    Pui C-H, Evans WE (2006) Treatment of acute lymphoblastic leukemia. N Engl J Med 354(2):166–178CrossRefGoogle Scholar
  30. 30.
    Jordan MA, Toso RJ, Thrower D, Wilson L (1993) Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc Natl Acad Sci 90(20):9552–9556CrossRefGoogle Scholar
  31. 31.
    Egbelakin A, Ferguson MJ, MacGill EA, Lehmann AS, Topletz AR, Quinney SK, Li L, McCammack KC, Hall SD, Renbarger JL (2011) Increased risk of vincristine neurotoxicity associated with low CYP3A5 expression genotype in children with acute lymphoblastic leukemia. Pediatr Blood Cancer 56(3):361–367CrossRefGoogle Scholar
  32. 32.
    Xie H-G, Wood AJ, Kim RB, Stein CM, Wilkinson GR (2004) Genetic variability in CYP3A5 and its possible consequences. Pharmacogenomics 5(3):243–272CrossRefGoogle Scholar
  33. 33.
    Moore AS, Norris R, Price G, Nguyen T, Ni M, George R, van Breda K, Duley J, Charles B, Pinkerton R (2011) Vincristine pharmacodynamics and pharmacogenetics in children with cancer: a limited-sampling, population modelling approach. J Paediatr Child Health 47(12):875–882CrossRefGoogle Scholar
  34. 34.
    Sims RP (2016) The effect of race on the CYP3A-mediated metabolism of vincristine in pediatric patients with acute lymphoblastic leukemia. J Oncol Pharm Pract 22(1):76–81CrossRefGoogle Scholar
  35. 35.
    Diouf B, Crews KR, Lew G, Pei D, Cheng C, Bao J, Wheeler HE (2015) Association of an inherited genetic variant with vincristine-related peripheral neuropathy in children with acute lymphoblastic leukemia. JAMA 313(8):815–823CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of BiotechnologyUniversity of OkaraOkaraPakistan
  2. 2.Department of ZoologyUniversity of OkaraOkaraPakistan

Personalised recommendations