Paper Transistors with Organic Ferroelectric P(VDF-TrFE) Thin Films Using a Solution Processing Method

  • Dae-Hee Han
  • Byung-Eun ParkEmail author
Part of the Topics in Applied Physics book series (TAP, volume 131)


This study demonstrates a new and realizable possibility of 1T-type ferroelectric random access memory devices using an all solution processing method with cellulose paper substrates. A ferroelectric poly(vinylidene fluoride–trifluoroethylene) (P(VDF-TrFE)) thin film was formed on a paper substrate with an Al electrode for the bottom-gate structure, and then a semiconducting poly(3-hexylthiophene) (P3HT) thin film was formed on the P(VDF-TrFE)/paper structure using a spin-coating technique. The fabricated ferroelectric gate field-effect transistors (FeFETs) on the cellulose paper substrates demonstrated excellent ferroelectric property with a memory window width of 20 V for a bias voltage sweep from −30 to 30 V, and the on/off ratio of the device was approximately 102. These results agree well with those of the FeFETs fabricated on a rigid Si substrate. In order to compare and check the reproducibility of the characteristics of the FeFETs on the paper substrate, it also has been attempted to make FeFETs with various channel length and width ratios were fabricated. From the measured characteristic results, it can be seen that the electrical properties of FeFETs are almost similar regardless of the substrate type. These results will lead to the emergence of printable electron devices on paper. Furthermore, these nonvolatile paper memory devices, which are fabricated by a solution processing method, are reliable, very inexpensive; have a high density; and can be fabricated easily.


  1. 1.
    C.A. Araujo et al., Nature 374, 627–629 (1995)Google Scholar
  2. 2.
    J.F. Scott, C.A. Araujo, Science 246, 1400–1405 (1989)Google Scholar
  3. 3.
    O. Auciello, J.F. Scott, R. Ramesh: Phys. Today 51, 22–27 (1998)Google Scholar
  4. 4.
    D.H. Looney, U.S. Patent 2791758 (1957)Google Scholar
  5. 5.
    H.S. Nalwa, Handbook of Thin Film Materials (Academic Press, New York, 2002)Google Scholar
  6. 6.
    M. Takahashi, S. Sakai, Jpn. J. Appl. Phys. 44, L800–L802 (2005)Google Scholar
  7. 7.
    K. Takahashi, K. Aizawa, B.E. Park, H. Ishiwara, Jpn. J. Appl. Phys. 44, 6218–6220 (2005)Google Scholar
  8. 8.
    C.D. Dimitrakopoulos, P.R.L. Malenfant, Adv. Mater 14, 99–117 (2002)Google Scholar
  9. 9.
    F. Antonio, M.H. Yoon, T.J. Marks, Adv. Mater 17, 1705–1725 (2005)Google Scholar
  10. 10.
    G., Horowitz, Adv. Mater 10, 365–377 (1998)Google Scholar
  11. 11.
    G. Malliaras, R.H. Friend, Phys. Today 58, 53–58 (2005)Google Scholar
  12. 12.
    H. Klauk, Organic Electronics: Materials, Manufacturing and Applications (Wiley-VCH, 2006)Google Scholar
  13. 13.
    H. Yang, S.W. LeFevre, C.Y. Ryu, Z. Bao, Appl. Phys. Lett. 90, 172116 (2007)Google Scholar
  14. 14.
    H. Sirringhaus, T. Kawase, R.H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E.P. Woo, Science 290, 21232126 (2000)Google Scholar
  15. 15.
    K. Marumoto, Y. Muramatsu, Y. Nagano, T. Iwata, S. Ukai, H. Ito, K. Shin-ichi, Y. Shimoi, S. Abe, J. Phys. Soc. Jpn. 74, 30663076 (2005)Google Scholar
  16. 16.
    F. Xue, Z. Liu, Y. Su, K. Varahramyan, Microelectron. Eng. 83, 298302 (2006)Google Scholar
  17. 17.
    M. Surin, Ph. Leclere, R. Lazzaroni, J. D. Yuen, G. Wang, D. Moses, A.J. Heeger, S. Cho, K. Lee, J. Appl. Phys. 100, 033712 (2006)Google Scholar
  18. 18.
    S.W. Jeong, D.H. Han, B.E. Park, J. Ceramic Soc. Jpn. 118(11), 1094–1097 (2001)Google Scholar
  19. 19.
    D.H. Kim, Y.D. Park, Y. Jang, H. Yang, Y.H. Kim, J.I. Han, D.G. Moon, S. Park, T. Chang, C. Chang, M. Joo, C.Y. Ryu, K. Cho, Adv. Funct. Mater. 15, 77 (2005)Google Scholar
  20. 20.
    K. Asadi et al., Nat. Mater 7, 547–550 (2008)Google Scholar
  21. 21.
    R.C.G. Naber, Adv. Mater 17, 2692–2695 (2005)Google Scholar
  22. 22.
    T. Furukawa, Phase Transit. 18, 143–211 (1989)Google Scholar
  23. 23.
    F.J. Baltá Calleja et al., Adv. Polym. Sci. 108, 1–48 (1993)Google Scholar
  24. 24.
    R.C.G. et al., Nat. Mater 4, 243–248 (2005)Google Scholar
  25. 25.
    A.J. Lovinger, Science 220, 1115–1121 (1983)Google Scholar
  26. 26.
    S. Möller et al., Nature 426, 166–169 (2003)Google Scholar
  27. 27.
    R.C.G. Nabera et al., Appl. Phys. Lett. 85, 2032–2034 (2004)Google Scholar
  28. 28.
    T.J., Reece, S. Ducharme, A.V. Sorokin, M. Poulsen, Appl. Phys. Lett. 82, 142–144 (2003)Google Scholar
  29. 29.
    A. Bune et al., Appl. Phys. Lett. 67, 3975–3977 (1995)Google Scholar
  30. 30.
    M. Zirkl et al., Adv. Mater 23, 2069–2074 (2011)Google Scholar
  31. 31.
    L.L. Chua et al., Nature 434, 194–199 (2005)Google Scholar
  32. 32.
    M. Wohlgenannt et al. Nature 409 494–497 (2001)Google Scholar
  33. 33.
    H. Sirringhaus et al., Nature 401, 685–688 (1999)Google Scholar
  34. 34.
    Z. Bao, A. Dodabalapur, A.J. Lovinger, Appl. Phys. Lett. 69, 4108–4110 (1996)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of Electrical and Computer EngineeringUniversity of SeoulSeoulSouth Korea

Personalised recommendations