Development of High-Endurance and Long-Retention FeFETs of Pt/CaySr1−yBi2Ta2O9/(HfO2)x(Al2O3)1−x/Si Gate Stacks

  • Mitsue TakahashiEmail author
  • Shigeki Sakai
Part of the Topics in Applied Physics book series (TAP, volume 131)


Studies of our Pt/CaySr1−yBi2Ta2O9(CSBT(y))/(HfO2)x(Al2O3)1−x(HAO(x))/Si MFIS FeFETs were reviewed which were originated from the Pt/SrBi2Ta2O9(SBT)/HAO(x = 0.75)/Si FeFET invented in 2002. Electrical properties of the first FeFET were introduced which were 106 s-long retention, 1012 cycles-high endurance, and 4 × 10−8 s-demonstrated writing speed. Stable IdVg curves and Id retentions were measured up to 85 °C using p-channel FeFETs. Individual requirements to the M, F, I, and IL layers as the components of MFIS were discussed using a band profile of the Pt/SBT/HAO(x = 0.75)/Si. Experimental studies for improving the HAO(x) and IL layer qualities were introduced. The composition ratio x in HAO(x) was optimized using single HAO(x) films and the MIS characters which all underwent a standard 800 °C annealing for SBT poly-crystallization. The ratio x ≧ 0.75 was found to be suitable for the I layer in the MFIS. As an ambient gas in depositing HAO(x = 0.75) by PLD, O2 and N2 were compared. In the Pt/SBT/HAO(x = 0.75)/Si FeFET, the HAO worked as a material diffusion barrier only when it was deposited in N2. The effect of increasing the ambient N2 pressure was studied using the FeFETs. The pressure should be less than 40 Pa for keeping a clear interface between the SBT and HAO. Direct nitriding Si was studied for enlarging the memory window of Pt/SBT/HAO(x = 0.75)/Si FeFET. Oxinitriding Si was also demonstrated as a modified way to decrease the subthreshold voltage swing of the FeFET. Experimental works to use CSBT(y) instead of the SBT was also introduced. The Pt/CSBT(y = 0.1, 0.2)/HAO(x = 0.75)/Si FeFETs showed wider pulse memory window VplsW than the reference Pt/SBT/HAO(x = 0.75)/Si FeFET at the common measurement conditions. When (VE, VP) = (−5 V, 7 V) and tpls = 1 μs, the Pt/CSBT(y = 0.1, 0.2)/HAO(x = 0.75)/Si FeFETs showed VplsW = 0.35 V which was 13% larger VplsW than the reference FeFET.



The authors thank all the researchers and the staffs who were sincerely engaged in this study.


  1. 1.
    International Technology Roadmap for Semiconductors, ITRS Tables’ summaries, emerging research devices, Table PIDS7a (2013)Google Scholar
  2. 2.
    International Technology Roadmap for Semiconductors, ITRS Tables’ summaries, emerging research devices, Tables ERD3, ERD4a and ERD4b (2013)Google Scholar
  3. 3.
    Y. Tarui, T. Hirai, K. Teramoto, H. Koike, K. Nagashima, Appl. Surf. Sci. 113–114, 656 (1997)Google Scholar
  4. 4.
    S. Sakai, M. Takahashi, K. Takeuchi, Q.-H. Li, T. Horiuchi, S. Wang, K.-Y. Yun, M. Takamiya, T. Sakurai, Proceedings of 23rd IEEE Non-volatile Semiconductor Memory Workshop and 3rd International Conference on Memory Technology and Design (2008), p. 103Google Scholar
  5. 5.
    X. Zhang, M. Takahashi, K. Takeuchi1, S. Sakai, Jpn. J. Appl. Phys. 51, 04DD01 (2012)Google Scholar
  6. 6.
    M. Takahashi, S. Sakai, Jpn. J. Appl. Phys. 44, L800 (2005)Google Scholar
  7. 7.
    L.V. Hai, M. Takahashi, W. Zhang, S. Sakai, Semicond. Sci. Technol. 30, 015024 (2015)Google Scholar
  8. 8.
    L.V. Hai, M. Takahashi, W. Zhang, S. Sakai, Jpn. J. Appl. Phys. 54, 088004 (2015)Google Scholar
  9. 9.
    S. Sakai, US Patent 7,226,795 (2005)Google Scholar
  10. 10.
    AIST press release on 24 October 2002.Google Scholar
  11. 11.
    S. Sakai, R. Ilangovan, IEEE Electron Dev. Lett. 25, 369 (2004)Google Scholar
  12. 12.
    C.A. paz de Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott, J.F. Scott, Nature (London) 374, 627 (1995)Google Scholar
  13. 13.
    I. Koiwa, T. Kanehara, J. Mita, T. Iwabuchi, T. Osaka, S. Ono, M. Maeda, Jpn. J. Appl. Phys. 35, 4946 (1996)Google Scholar
  14. 14.
    S.J. Hyun, B.H. Park, S.D. Bu, J.H. Jung, T.W. Noh, Appl. Phys. Lett. 73, 2518 (1998)Google Scholar
  15. 15.
    S. Sakai, M. Takahashi, R. Ilangovan, IEDM Technical Digest (2004), p. 915Google Scholar
  16. 16.
    S. Sakai, R. Ilangovan, M. Takahashi, Extended Abstracts of 2004 International Workshop on Dielectric Thin Films for Future ULSI Devices Science and Technology (IWDTF 2004), Tokyo (2004), pp. 55–56Google Scholar
  17. 17.
    S. Sakai, R. Ilangovan, M. Takahashi, Jpn. J. Appl. Phys. 43, 7876 (2004)Google Scholar
  18. 18.
    Q.-H. Li, T. Horiuchi, S. Wang, M. Takahashi, S. Sakai, Semicond. Sci. Technol. 24, 025012 (2009)Google Scholar
  19. 19.
    H.B. Michaelson, IBM J. Res. Dev. 22, 72 (1978)Google Scholar
  20. 20.
    A.K. Tagantsev, I. Stolichnov, N. Setter, J.S. Cross, M. Tsukada, Phys. Rev. B 66, 214109 (2002)Google Scholar
  21. 21.
    Q.-H. Li, S. Sakai, Appl. Phys. Lett. 89, 222910 (2006)Google Scholar
  22. 22.
    S. Sakai, X. Zhang, L.V. Hai, W. Zhang, M. Takahashi, Proceedings of 12th Non-volatile Memory Technology Symposium (NVMTS) (2012), pp. 55–59Google Scholar
  23. 23.
    K. Sakamaki, S. Sakai, Unpublished.Google Scholar
  24. 24.
    S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, London, 1981), p. 447Google Scholar
  25. 25.
    J. Robertson, Eur. Phys. J. Appl. Phys. 28, 265 (2004)Google Scholar
  26. 26.
    H.Y. Yu, M.F. Li, B.J. Cho, C.C. Yeo, M.S. Joo, D.-L. Kwong, J.S. Pan, C.H. Ang, J.Z. Zheng, S. Ramanathan, Appl. Phys. Lett. 81, 376 (2002)Google Scholar
  27. 27.
    W. Zhang, M. Takahashi, Y. Sasaki, M. Kusuhara, S. Sakai, Jpn. J. Appl. Phys. 56, 04CE04 (2017)Google Scholar
  28. 28.
    D.R. Wolters, I.J. van der Schoot, Philips J. Res. 40, 115 (1985)Google Scholar
  29. 29.
    J.F. Verweij, J.H. Klootwijk, Microelectron. J. 27, 611 (1996)Google Scholar
  30. 30.
    M. Fukuda, W. Mizubayashi, A. Kohno, S. Miyazaki, M. Hirose, Jpn. J. Appl. Phys. 37, L1534 (1998)Google Scholar
  31. 31.
    E. Tokumitsu, G. Fujii, H. Ishiwara, Jpn. J. Appl. Phys. 39, 2125 (2000)Google Scholar
  32. 32.
    K. Yan, M. Takahashi, S. Sakai, Appl. Phys. A: Mater. Sci. Process. 108, 835 (2012)Google Scholar
  33. 33.
    S. Sakai, W. Zhang, M, Takahashi, J. Phys. D: Appl. Phys. 50, 165107 (2017)Google Scholar
  34. 34.
    K. Amanuma, T. Hase, Y. Miyasaka, Appl. Phys. Lett. 66, 221 (1995)Google Scholar
  35. 35.
    T. Atsuki, N. Soyama, T. Yonezawa, K. Ogi, Jpn. J. Appl. Phys. 34, 5096 (1995)Google Scholar
  36. 36.
    T. Noguchi, T. Hase, Y. Miyasaka, Jpn. J. Appl. Phys. 35, 4900 (1996)Google Scholar
  37. 37.
    T. Horiuchi, K. Ohhashi, M. Takahashi, S. Sakai, Funtai Oyobi Funmatsu Yakin 55, 17 (2008) (in Japanese)Google Scholar
  38. 38.
    M. Takahashi, T. Horiuchi, S. Wang, Q.-H. Li, S. Sakai, J. Vac. Sci. Technol. B 26, 1585 (2008)Google Scholar
  39. 39.
    T. Horiuchi, M. Takahashi, K. Ohhashi, S. Sakai, Semicond. Sci. Technol. 24, 105026 (2009)Google Scholar
  40. 40.
    T. Horiuchi, M. Takahashi, Q.-H. Li, S. Wang, S. Sakai, Semicond. Sci. Technol. 25, 055005 (2010)Google Scholar
  41. 41.
    Y. Noguchi, H. Shimizu, M. Miyayama, K. Oikawa, T. Kamiyama, Jpn. J. Appl. Phys. 40, 5812 (2001)Google Scholar
  42. 42.
    R.R. Das, P. Bhattacharya, W. Perez, R.S. Katiyar, S.B. Desu, Appl. Phys. Lett. 80, 637 (2002)Google Scholar
  43. 43.
    R.R. Das, P. Bhattacharya, W. Perez, R.S. Katiyar, Jpn. J. Appl. Phys. 42, 163 (2003)Google Scholar
  44. 44.
    W. Zhang, M. Takahashi, S. Sakai, Semicond. Sci. Technol. 28, 085003 (2013)Google Scholar
  45. 45.
    K. Kato, K. Suzuki, K. Nishizawa, T. Miki, J. Appl. Phys. 88, 3779 (2000)Google Scholar
  46. 46.
    S. Sakai, M. Takahashi, K. Motohashi, Y. Yamaguchi, N. Yui, T. Kobayashi, J. Vac. Sci. Technol. A 25, 903 (2007)Google Scholar
  47. 47.
    Y. Shimakawa, Y. Kubo, Y. Nakagawa, S. Goto, T. Kamiyama, H. Asano, F. Izumi, Phys. Rev. B 61, 6559 (2000)Google Scholar
  48. 48.
    R.R. Das, P. Bhattacharya, W. Perez, R.S. Katiyar, Appl. Phys. Lett. 78, 2925 (2001)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.National Institute of Advanced Industrial Science and TechnologyTsukubaJapan

Personalised recommendations