Advertisement

Metabolism of Nitroaromatic Compounds by Microbes and Study of Chemotaxis Toward These Compounds

  • Debarati PaulEmail author
Chapter
  • 40 Downloads
Part of the Microorganisms for Sustainability book series (MICRO, volume 22)

Abstract

Nitroaromatic compounds are mainly man-made compounds having diverse functions in industry and otherwise. These are toxic compounds, and their complete mineralization by natural or engineered microbes is desirable via aerobic, anaerobic, or dual pathways. Bacterial chemotaxis has been shown to improve degradation rates and also result in biofilm formation, which in turn assists breakdown of the toxic compounds. These properties may be harnessed for engineering bugs for enhanced and varied degradation of NACs. The microbial diversity of unculturable microbes may be tapped for discovering “new” genes for mineralization of xenobiotic and persistent/recalcitrant compounds.

Keywords

Nitroaromatic Xenobiotic Chemotaxis Bioavailability Breakdown 

Abbreviations

HMX

Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazine

NACs

Nitroaromatic compounds

RDX

Cyclotrimethylenetrinitramine

TNB

1,3,5-Trinitrobenzene

TNT

2,4,6-Trinitrotoluene

References

  1. Afriat L, Roodveldt C, Manco G, Tawfik DS (2006) The latent promiscuity of newly identified microbial lactonases is linked to a recently diverged phosphotriesterase. Biochemistry 45(46):13677–13686CrossRefGoogle Scholar
  2. Aharoni A, Gaidukov L, Khersonsky O, Gould SM, Roodveldt C, Tawfik DS (2005) The ‘evolvability’ of promiscuous protein functions. Nat Genet 37(1):73CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alexander M (1981) Biodegradation of chemicals of environmental concern. Science 211(4478):132–138CrossRefPubMedPubMedCentralGoogle Scholar
  4. Alexander M, Lustigman BK (1966) Effect of chemical structure on microbial degradation of substituted benzenes. J Agric Food Chem 14(4):410–413CrossRefGoogle Scholar
  5. Alexandre G, Zhulin IB (2001) More than one way to sense chemicals. J Bacteriol 183(16):4681–4686CrossRefPubMedPubMedCentralGoogle Scholar
  6. Alexandre G, Greer SE, Zhulin IB (2000) Energy taxis is the dominant behavior in Azospirillum brasilense. J Bacteriol 182(21):6042–6048CrossRefPubMedPubMedCentralGoogle Scholar
  7. An D, Gibson DT, Spain JC (1994) Oxidative release of nitrite from 2-nitrotoluene by a three-component enzyme system from Pseudomonas sp. strain JS42. J Bacteriol 176(24):7462–7467CrossRefPubMedPubMedCentralGoogle Scholar
  8. Arora PK, Sasikala C, Ramana CV (2012) Degradation of chlorinated nitroaromatic compounds. Appl Microbiol Biotechnol 93(6):2265–2277CrossRefPubMedPubMedCentralGoogle Scholar
  9. Arora PK, Srivastava A, Singh VP (2014) Bacterial degradation of nitrophenols and their derivatives. J Hazard Mater 266:42–59CrossRefPubMedPubMedCentralGoogle Scholar
  10. Arora PK, Jeong MJ, Bae H (2015) Chemotaxis away from 4-chloro-2-nitrophenol, 4-nitrophenol, and 2,6-dichloro-4-nitrophenol by Bacillus subtilis PA-2. J Chemother 2015:1Google Scholar
  11. Barr DP, Aust SD (1994) Mechanisms white rot fungi use to degrade pollutants. Environ Sci Technol 28(2):78A–87ACrossRefPubMedPubMedCentralGoogle Scholar
  12. Behrend C, Heesche-Wagner K (1999) Formation of hydride-Meisenheimer complexes of picric acid (2,4,6-trinitrophenol) and 2,4-dinitrophenol during mineralization of picric acid by Nocardioides sp. strain CB 22–2. Appl Environ Microbiol 65(4):1372–1377CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bhushan B, Samanta SK, Chauhan A, Chakraborti AK, Jain RK (2000) Chemotaxis and biodegradation of 3-methyl-4-nitrophenol by Ralstonia sp. SJ98. Biochem Biophys Res Commun 275(1):129–133CrossRefPubMedPubMedCentralGoogle Scholar
  14. Blasco R, Castillo F (1997) Characterization of 2,4-Dinitrophenol uptake byRhodobactercapsulatus. Pestic Biochem Physiol 58(1):1–6CrossRefGoogle Scholar
  15. Bruns-Nagel D, Steinbach K, Gemsa D, von Löw E (2000) Composting (humification) of nitroaromatic compounds. Biodegradation of nitroaromatic compounds and explosives. Lewis Publishers, Boca Raton, FL, pp 357–393Google Scholar
  16. Cases I, De Lorenzo V (2005) Promoters in the environment: transcriptional regulation in its natural context. Nat Rev Microbiol 3(2):105CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chauhan A, Samanta SK, Jain RK (2000) Degradation of 4-nitrocatechol by Burkholderia cepacia: a plasmid-encoded novel pathway. J Appl Microbiol 88(5):764–772CrossRefPubMedPubMedCentralGoogle Scholar
  18. Craig HD, Sisk WE, Nelson MD, Dana WH (1995) Bioremediation of explosives-contaminated soils: a status review. In: Proceedings of the 10th annual conference on hazardous waste research. Kansas State University, Manhattan, NY, USA, pp 164–179Google Scholar
  19. Culp SJ, Roberts DW, Talaska G, Lang NP, Fu PP, Lay JO Jr, Teitel CH, Snawder JE, Von Tungeln LS, Kadlubar FF (1997) Immunochemical, 32P-postlabeling, and GC/MS detection of 4-aminobiphenyl–DNA adducts in human peripheral lung in relation to metabolic activation pathways involving pulmonary N-oxidation, conjugation, and peroxidation. Mutat Res 378(1–2):97–112CrossRefPubMedPubMedCentralGoogle Scholar
  20. Davis TL, Worral DE, Drake NL, Helmkamp RW, Young AM (1921) The role of mercuric nitrate in the “catalyzed” nitration of aromatic substances. J Am Chem Soc 43:594–607CrossRefGoogle Scholar
  21. Dickel O, Haug W, Knackmuss HJ (1993) Biodegradation of nitrobenzene by a sequential anaerobic-aerobic process. Biodegradation 4(3):187–194CrossRefGoogle Scholar
  22. Doyle RC, Isbister JD, Anspach GL, Kitchens JF (1986) Composting explosives/organics contaminated soils. Atlantic Research Corp, Alexandria, VAGoogle Scholar
  23. Falke JJ, Hazelbauer GL (2001) Transmembrane signaling in bacterial chemoreceptors. Trends Biochem Sci 26(4):257–265CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fang H, Cai L, Yang Y, Ju F, Li X, Yu Y, Zhang T (2014) Metagenomic analysis reveals potential biodegradation pathways of persistent pesticides in freshwater and marine sediments. Sci Total Environ 470:983–992CrossRefPubMedPubMedCentralGoogle Scholar
  25. Funk SB, Roberts DJ, Crawford DL, Crawford RL (1993) Initial-phase optimization for bioremediation of munition compound-contaminated soils. Appl Environ Microbiol 59(7):2171–2177CrossRefPubMedPubMedCentralGoogle Scholar
  26. Galvão TC, Mencía M, De Lorenzo V (2007) Emergence of novel functions in transcriptional regulators by regression to stem protein types. Mol Microbiol 65(4):907–919CrossRefPubMedPubMedCentralGoogle Scholar
  27. Garg R, Grasso D, Hoag G (1991) Treatment of explosives contaminated lagoon sludge. Hazard Waste Hazard Mater 8(4):319–340CrossRefGoogle Scholar
  28. Griest WH, Stewart AJ, Tyndall RL, Caton JE, Ho CH, Ironside KS, Caldwell WM, Tan E (1993) Chemical and toxicological testing of composted explosives-contaminated soil. Environ Toxicol Chem 12(6):1105–1116CrossRefGoogle Scholar
  29. Harwood CS, Nichols NN, Kim MK, Ditty JL, Parales RE (1994) Identification of the pcaRKF gene cluster from Pseudomonas putida: involvement in chemotaxis, biodegradation, and transport of 4-hydroxybenzoate. J Bacteriol 176(21):6479–6488CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hawkins AC, Harwood CS (2002) Chemotaxis of Ralstonia eutropha JMP134 (pJP4) to the herbicide 2,4-dichlorophenoxyacetate. Appl Environ Microbiol 68(2):968–972CrossRefPubMedPubMedCentralGoogle Scholar
  31. Head IM (1998) Bioremediation: towards a credible technology. Microbiology 144(3):599–608CrossRefGoogle Scholar
  32. Homma-Takeda S, Hiraku Y, Ohkuma Y, Oikawa S, Murata M, Ogawa K, Iwamuro T, Li S, Sun GF, Kumagai Y, Shimojo N (2002) 2,4,6-trinitrotoluene-induced reproductive toxicity via oxidative DNA damage by its metabolite. Free Radic Res 36(5):555–566CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hong HL, Ton TV, Devereux TR, Moomaw C, Clayton N, Chan P, Dunnick JK, Sills RC (2003) Chemical-specific alterations in ras, p53, and β-catenin genes in hemangiosarcomas from B6C3F1 mice exposed to o-nitrotoluene or riddelliine for 2 years. Toxicol Appl Pharmacol 191(3):227–234CrossRefPubMedPubMedCentralGoogle Scholar
  34. Johnson GR, Jain RK, Spain JC (2002) Origins of the 2,4-dinitrotoluene pathway. J Bacteriol 184(15):4219–4232CrossRefPubMedPubMedCentralGoogle Scholar
  35. Ju KS, Parales RE (2010) Nitroaromatic compounds, from synthesis to biodegradation. Microbiol Mol Biol Rev 74(2):250–272CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ju KS, Parales JV, Parales RE (2009) Reconstructing the evolutionary history of nitrotoluene detection in the transcriptional regulator NtdR. Mol Microbiol 74(4):826–843CrossRefPubMedPubMedCentralGoogle Scholar
  37. Juhas M, Van Der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW (2009) Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 33(2):376–393CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kadiyala V, Spain JC (1998) A two-component monooxygenase catalyzes both the hydroxylation of p-nitrophenol and the oxidative release of nitrite from 4-nitrocatechol in Bacillus sphaericus JS905. Appl Environ Microbiol 64(7):2479–2484CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kaplan DL (1992) Biological degradation of explosives and chemical agents. Curr Opin Biotechnol 3(3):253–260CrossRefGoogle Scholar
  40. Kivisaar M (2003) Stationary phase mutagenesis: mechanisms that accelerate adaptation of microbial populations under environmental stress. Environ Microbiol 5(10):814–827CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kivisaar M (2009) Degradation of nitroaromatic compounds: a model to study evolution of metabolic pathways. Mol Microbiol 74(4):777–781CrossRefPubMedPubMedCentralGoogle Scholar
  42. Klein W, Scheunert I (1982) Bound pesticide residues in soil, plants and food with particular emphasis on the application of nuclear techniques. In Agrochemicals: fate in food and the environmentGoogle Scholar
  43. Kovacic P, Somanathan R (2014) Nitroaromatic compounds: environmental toxicity, carcinogenicity, mutagenicity, therapy and mechanism. J Appl Toxicol 34(8):810–824CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kulkarni M, Chaudhari A (2007) Microbial remediation of nitro-aromatic compounds: an overview. J Environ Manag 85(2):496–512CrossRefGoogle Scholar
  45. Labana S, Pandey G, Paul D, Sharma NK, Basu A, Jain RK (2005) Pot and field studies on bioremediation of p-nitrophenol contaminated soil using Arthrobacter protophormiae RKJ100. Environ Sci Technol 39(9):3330–3337CrossRefPubMedPubMedCentralGoogle Scholar
  46. Law AM, Aitken MD (2003) Bacterial chemotaxis to naphthalene desorbing from a nonaqueous liquid. Appl Environ Microbiol 69(10):5968–5973CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lendenmann U, Spain JC, Smets BF (1998) Simultaneous biodegradation of 2,4-dinitrotoluene and 2,6-dinitrotoluene in an aerobic fluidized-bed biofilm reactor. Environ Sci Technol 32(1):82–87CrossRefGoogle Scholar
  48. Lessner DJ, Parales RE, Narayan S, Gibson DT (2003) Expression of the nitroarene dioxygenase genes in Comamonas sp. strain JS765 and Acidovorax sp. strain JS42 is induced by multiple aromatic compounds. J Bacteriol 185(13):3895–3904CrossRefPubMedPubMedCentralGoogle Scholar
  49. Leungsakul T, Keenan BG, Smets BF, Wood TK (2005) TNT and nitroaromatic compounds are chemoattractants for Burkholderia cepacia R34 and Burkholderia sp. strain DNT. Appl Microbiol Biotechnol 69(3):321–325CrossRefPubMedPubMedCentralGoogle Scholar
  50. Li Y, Jiang QG, Yao SQ, Liu W, Tian GJ, Cui JW (1993) Effects of exposure to trinitrotoluene on male reproduction. Biomed Environ Sci 6(2):154–160PubMedPubMedCentralGoogle Scholar
  51. Li Q, Minami M, Hanaoka T, Yamamura Y (1999) Acute immunotoxicity of p-chloronitrobenzene in mice: II. Effect of p-chloronitrobenzene on the immunophenotype of murine splenocytes determined by flow cytometry. Toxicology 137(1):35–45CrossRefPubMedPubMedCentralGoogle Scholar
  52. Liu Z, Yang C, Jiang H, Mulchandani A, Chen W, Qiao C (2009) Simultaneous degradation of organophosphates and 4-substituted phenols by Stenotrophomonas species LZ-1 with surface-displayed organophosphorus hydrolase. J Agric Food Chem 57(14):6171–6177CrossRefPubMedPubMedCentralGoogle Scholar
  53. MacNaughton SJ, Stephen JR, Venosa AD, Davis GA, Chang YJ, White DC (1999) Microbial population changes during bioremediation of an experimental oil spill. Appl Environ Microbiol 65:3566–3574CrossRefPubMedPubMedCentralGoogle Scholar
  54. Meulenberg R, de Bont JA (1995) Microbial production of catechols from nitroaromatic compounds. In: Biodegradation of nitroaromatic compounds. Springer, Boston, MA, pp 37–52CrossRefGoogle Scholar
  55. Murata M, Tezuka T, Ohnishi S, Takamura-Enya T, Hisamatsu Y, Kawanishi S (2006) Carcinogenic 3-nitrobenzanthrone induces oxidative damage to isolated and cellular DNA. Free Radic Biol Med 40(7):1242–1249CrossRefPubMedPubMedCentralGoogle Scholar
  56. Nishino SF, Spain JC, He Z (2000) Strategies for aerobic degradation of nitroaromatic compounds by bacteria: process discovery to field application. Biodegrad Nitroaromat Compound Explos 7:61–65Google Scholar
  57. Nojiri H, Shintani M, Omori T (2004) Divergence of mobile genetic elements involved in the distribution of xenobiotic-catabolic capacity. Appl Microbiol Biotechnol 64(2):154–174CrossRefPubMedPubMedCentralGoogle Scholar
  58. O’Loughlin TL, Patrick WM, Matsumura I (2006) Natural history as a predictor of protein evolvability. Protein Eng Des Sel 19(10):439–442CrossRefPubMedPubMedCentralGoogle Scholar
  59. Pailan S, Saha P (2015) Chemotaxis and degradation of organophosphate compound by a novel moderately thermo-halo tolerant Pseudomonas sp. strain BUR11: evidence for possible existence of two pathways for degradation. PeerJ 3:e1378CrossRefPubMedPubMedCentralGoogle Scholar
  60. Pandey G, Jain RK (2002) Bacterial chemotaxis toward environmental pollutants: role in bioremediation. Appl Environ Microbiol 68(12):5789–5795CrossRefPubMedPubMedCentralGoogle Scholar
  61. Pandey G, Chauhan A, Samanta SK, Jain RK (2002) Chemotaxis of a Ralstonia sp. SJ98 toward co-metabolizable nitroaromatic compounds. Biochem Biophys Res Commun 299(3):404–409CrossRefPubMedPubMedCentralGoogle Scholar
  62. Pandey J, Heipieper HJ, Chauhan A, Arora PK, Prakash D, Takeo M, Jain RK (2011) Reductive dehalogenation mediated initiation of aerobic degradation of 2-chloro-4-nitrophenol (2C4NP) by Burkholderia sp. strain SJ98. Appl Microbiol Biotechnol 92(3):597–607CrossRefPubMedPubMedCentralGoogle Scholar
  63. Pandey J, Sharma NK, Khan F, Ghosh A, Oakeshott JG, Jain RK, Pandey G (2012) Chemotaxis of Burkholderia sp. strain SJ98 towards chloronitroaromatic compounds that it can metabolise. BMC Microbiol 12(1):19CrossRefPubMedPubMedCentralGoogle Scholar
  64. Parales RE, Haddock JD (2004) Biocatalytic degradation of pollutants. Curr Opin Biotechnol 15(4):374–379CrossRefPubMedPubMedCentralGoogle Scholar
  65. Paul D, Singh R, Jain RK (2006) Chemotaxis of Ralstonia sp. SJ98 towards p-nitrophenol in soil. Environ Microbiol 8(10):1797–1804CrossRefPubMedPubMedCentralGoogle Scholar
  66. Permina EA, Mironov AA, Gelfand MS (2002) Damage-repair error-prone polymerases of eubacteria: association with mobile genome elements. Gene 293(1–2):133–140CrossRefPubMedPubMedCentralGoogle Scholar
  67. Prakash D, Chauhan A, Jain RK (1996) Plasmid-encoded degradation of p-Nitrophenol by Pseudomonas cepacia. Biochem Biophys Res Commun 224(2):375–381CrossRefPubMedPubMedCentralGoogle Scholar
  68. Pratt LA, Kolter R (1999) Genetic analyses of bacterial biofilm formation. Curr Opin Microbiol 2(6):598–603CrossRefPubMedPubMedCentralGoogle Scholar
  69. Purohit V, Basu AK (2000) Mutagenicity of nitroaromatic compounds. Chem Res Toxicol 13(8):673–692CrossRefPubMedPubMedCentralGoogle Scholar
  70. Raiford LC, LeRosen AL (1944) The nitration of brominated flurophenols by the Zincke method. J Am Chem Soc 66:1872–1873CrossRefGoogle Scholar
  71. Rieger PG, Knackmuss HJ (1995) Basic knowledge and perspectives on biodegradation of 2,4,6-trinitrotoluene and related nitroaromatic compounds in contaminated soil. In: Biodegradation of nitroaromatic compounds. Springer, Boston, MA, pp 1–18Google Scholar
  72. Robleto EA, Yasbin R, Ross C, Pedraza-Reyes M (2007) Stationary phase mutagenesis in B. subtilis: a paradigm to study genetic diversity programs in cells under stress. Crit Rev Biochem Mol Biol 42(5):327–339CrossRefPubMedPubMedCentralGoogle Scholar
  73. Rondon MR, Goodman RM, Handelsman J (1999) The Earth’s bounty: assessing and accessing soil microbial diversity. Trends Biotechnol 17(10):403–409CrossRefPubMedPubMedCentralGoogle Scholar
  74. Samanta SK, Bhushan B, Chauhan A, Jain RK (2000) Chemotaxis of a Ralstonia sp. SJ98 toward different nitroaromatic compounds and their degradation. Biochem Biophys Res Commun 269(1):117–123CrossRefPubMedPubMedCentralGoogle Scholar
  75. Sandermann JH (1994) Higher plant metabolism of xenobiotics: the ‘green liver’ concept. Pharmacogenetics 4(5):225–241CrossRefPubMedPubMedCentralGoogle Scholar
  76. Šarlauskas J, Nemeikaite-Č A, Anusevičius Ž, Misevičien L, Julvez MM, Medina M, Gomez-Moreno C, Narimantas Č (2004) Flavoenzyme-catalyzed redox cycling of hydroxylamino-and amino metabolites of 2,4,6-trinitrotoluene: implications for their cytotoxicity. Arch Biochem Biophys 425(2):184–192CrossRefPubMedPubMedCentralGoogle Scholar
  77. Singh OV, Jain RK (2003) Phytoremediation of toxic aromatic pollutants from soil. Appl Microbiol Biotechnol 63(2):128–3519CrossRefPubMedPubMedCentralGoogle Scholar
  78. Stelmack PL, Gray MR, Pickard MA (1999) Bacterial adhesion to soil contaminants in the presence of surfactants. Appl Environ Microbiol 65(1):163–168CrossRefPubMedPubMedCentralGoogle Scholar
  79. Tark M, Tover A, Tarassova K, Tegova R, Kivi G, Horak R, Kivisaar M (2005) A DNA polymerase V homologue encoded by TOL plasmid pWW0 confers evolutionary fitness on Pseudomonas putida under conditions of environmental stress. J Bacteriol 187(15):5203–5213CrossRefPubMedPubMedCentralGoogle Scholar
  80. Taylor BL, Zhulin IB (1998) In search of higher energy: metabolism-dependent behaviour in bacteria. Mol Microbiol 28(4):683–690CrossRefPubMedPubMedCentralGoogle Scholar
  81. Tokuriki N, Tawfik DS (2009) Protein dynamism and evolvability. Science 324(5924):203–207CrossRefPubMedPubMedCentralGoogle Scholar
  82. Torsvik V, Ovreas L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245CrossRefPubMedPubMedCentralGoogle Scholar
  83. Travlos GS, Mahler J, Ragan HA, Chou BJ, Bucher JR (1996) Thirteen-week inhalation toxicity of 2-and 4-chloronitrobenzene in F344/N rats and B6C3F1 mice. Fundam Appl Toxicol 30(1):75–92CrossRefPubMedPubMedCentralGoogle Scholar
  84. Tso WW, Adler J (1974) Negative chemotaxis in Escherichia coli. J Bacteriol 118(2):560–576CrossRefPubMedPubMedCentralGoogle Scholar
  85. Vilhunen S, Sillanpää M (2010) Recent developments in photochemical and chemical AOPs in water treatment: a mini-review. Rev Environ Sci Biotechnol 9(4):323–330CrossRefGoogle Scholar
  86. Williams RT, Ziegenfuss PS, Sisk WE (1992) Composting of explosives and propellant contaminated soils under thermophilic and mesophilic conditions. J Ind Microbiol 9(2):137–144CrossRefGoogle Scholar
  87. Wolfaardt GM, Lawrence JR, Robarts RD, Caldwell DE (1995) Bioaccumulation of the herbicide diclofop in extracellular polymers and its utilization by a biofilm community during starvation. Appl Environ Microbiol 61(1):152–158CrossRefPubMedPubMedCentralGoogle Scholar
  88. Yu HS, Alam M (1997) An agarose-in-plug bridge method to study chemotaxis in the archaeon Halobacterium salinarum. FEMS Microbiol Lett 156(2):265–269CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Amity Institute of BiotechnologyAmity UniversityNoidaIndia

Personalised recommendations