Advertisement

Nanoparticles and Their Fate in Soil Ecosystem

  • Mujeebur Rhaman Khan
  • Mohammad Akram
Chapter
  • 32 Downloads

Abstract

The nanoparticles (NPs) can be synthesized by different methods, importantly the chemical and biological methods. At the present state of technology, chemical methods are widely used to synthesize large quantities of NPs for various commercial applications. However, biological methods which use plants or microorganisms to synthesize nanoparticles, are low cost and eco-friendly. The phytosynthesis method in particular offers a handy and easy operation and has great potential for future use. Soil is considered as an ultimate sink for NPs introduced in our ecosystem. Since NPs are quite resistant to degradation, their accumulation and persistence in soil may profusely influence the soil microbial community and plant roots. The impact of NPs on microorganisms and plant may vary with the microbe/plant species, soil type and the NP species. In the presented chapter, a concise note on various methods of NP synthesis is presented, followed by a detailed description on the fate of NPs in soil with regard to their impact on growth of plants and microbes in different prospective.

Keywords

Nanoparticles Biosynthesis Antimicrobial effects Phytotoxicity 

References

  1. Abd FG, Al-Kawaz AJAH, Al-Dahmoshi HOM (2013) Phenotypic and genotypic investigation on silver nanoparticles of Morganella morganii recovered from (cauti) Iraq. Int J Med Pharm Sci 3:29–38Google Scholar
  2. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003a) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 28:313–318CrossRefGoogle Scholar
  3. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003b) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550–3553CrossRefGoogle Scholar
  4. Amendola V, Polizzi S, Meneghetti M (2006) Laser ablation synthesis of gold nanoparticles in organic solvents. J Phys Chem B 110:7232–7237CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ankamwar B, Damle C, Ahmad A, Sastry M (2005) Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol 5:1665–1671CrossRefPubMedPubMedCentralGoogle Scholar
  6. Applerot G, Lipovsky A, Dror R, Perkas N, Nitzan Y, Lubart R, Gedanken A (2009) Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv Funct Mater 19:842–852CrossRefGoogle Scholar
  7. Armendariz V, Herrera I, Jose-yacaman M, Troiani H, Santiago P, Gardea-Torresdey JL (2004) Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J Nanopart Res 6:377–382CrossRefGoogle Scholar
  8. Armendariz V, Parsons JG, Lopez ML, Peralta-Videa JR, Jose-Yacaman M, Gardea-Torresdey JL (2009) The extraction of gold nanoparticles from oat and wheat biomasses using sodium citrate and cetyltrimethylammonium bromide, studied by X-ray absorption spectroscopy, high-resolution transmission electron microscopy, and UV–visible spectroscopy. Nanotechnology 20:105607CrossRefPubMedPubMedCentralGoogle Scholar
  9. Asadishad B, Chahal S, Cianciarelli V, Zhou K, Tufenkji N (2017) Effect of gold nanoparticles on extracellular nutrient-cycling enzyme activity and bacterial community in soil slurries: role of nanoparticle size and surface coating. Environ Sci Technol 4:907–918Google Scholar
  10. Aslam M, Gopakumar G, Shoba TL, Mulla IS, Vijayamohanan K (2002) Formation of Cu and Cu2O nanoparticles by variation of the surface ligand: preparation, structure and insulating-to-metallic transition. J Colloid Interf Sci 255:79–90CrossRefGoogle Scholar
  11. Athawale AA, Katre PP, Kumar M, Majumdar MB (2005) Synthesis of CTAB-IPA reduced copper nanoparticles. Mater Chem Phys 91:507–512CrossRefGoogle Scholar
  12. Azam A, Ahmed AS, Oves M, Khan MS, Memic A (2012) Size-dependent antimicrobial properties of CuO nanoparticles against gram-positive and-negative bacterial strains. Int J Nanomedicine 7:3527–3535CrossRefPubMedPubMedCentralGoogle Scholar
  13. BadriNarayanan K, Sakthivel N (2008) Coriander leaf mediated biosynthesis of gold nanoparticles. Mater Lett 62:4588–4590CrossRefGoogle Scholar
  14. Baek YW, An YJ (2011) Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci Total Environ 409:1603–1608CrossRefGoogle Scholar
  15. Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B Biointerfaces 68:88–92CrossRefGoogle Scholar
  16. Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14:3303–3305CrossRefGoogle Scholar
  17. Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43:1164–1170CrossRefGoogle Scholar
  18. Beddow J, Stolpe B, Cole P, Lead JR, Sapp M, Lyons BP, Colbeck I, Whitby C (2014) Effects of engineered silver nanoparticles on the growth and activity of ecologically important microbes. Environ Microbiol Rep 6:448–458CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ben-Moshe T, Frenk S, Dror I, Minz D, Berkowitz B (2013) Effects of metal oxide nanoparticles on soil properties. Chemosphere 90:640–646CrossRefPubMedPubMedCentralGoogle Scholar
  20. Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces 47:160–164CrossRefGoogle Scholar
  21. Binupriya AR, Sathishkumar M, Vijayaraghavan K, Yun SI (2010) Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis. J Hazard Mater 177:539–545CrossRefGoogle Scholar
  22. Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48:173–179CrossRefGoogle Scholar
  23. Blosi M, Albonetti S, Dondi M, Martelli C, Baldi G (2011) Microwave-assisted polyol synthesis of Cu nanoparticles. J Nanopart Res 13:127–138CrossRefGoogle Scholar
  24. Brayner R, Barberousse H, Hemadi M, Djedjat C, Yepremian C (2007) Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd and Pt nanoparticles via an enzyme-mediated route. J Nanosci Nanotechnol 7:2696–2708CrossRefGoogle Scholar
  25. Bryaskova R, Pencheva D, Nikolov S, Kantardjiev T (2011) Synthesis and comparative study on the antimicrobial activity of hybrid materials based on silver nanoparticles (AgNps) stabilized by polyvinylpyrrolidone (PVP). J Chem Biol 4:185–191CrossRefPubMedPubMedCentralGoogle Scholar
  26. Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:MR17–MR71CrossRefGoogle Scholar
  27. Byrappa K, Yoshimura M (2001) Hydrothermal technology – principles and applications. In: Handbook of hydrothermal technology, pp 1–52Google Scholar
  28. Cao J, Feng Y, Lin X, Wang J (2016) Arbuscular mycorrhizal fungi alleviate the negative effects of iron oxide nanoparticles on bacterial community in rhizospheric soils. Front Environ Sci 4(10)Google Scholar
  29. Carpenter SR (2005) Eutrophication of aquatic ecosystems: bistability and soil phosphorus. Proc Natl Acad Sci 102(29):10002–10005CrossRefGoogle Scholar
  30. Cason JP, Miller ME, Thompson JB, Roberts CB (2001) Solvent effects on copper nanoparticle growth behavior in AOT reverse micelle systems. J Phys Chem B 105:2297–2302CrossRefGoogle Scholar
  31. Chai H, Yao J, Sun J, Zhang C, Liu W, Zhu M, Ceccanti B (2015) The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural soil. Bull Environ Contam Toxicol 94:490–495CrossRefGoogle Scholar
  32. Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnol Prog 22:577–583CrossRefPubMedPubMedCentralGoogle Scholar
  33. Chen L, Zhang D, Chen J, Zhou H, Wan H (2006) The use of CTAB to control the size of copper nanoparticles and the concentration of alkylthiols on their surfaces. Mater Sci Eng A 415:156–161CrossRefGoogle Scholar
  34. Chen H, Lee JH, Kim YH, Shin DW, Park SC, Meng X, Yoo JB (2010) Metallic copper nanostructures synthesized by a facile hydrothermal method. J Nanosci Nanotechnol 10:629–636CrossRefGoogle Scholar
  35. Chen J, Liu X, Wang C, Yin SS, Li XL, Hu WJ, Simon M, Shen ZJ, Xiao Q, Chu CC, Peng XX (2015) Nitric oxide ameliorates zinc oxide nanoparticles-induced phytotoxicity in rice seedlings. J Hazard Mater 297:173–182CrossRefGoogle Scholar
  36. Chudasama B, Vala AK, Andhariya N, Mehta RV, Upadhyay RV (2010) Highly bacterial resistant silver nanoparticles: synthesis and antibacterial activities. J Nanopart Res 12:1677–1685CrossRefGoogle Scholar
  37. Cioffi N, Torsi L, Ditaranto N, Sabbatini L, Zambonin PG, Tantillo G, Ghibelli L, D’Alessio M, Bleve-Zacheo T, Traversa E (2004) Antifungal activity of polymer-based copper nanocomposite coatings. Appl Phys Lett 85:2417–2419CrossRefGoogle Scholar
  38. Colman BP, Arnaout CL, Anciaux S, Gunsch CK, Hochella MF Jr, Kim B, Lowry GV, McGill BM, Reinsch BC, Richardson CJ, Unrine JM (2013) Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario. PLoS One 8:57189CrossRefGoogle Scholar
  39. Concha-Guerrero SI, Brito EMS, Piñón-Castillo HA, Tarango-Rivero SH, Caretta CA, Luna-Velasco A, Duran R, Orrantia-Borunda E (2014) Effect of CuO nanoparticles over isolated bacterial strains from agricultural soil. J Nanomater 2014:206CrossRefGoogle Scholar
  40. Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE (2009) Controlling eutrophication: nitrogen and phosphorus. Science 323:1014–1015CrossRefGoogle Scholar
  41. Corral-Diaz B, Peralta-Videa JR, Alvarez-Parrilla E, Rodrigo-García J, Morales MI, Osuna-Avila P, Niu G, Hernandez-Viezcas JA, Gardea-Torresdey JL (2014) Cerium oxide nanoparticles alter the antioxidant capacity but do not impact tuber ionome in Raphanus sativus (L). Plant Physiol Biochem 84:277–285CrossRefGoogle Scholar
  42. Correll DL (1998) The role of phosphorus in the eutrophication of receiving waters: a review. J Environ Qual 27:261–266CrossRefGoogle Scholar
  43. Cvjetko P, Milošić A, Domijan AM, Vrček IV, Tolić S, Štefanić PP, Letofsky-Papst I, Tkalec M, Balen B (2017) Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. Ecotoxicol Environ Saf 137:18–28CrossRefGoogle Scholar
  44. Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338:596–597CrossRefGoogle Scholar
  45. De la Rosa G, López-Moreno ML, de Haro D, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2013) Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies. Pure Appl Chem 85:2161–2174CrossRefGoogle Scholar
  46. De Rosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91CrossRefGoogle Scholar
  47. De Windt W, Aelterman P, Verstraete W (2005) Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ Microbiol 7:314–325CrossRefGoogle Scholar
  48. Deng F, Wang S, Xin H (2016) Toxicity of CuO nanoparticles to structure and metabolic activity of Allium cepa root tips. Bull Environ Contam Toxicol 97:702–708CrossRefGoogle Scholar
  49. Di Gregorio S, Lampis S, Vallini G (2005) Selenite precipitation by a rhizospheric strain of Stenotrophomonas sp. isolated from the root system of Astragalus bisulcatus: a biotechnological perspective. Environ Int 31:233–241CrossRefGoogle Scholar
  50. Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2015) Nano-CuO and interaction with nano-ZnO or soil bacterium provide evidence for the interference of nanoparticles in metal nutrition of plants. Ecotoxicology:119–129Google Scholar
  51. Ebbs SD, Bradfield SJ, Kumar P, White JC, Musante C, Ma X (2016) Accumulation of zinc, copper, or cerium in carrot (Daucus carota) exposed to metal oxide nanoparticles and metal ions. Environ Sci Nano 3:114–126CrossRefGoogle Scholar
  52. El-Rafie MH, Shaheen TI, Mohamed AA, Hebeish A (2012) Bio-synthesis and applications of silver nanoparticles onto cotton fabrics. Carbohydr Polym 90:915–920CrossRefGoogle Scholar
  53. El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27:42–49CrossRefGoogle Scholar
  54. Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharromán C, Moya JS (2009) Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles. Nanotechnology 20:505701CrossRefGoogle Scholar
  55. Fageria NK (2009) The use of nutrıents in crop plants. CRC Press, Boca RatonGoogle Scholar
  56. Fariq A, Khan T, Yasmin A (2017) Microbial synthesis of nanoparticles and their potential applications in biomedicine. J Appl Biomed 15:241–248CrossRefGoogle Scholar
  57. Fatimah I, Indriani N (2018) Silver nanoparticles synthesized using Lantana camara flower extract by reflux, microwave and ultrasound methods. Chem J Moldova 13:95–102CrossRefGoogle Scholar
  58. Frazier TP, Burklew CE, Zhang B (2014) Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum). Funct Integr Genomics 14:75–83CrossRefGoogle Scholar
  59. Gade AK, Bonde P, Ingle AP, Marcato PD, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobaased Mater Bioenergy 2:243–247CrossRefGoogle Scholar
  60. Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19:1357–1361CrossRefGoogle Scholar
  61. Ge Y, Schimel JP, Holden PA (2011) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45:1659–1664CrossRefPubMedPubMedCentralGoogle Scholar
  62. Ge Y, Schimel JP, Holden PA (2012) Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles. Appl Environ Microbiol 78:6749–6758CrossRefPubMedPubMedCentralGoogle Scholar
  63. Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140CrossRefGoogle Scholar
  64. Ghosh M, Jana A, Sinha S, Jothiramajayam M, Nag A, Chakraborty A, Mukherjee A, Mukherjee A (2016) Effects of ZnO nanoparticles in plants: cytotoxicity, genotoxicity, deregulation of antioxidant defenses, and cell-cycle arrest. Mutat Res Genet Toxicol Environ Mutagen 807:25–32CrossRefPubMedPubMedCentralGoogle Scholar
  65. González-Garcinuño Á, Tabernero A, Marcelo G, Sebastián V, Arruebo M, Santamaría J, del Valle EM (2019) Differences in Levan nanoparticles depending on their synthesis route: microbial vs cell-free systems. Int J Biol Macromol 137:62–68CrossRefPubMedPubMedCentralGoogle Scholar
  66. Gui X, Deng Y, Rui Y, Gao B, Luo W, Chen S, Li X, Liu S, Han Y, Liu L, Xing B (2015) Response difference of transgenic and conventional rice (Oryza sativa) to nanoparticles (γFe 2 O 3). Environ Sci Pollut Res 22:17716–17723CrossRefGoogle Scholar
  67. Gupta V, Gupta AR, Kant V (2013) Synthesis, characterization and biomedical application of nanoparticles. Sci Int 1:167–174CrossRefGoogle Scholar
  68. Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SRK (2009) Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B Biointerfaces 74:328–335CrossRefPubMedPubMedCentralGoogle Scholar
  69. Guzman MG, Dille J, Godet S (2009) Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int J Chem Biol Eng 2:104–111Google Scholar
  70. Haris Z, Ahmad I (2017) Impact of metal oxide nanoparticles on beneficial soil microorganisms and their secondary metabolites. Int J Life-Sci Sci Res 3:1020–1030Google Scholar
  71. He SY, Guo ZR, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61:3984–3987CrossRefGoogle Scholar
  72. Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316CrossRefPubMedPubMedCentralGoogle Scholar
  73. Hessler CM, Wu MY, Xue Z, Choi H, Seo Y (2012) The influence of capsular extracellular polymeric substances on the interaction between TiO2 nanoparticles and planktonic bacteria. Water Res 46:4687–4696CrossRefPubMedPubMedCentralGoogle Scholar
  74. Hong J, Rico CM, Zhao L, Adeleye AS, Keller AA, Peralta-Videa JR, Gardea-Torresdey JL (2015) Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ Sci Process Impacts 17:177–185CrossRefPubMedPubMedCentralGoogle Scholar
  75. Hossain KZ, Monreal CM, Sayari A (2008) Adsorption of urease on PE-MCM-41 and its catalytic effect on hydrolysis of urea. Colloids Surf B Biointerfaces 62:42–50CrossRefPubMedPubMedCentralGoogle Scholar
  76. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104CrossRefGoogle Scholar
  77. Huh AJ, Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156:128–145CrossRefPubMedPubMedCentralGoogle Scholar
  78. Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A Mol Biomol Spectrosc 67:1003–1006CrossRefPubMedPubMedCentralGoogle Scholar
  79. Im SH, Lee YT, Wiley B, Xia Y (2005) Large-scale synthesis of silver nanocubes: the role of hcl in promoting cube perfection and monodispersity. Angew Chem Int Ed 44:2154–2157CrossRefGoogle Scholar
  80. Inbakandan D, Venkatesan R, Khan SA (2010) Biosynthesis of gold nanoparticles utilizing marine sponge Acanthella elongata (Dendy, 1905). Colloids Surf B Biointerfaces 81:634–639CrossRefGoogle Scholar
  81. Ingle A, Rai M, Gade A, Bawaskar M (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res 11:2079–2085CrossRefGoogle Scholar
  82. Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, Gaurav K, Karthik L, Rao KB (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A Mol Biomol Spectrosc 90:78–84CrossRefGoogle Scholar
  83. Jha AK, Prasad K, Prasad K (2009) A green low-cost biosynthesis of Sb2O 3 nanoparticles. Biochem Eng J 43:303–306CrossRefGoogle Scholar
  84. Jiang W, Mashayekhi H, Xing B (2009) Bacterial toxicity comparison between nano-and micro-scaled oxide particles. Environ Pollut 157:1619–1625CrossRefGoogle Scholar
  85. Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043CrossRefGoogle Scholar
  86. Kajbafvala A, Li M, Bahmanpour H, Maneshian MH, Kauffmann A (2013) Nano/microstructured materials: rapid, low-cost, and eco-friendly synthesis methods. J Nanopart 2013Google Scholar
  87. Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B Biointerfaces 65:150–153CrossRefPubMedPubMedCentralGoogle Scholar
  88. Kasprowicz MJ, Kozioł M, Gorczyca A (2010) The effect of silver nanoparticles on phytopathogenic spores of Fusarium culmorum. Can J Microbiol 56:247–253CrossRefPubMedPubMedCentralGoogle Scholar
  89. Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B Biointerfaces 71:133–137CrossRefGoogle Scholar
  90. Khan MR, Rizvi TF (2014) Nanotechnology: scope and application in plant disease management. Plant Pathol J 13:214–231CrossRefGoogle Scholar
  91. Khan MR, Rizvi TF (2017) Application of nanofertilizer and nanopesticides for improvements in crop production and protection. In: Nanoscience and plant–soil systems. Springer, Cham, pp 405–427Google Scholar
  92. Khan MR, Adam V, Rizvi TF, Zhang B, Ahamad F, Jośko I, Zhu Y, Yang M, Mao C (2019a) Nanoparticle–plant interactions: two-way traffic. Small 15:1901794CrossRefGoogle Scholar
  93. Khan MR, Ahamad F, Rizvi TF, (2019b) Effect of nanoparticles on plant pathogens. In: Advances in phytonanotechnology. Academic Press, London, pp 215–240Google Scholar
  94. Khandel P, Shahi SK (2018) Mycogenic nanoparticles and their bio-prospective applications: current status and future challenges. J Nanostruct Chem 8:369–391CrossRefGoogle Scholar
  95. Kitchens CL, Roberts CB (2004) Copper nanoparticle synthesis in compressed liquid and supercritical fluid reverse micelle systems. Ind Eng Chem Res 43:6070–6081CrossRefGoogle Scholar
  96. Komarneni S (2003) Nanophase materials by hydrothermal, microwave hydrothermal and microwave-solvothermal methods. Curr Sci 85:1730–1734Google Scholar
  97. Konishi Y, Ohno K, Saitoh N, Namura T, Nagmine S (2004) Microbial synthesis of gold nanoparticles by metal reducing bacterium. Trans Mater Res Soc Jpn 29:2341–2343Google Scholar
  98. Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S (2007) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128:648–653CrossRefGoogle Scholar
  99. Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002) Microbial synthesis of semiconductor CdS nanoparticles, their characterization and their use in the fabrication of an ideal diode. Biotechnol Bioeng 78:583–588CrossRefGoogle Scholar
  100. Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan PT (2012) Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta A Mol Biomol Spectrosc 93:95–99CrossRefGoogle Scholar
  101. Lamsa K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39:26–32CrossRefGoogle Scholar
  102. Law N, Ansari S, Livens FR, Renshaw JC, Lloyd JR (2008) Formation of nanoscale elemental silver particles via enzymatic reduction by Geobacter sulfurreducens. Appl Environ Microbiol 74:7090–7093CrossRefPubMedPubMedCentralGoogle Scholar
  103. Le Van N, Ma C, Shang J, Rui Y, Liu S, Xing B (2016a) Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere 144:661–670CrossRefGoogle Scholar
  104. Le Van N, Rui Y, Cao W, Shang J, Liu S, Nguyen Quang T, Liu L (2016b) Toxicity and bio-effects of CuO nanoparticles on transgenic Ipt-cotton. J Plant Interact 11:108–116CrossRefGoogle Scholar
  105. Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water -insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921CrossRefGoogle Scholar
  106. Lee WM, Kwak JI, An YJ (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86:491–499CrossRefGoogle Scholar
  107. Li Y, Zhang W, Niu J, Chen Y (2012) Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6:5164–5173CrossRefGoogle Scholar
  108. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250CrossRefGoogle Scholar
  109. Liu R, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci Rep 4:5686CrossRefPubMedPubMedCentralGoogle Scholar
  110. Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7. J Appl Microbiol 107:1193–1201CrossRefPubMedPubMedCentralGoogle Scholar
  111. Liu R, Zhang H, Lal R (2016) Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients. Water Air Soil Pollut 227:42CrossRefGoogle Scholar
  112. López-Moreno ML, De la Rosa G, Hernández-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2010) XAS corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58:3689CrossRefPubMedPubMedCentralGoogle Scholar
  113. Lortie L, Gould WD, Rajan S, Meeready RGL, Cheng KJ (1992) Reduction of selenate and selenite to elemental selenium by a Pseudomonas stutzeri isolate. Appl Environ Microbiol 58:4042–4044CrossRefPubMedPubMedCentralGoogle Scholar
  114. Losi ME, Frankenberger WT (1997) Reduction of selenium oxyanions by Enterobacter cloacae SLD1a-1: isolation and growth of the bacterium and its expulsion of selenium particles. Appl Environ Microbiol 63:3079–3084CrossRefPubMedPubMedCentralGoogle Scholar
  115. Lovley DR, Phillips EJP, Lonergan DJ (1989) Hydrogen and formate oxidation coupled to dissimilatory reduction of ıron or manganese by Alteromonas putrefaciens. Applied. Environ Microbiol 55:700–706CrossRefGoogle Scholar
  116. Lovley DR, Phillips EJP, Gorby YA, Landa ER (1991) Microbial reduction of uranium. Nature 350:413–416CrossRefGoogle Scholar
  117. Lu CM, Zhang CY, Wen JQ, Wu GR (2002) Effects of nano material on germination and growth of soybean. Soybean Sci 21:168–171Google Scholar
  118. Lukman AI, Gong B, Marjo CE, Roessner U, Harris AT (2011) Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates. J Colloid Interface Sci 353:433–444CrossRefGoogle Scholar
  119. Manonmani V, Juliet V (2011) Biosynthesis of Ag nanoparticles for the detection of pathogenic bacteria. In: Proceedings of the 2nd International conference on innovation, management and service September 16–18, 2011, Singapore, pp 307–311Google Scholar
  120. Martens DC, Westermann DT (1991) Fertilizer applications for correcting micronutrient deficiencies. In: Mortvedt JJ, Cox FR, Shuman LM, Welch RM (eds) Micronutrients in agriculture. Madison, Soil Science Society of America, pp 549–592Google Scholar
  121. Martínez-Fernández D, Komárek M (2016) Comparative effects of nanoscale zero-valent iron (nZVI) and Fe2O3 nanoparticles on root hydraulic conductivity of Solanum lycopersicum L. Environ Exp Bot 131:128–136CrossRefGoogle Scholar
  122. Martínez-Fernández D, Barroso D, Komárek M (2016) Root water transport of Helianthus annuus L. under iron oxide nanoparticle exposure. Environ Sci Pollut Res 23:1732–1741CrossRefGoogle Scholar
  123. Mazumdar H, Ahmed GU (2011) Phytotoxicity effect of silver nanoparticles on Oryza sativa. Int J ChemTech Res 3:1494–1500Google Scholar
  124. McGee CF, Storey S, Clipson N, Doyle E (2017) Soil microbial community responses to contamination with silver, aluminium oxide and silicon dioxide nanoparticles. Ecotoxicology 26:449–458CrossRefPubMedPubMedCentralGoogle Scholar
  125. Moon YS, Park ES, Kim TO, Lee HS, Lee SE (2014) SELDI-TOF MS-based discovery of a biomarker in Cucumis sativus seeds exposed to CuO nanoparticles. Environ Toxicol Pharmacol 38:922–931CrossRefGoogle Scholar
  126. Mourato A, Gadanho M, Lino AR, Tenreiro R (2011) Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorg Chem Appl 8Google Scholar
  127. Mude N, Ingle A, Gade A, Rai M (2009) Synthesis of silver nanoparticles using callus extract of Carica papaya – a first report. J Plant Biochem Biotechnol 18:83–86CrossRefGoogle Scholar
  128. Nabikhan A, Kandasamy K, Raj A, Alikunhi NM (2010) Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloids Surf B 79:488–493CrossRefGoogle Scholar
  129. Nair PMG, Chung IM (2014) A mechanistic study on the toxic effect of copper oxide nanoparticles in soybean (Glycine max L.) root development and lignification of root cells. Biol Trace Elem Res 162:342–352CrossRefGoogle Scholar
  130. Nair PMG, Chung IM (2015) Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignification in Indian mustard (Brassica juncea L.). Ecotoxicol Environ Saf 113:302–313CrossRefGoogle Scholar
  131. Nair PMG, Kim SH, Chung IM (2014) Copper oxide nanoparticle toxicity in mung bean (Vigna radiata L.) seedlings: physiological and molecular level responses of in vitro grown plants. Acta Physiol Plant 36:2947–2958CrossRefGoogle Scholar
  132. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008a) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386CrossRefGoogle Scholar
  133. Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008b) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964CrossRefGoogle Scholar
  134. Olchowik J, Bzdyk R, Studnicki M, Bederska-Błaszczyk M, Urban A, Aleksandrowicz-Trzcińska M (2017) The effect of silver and copper nanoparticles on the condition of english oak (Quercus robur L.) seedlings in a container nursery experiment. Forests 8:310CrossRefGoogle Scholar
  135. Panwar J (2012) Positive effect of zinc oxide nanoparticles on tomato plants: A step towards developing nano-fertilizers 01/2012. In: Proceeding of 3rd International conference on environmental research and technology (ICERT), May 30–June 1 2012, PenangGoogle Scholar
  136. Parashar V, Parashar R, Sharma B, Pandey AC (2009) Parthenium leaf extract mediated synthesis of silver nanoparticles: a novel approach towards weed utilization. Dig J Nanomater Biostruct 4:1Google Scholar
  137. Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22:295–302CrossRefGoogle Scholar
  138. Park BK, Jeong S, Kim D, Moon J, Lim S, Kim JS (2007) Synthesis and size control of monodisperse copper nanoparticles by polyol method. J Colloid Interface Sci 311:417–424CrossRefGoogle Scholar
  139. Patil RS, Kokate MR, Kolekar SS (2012) Bioinspired synthesis of highly stabilized silver nanoparticles using Ocimum tenuiflorum leaf extract and their antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 91:234–238CrossRefPubMedPubMedCentralGoogle Scholar
  140. Pelletier DA, Suresh AK, Holton GA, McKeown CK, Wang W, Gu B, Mortensen NP, Allison DP, Joy DC, Allison MR, Brown SD (2010) Effects of engineered cerium oxide nanoparticles on bacterial growth and viability. Appl Environ Microbiol 76:7981–7989CrossRefPubMedPubMedCentralGoogle Scholar
  141. Peyrot C, Wilkinson KJ, Desrosiers M, Sauvé S (2014) Effects of silver nanoparticles on soil enzyme activities with and without added organic matter. Environ Toxicol Chem 33:115–125CrossRefPubMedPubMedCentralGoogle Scholar
  142. Philip D (2009) Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochim Acta A Mol Biomol Spectrosc 73:374–374CrossRefGoogle Scholar
  143. Pileni MP, Lisiecki I (1993) Anometer metallic copper particle synthesis in reverse micelles. Colloids Surf A Physicochem Eng Asp 80:63–68CrossRefGoogle Scholar
  144. Pokhrel LR, Silva T, Dubey B, El Badawy AM, Tolaymat TM, Scheuerman PR (2012) Rapid screening of aquatic toxicity of several metal-based nanoparticles using the MetPLATE™ bioassay. Sci Total Environ 426:414–422CrossRefPubMedPubMedCentralGoogle Scholar
  145. Pol VG, Motiei M, Gedanken A, Calderon-Moreno J, Mastai Y (2003) Sonochemical deposition of air-stable iron nanoparticles on monodispersed carbon spherules. Chem Mater 15:1378–1384CrossRefGoogle Scholar
  146. Prasad K, Jha AK, Kulkarni AR (2007) Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Res Lett 2:248CrossRefGoogle Scholar
  147. Priester JH, Moritz SC, Espinosa K, Ge Y, Wang Y, Nisbet RM, Schimel JP, Goggi AS, Gardea-Torresdey JL, Holden PA (2017) Damage assessment for soybean cultivated in soil with either CeO2 or ZnO manufactured nanomaterials. Sci Total Environ 579:1756–1768CrossRefPubMedPubMedCentralGoogle Scholar
  148. Raja M, Subha J, Ali FB, Ryu SH (2008) Synthesis of copper nanoparticles by electroreduction process. Mater Manuf Process 23:782–785CrossRefGoogle Scholar
  149. Rajkishore SK, Subramanian KS, Natarajan N, Gunasekaran K (2013) Nanotoxicity at various trophic levels: a review. Bioscan 8:975–982Google Scholar
  150. Rajput VD, Minkina T, Sushkova S, Tsitsuashvili V, Mandzhieva S, Gorovtsov A, Nevidomskyaya D, Gromakova N (2018a) Effect of nanoparticles on crops and soil microbial communities. J Soils Sediments 18:2179–2187CrossRefGoogle Scholar
  151. Rajput VD, Minkina T, Suskova S, Mandzhieva S, Tsitsuashvili V, Chapligin V, Fedorenko A (2018b) Effects of copper nanoparticles (CuO NPs) on crop plants: a mini review. BioNanoScience 8:36–42CrossRefGoogle Scholar
  152. Rao KJ, Paria S (2013) Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturia inaequalis phytopathogens. RSC Adv 3:10471–10478CrossRefGoogle Scholar
  153. Reverchon E, Adami R (2006) Nanomaterials and supercritical fluids. J Supercrit Fluids 37:1–22CrossRefGoogle Scholar
  154. Safavi K, Mortazaeinezahad F, Esfahanizadeh M, Javad Asgari M (2011) In vitro antibacterial activity of nanomaterial for using in tobacco plants tissue culture. World Acad Sci Eng Technol 79:372–373Google Scholar
  155. Saha N, Gupta SD (2017) Low-dose toxicity of biogenic silver nanoparticles fabricated by Swertia chirata on root tips and flower buds of Allium cepa. J Hazard Mater 330:18–28CrossRefGoogle Scholar
  156. Sanghi R, Verma P (2009) Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour Technol 100:501–504CrossRefGoogle Scholar
  157. Schabes-Retchkiman PS, Canizal G, Herrera-Becerra R, Zorrilla C, Liu HB, Ascencio JA (2006) Biosynthesis and characterization of Ti/Ni bimetallic nanoparticles. Opt Mater 29:95–99CrossRefGoogle Scholar
  158. Shah V, Collins D, Walker VK, Shah S (2014) The impact of engineered cobalt, iron, nickel and silver nanoparticles on soil bacterial diversity under field conditions. Environ Res Lett 9:024001CrossRefGoogle Scholar
  159. Shaligram SN, Bule M, Bhambure R, Singhal SR, Singh SK, Szakacs G, Pandey A (2009) Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem 44:939–943CrossRefGoogle Scholar
  160. Shankar SS, Ahmad A, Pasricha R, Sastry M (2003a) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826CrossRefGoogle Scholar
  161. Shankar SS, Ahmad A, Sastry M (2003b) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 19:1627–1631CrossRefGoogle Scholar
  162. Shankar SS, Rai A, Ahmad A, Sastry M (2004a) Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502CrossRefPubMedPubMedCentralGoogle Scholar
  163. Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004b) Biological synthesis of triangular gold nanoprisms. Nat Mater 3:482CrossRefPubMedPubMedCentralGoogle Scholar
  164. Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93:906–915CrossRefGoogle Scholar
  165. Sillanpaa M (1990) Micronutrient assessment at the country level: an international study. FAO, Rome, p 208Google Scholar
  166. Silverberg PA, Wong PTS, Chau YK (1976) Localization of selenium in bacterial cells using TEM and energy dispersive X-ray analysis. Arch Microbiol 107:1–6CrossRefGoogle Scholar
  167. Simonin M, Richaume A (2015) Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Environ Sci Pollut Res 22:13710–13723CrossRefGoogle Scholar
  168. Singh D, Kumar A (2016) Impact of irrigation using water containing CuO and ZnO nanoparticles on Spinach oleracea grown in soil media. Bull Environ Contam Toxicol 97:548–553CrossRefGoogle Scholar
  169. Singh S, Singh BK, Yadav SM, Gupta AK (2015) Applications of nanotechnology in agricultural and their role in disease management. Res J Nanosci Nanotechnol 5:1–5CrossRefGoogle Scholar
  170. Solanki A, Kim JD, Lee KB (2008) Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. Nanomedicine 3:567–578CrossRefGoogle Scholar
  171. Song X, Zhang W, Yin Z (2004) A method for the synthesis of spherical copper nanoparticles in the organic phase. J Colloid Interface Sci 273:463CrossRefGoogle Scholar
  172. Suman TY, Rajasree SR, Kanchana A, Elizabeth SB (2013) Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract. Colloids Surf B Biointerfaces 106:74–78CrossRefGoogle Scholar
  173. Suslick KS, Choe SB, Cichowlas AA, Grinstaff MW (1991) Sonochemical synthesis of amorphous iron. Nature 353:414–416CrossRefGoogle Scholar
  174. Suslick KS, Hyeon T, Fang M, Cichowlas AA (1996) Sonochemical preparation of nanostructured catalyst. In: Moser WR (ed) Advanced catalysts and nanostructured materials: modern synthetic methods. Academic Press, New York, pp 197–212. ISBN-13: 978-0125084604Google Scholar
  175. Tayel AA, EL-TRAS WF, Moussa S, EL-BAZ AF, Mahrous H, Salem MF, Brimer L (2011) Antibacterial action of zinc oxide nanoparticles against foodborne pathogens. J Food Saf 31:211–218CrossRefGoogle Scholar
  176. Taylor AF, Rylott EL, Anderson CW, Bruce NC (2014) Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS One 9:93793CrossRefGoogle Scholar
  177. Tomei FA, Barton LL, Lemanski CL, Zocco TG, Fink NH, Sillerud LO (1995) Transformation of selenate and selenite to elemental selenium by Desulfovibrio desulfuricans. J Ind Microbiol 14:329–336CrossRefGoogle Scholar
  178. Torsvik V, Øvreås L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245CrossRefGoogle Scholar
  179. Tripathi DK, Singh S, Singh S, Srivastava PK, Singh VP, Singh S, Prasad SM, Singh PK, Dubey NK, Pandey AC, Chauhan DK (2017) Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177CrossRefGoogle Scholar
  180. Trujillo-Reyes J, Majumdar S, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2014) Exposure studies of core–shell Fe/Fe3O4 and Cu/CuO NPs to lettuce (Lactuca sativa) plants: are they a potential physiological and nutritional hazard. J Hazard Mater 267:255–263CrossRefGoogle Scholar
  181. Umer A, Naveed S, Ramzan N, Rafique MS (2012) Selection of a suitable method for the synthesis of copper nanoparticles. Brief Rep Rev 7:1–18Google Scholar
  182. Vannini C, Domingo G, Onelli E, De Mattia F, Bruni I, Marsoni M, Bracale M (2014) Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. J Plant Physiol 171:1142–1148CrossRefGoogle Scholar
  183. Vertelov GK, Krutyakov YA, Efremenkova OV, Olenin AY, Lisichkin GV (2008) A versatile synthesis of highly bactericidal Myramistin® stabilized silver nanoparticles. Nanotechnology 19:355707CrossRefGoogle Scholar
  184. Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf B 53:55–59CrossRefGoogle Scholar
  185. Vijayakumar R, Koltypin Y, Felner I, Gedanken A (2000) Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles. Mater Sci Eng A 286:101–105CrossRefGoogle Scholar
  186. Vijayakumar M, Priya K, Nancy FT, Noorlidah A, Ahmed ABA (2013) Biosynthesis, characterisation and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica. Ind Crop Prod 41:235–240CrossRefGoogle Scholar
  187. Wang YH, Chen PL, Liu MH (2006) Synthesis of well-defined copper nanocubes by a one-pot solution process. Nanotechnology 17:6000–6006CrossRefGoogle Scholar
  188. Woolfolk CA, Whiteley HR (1962) Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus. I. Stoichiometry with compounds of arsenic, selenium, tellurium, transition and other elements. J Bacteriol 84:647–658CrossRefPubMedPubMedCentralGoogle Scholar
  189. Wu B, Zhuang WQ, Sahu M, Biswas P, Tang YJ (2011) Cu-doped TiO2 nanoparticles enhance survival of Shewanella oneidensis MR-1 under Ultraviolet Light (UV) exposure. Sci Total Environ 409:4635–4639CrossRefGoogle Scholar
  190. Xu C, Peng C, Sun L, Zhang S, Huang H, Chen Y, Shi J (2015) Distinctive effects of TiO2 and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil. Soil Biol Biochem 86:24–33CrossRefGoogle Scholar
  191. Yadav V, Sharma N, Prakash R, Raina KK, Bharadwaj LM, Prakash NT (2008) Generation of selenium containing nano-structures by soil bacterium, Pseudomonas aeruginosa. Biotechnology 7:299–304CrossRefGoogle Scholar
  192. Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:22–132CrossRefGoogle Scholar
  193. Yang J, Cheng GH, Zeng JH, Yu SH, Liu XM, Qian YT (2001) Shape control and characterization of transition metal diselenides MSe2 (M = Ni, co, Fe) prepared by a solvothermal-reduction process. Chem Mater 13:848–853CrossRefGoogle Scholar
  194. Yang Y, Mathieu JM, Chattopadhyay S, Miller JT, Wu T, Shibata T, Guo W, Alvarez PJ (2012a) Defense mechanisms of Pseudomonas aeruginosa PAO1 against quantum dots and their released heavy metals. ACS Nano 6:6091–6098CrossRefPubMedPubMedCentralGoogle Scholar
  195. Yang Y, Wang J, Zhu H, Colvin VL, Alvarez PJ (2012b) Relative susceptibility and transcriptional response of nitrogen cycling bacteria to quantum dots. Environ Sci Technol 46:3433–3441CrossRefPubMedPubMedCentralGoogle Scholar
  196. Yang Z, Chen J, Dou R, Gao X, Mao C, Wang L (2015) Assessment of the phytotoxicity of metal oxide nanoparticles on two crop plants, maize (Zea mays L.) and rice (Oryza sativa L.). Int J Environ Res Public Health 12:15100–15109CrossRefPubMedPubMedCentralGoogle Scholar
  197. Yong P, Rowson NA, Farr JPG, Harris IR, Macaskie LE (2002) Bioaccumulation of palladium by Desulfovibrio desulfuricans. J Chem Technol Biotechnol 77:593–601CrossRefGoogle Scholar
  198. Yoon SJ, Kwak JI, Lee WM, Holden PA, An YJ (2014) Zinc oxide nanoparticles delay soybean development: a standard soil microcosm study. Ecotoxicol Environ Saf 100:131–137CrossRefGoogle Scholar
  199. You T, Liu D, Chen J, Yang Z, Dou R, Gao X, Wang L (2018) Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types. J Soils Sediments 18:211–221CrossRefGoogle Scholar
  200. Zafar H, Ali A, Zia M (2017) CuO nanoparticles inhibited root growth from Brassica nigra seedlings but induced root from stem and leaf explants. Appl Biochem Biotechnol 181:365–378CrossRefGoogle Scholar
  201. Zhu HT, Zhang CY, Yin YS (2004) Rapid synthesis of copper nanoparticles by sodium hypophosphite reduction in ethylene glycol under microwave irradiation. J Cryst Growth 270:722–728CrossRefGoogle Scholar
  202. Zuverza-Mena N, Medina-Velo IA, Barrios AC, Tan W, Peralta-Videa JR, Gardea-Torresdey JL (2015) Copper nanoparticles/compounds impact agronomic and physiological parameters in cilantro (Coriandrum sativum). Environ Sci Process Impacts 17:1783–1793CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Mujeebur Rhaman Khan
    • 1
  • Mohammad Akram
    • 1
  1. 1.Department of Plant ProtectionAligarh Muslim UniversityAligarhIndia

Personalised recommendations