Microwave-Assisted Magnetic Recording

  • Satoshi OkamotoEmail author


Microwave-assisted magnetic recording (MAMR) has attracted much attention as one of the promising next-generation ultra-high density recording technologies of hard disk drives (HDDs). MAMR is not only the technology which simply extends the recording density of HDDs but also has the potential of 3D magnetic recording. In this section, in addition to the explanations of the basic mechanism and some of the demonstrations of MAMR, some efforts for 3D magnetic recording based on MAMR technology will be explained.


  1. 1.
    Shiroishi Y, Fukuda K, Tagawa I, Iwasaki H, Takenoiri S, Tanaka H, Mutoh H, Yoshikawa N (2009) Future options for HDD storage. IEEE Trans Magn 45:3816–3822CrossRefGoogle Scholar
  2. 2.
    Zhu J-G, Zhu X, Tang Y (2008) Microwave assisted magnetic recording. IEEE Trans Magn 44:125–131CrossRefGoogle Scholar
  3. 3.
    Thirion C, Wernsdorfr W, Mailly D (2003) Switching of magnetization by nonlinear resonance studied in single nanoparticles. Nat Mater 2:524–527CrossRefGoogle Scholar
  4. 4.
    Okamoto S, Kikuchi N, Furuta M, Kitakami O, Shimatsu T (2012) Switching behaviors and its dynamics of a Co/Pt nanodot under the assistance of rf fields. Phys Rev Lett 109:237209CrossRefGoogle Scholar
  5. 5.
    Furuta M, Okamoto S, Kikuchi N, Kitakami O, Shimatsu T (2014) Size dependence of magnetization switching and its dispersion of Co/Pt nanodots under the assistance of radio frequency fields. J Appl Phys 115:133914CrossRefGoogle Scholar
  6. 6.
    Okamoto S, Kikuchi N, Hotta A, Furuta M, Kitakami O, Shimatsu T (2013) Microwave assistance effect on magnetization switching in Co-Cr-Pt granular film. Appl Phys Lett 103:202405CrossRefGoogle Scholar
  7. 7.
    Nozaki Y, Matsuyama K (2006) Numerical study for ballistic switching of magnetization in single domain particle triggered by a ferromagnetic resonance within a relaxation time limit. J Appl Phys 100:053911CrossRefGoogle Scholar
  8. 8.
    Okamoto S, Kikuchi N, Kitakami O (2008) Magnetization switching behavior with microwave assistance. Appl Phys Lett 93:102506CrossRefGoogle Scholar
  9. 9.
    Okamoto S, Igarashi M, Kikuchi N, Kitakami O (2010) Microwave-assisted switching mechanism and its stable switching limit. J Appl Phys 107:123914CrossRefGoogle Scholar
  10. 10.
    Tang Y, Zhu J-G (2008) Narrow track confinement by AC field generation layer in microwave-assisted magnetic recording. IEEE Trans Magn 44:3376–3379CrossRefGoogle Scholar
  11. 11.
    Masuko J, Matsubara M, Hashimoto J, Kanai H, Uehara Y, Ibusuki T, Sato M, Wada T, Suzuki Y (2009) Microwave oscillations of the giant magnetoresistive element in a magnetic field perpendicular to the plane. IEEE Trans Magn 45:3430–3433CrossRefGoogle Scholar
  12. 12.
    Bosu S, Sepehri-Amin H, Sakuraba Y, Kasai S, Hayashi M, Hono K (2017) High frequency out-of-plane oscillation with large cone angle in mag-flip spin torque oscillators for microwave assisted magnetic recording. Appl Phys Lett 110:142403CrossRefGoogle Scholar
  13. 13.
    Shiimoto M (2010) Experimental feasibility of spin-torque oscillator with synthetic field generation layer for microwave assisted magnetic recording. In: 55th MMM conference, DF-10 Atlanta, 14–18 Nov 2010Google Scholar
  14. 14.
    Takeo A (2014) MAMR R/W performance improvement by mag-flip STO assist. In: Intermag. Conference, AD-2 Dresden, 4–8 May 2014Google Scholar
  15. 15.
    Tagawa I, Shiimoto M, Matsubara M, Nosaki S, Urakami Y, Aoyama J (2016) Advantage of MAMR read-write performance. IEEE Trans Magn 52:3101104CrossRefGoogle Scholar
  16. 16.
    Okamoto S, Kikuchi N, Furuta M, Kitakami O, Shimatsu T (2015) Microwave assisted magnetic recording technologies and related physics. J Phys D Appl Phys 48:353001CrossRefGoogle Scholar
  17. 17.
    Taniguchi T (2014) Magnetization reversal condition for a nanomagnet within a rotating magnetic field. Phys Rev B 90:024424CrossRefGoogle Scholar
  18. 18.
    Suto H, Kudo K, Nagasawa T, Kanao T, Mizushima K, Sato R, Okamoto S, Kikuchi N, Kitakami O (2015) Theoretical study of thermally activated magnetization switching under microwave assistance: switching paths and barrier height. Phys Rev B 91:094401Google Scholar
  19. 19.
    Nozaki Y, Ishida N, Soeno Y, Sekiguchi K (2012) Room temperature microwave- assisted recording on 500-Gbpsi-class perpendicular medium. J Appl Phys 112:083912CrossRefGoogle Scholar
  20. 20.
    Boone CT, Katine JA, Marinero EE, Pisana S, Terris BD (2012) Demonstration of microwave assisted magnetic reversal in perpendicular media. J Appl Phys 111:07B907CrossRefGoogle Scholar
  21. 21.
    Okamoto S, Kikuchi1 N, Kitakami1 O, Shimatsu T (2017) Influence of intergrain interactions and thermal agitation on microwave-assisted magnetization switching behavior of granular magnetic film. Appl Phys Express 10:023004Google Scholar
  22. 22.
    Kikuchi N, Shimada K, Shimatsu T, Okamoto S, Kitakami O (2018) Frequency dependence of microwave-assisted switching in CoCrPt granular perpendicular media. Jpn J Appl Phys 57:09TE02Google Scholar
  23. 23.
    Suto H, kanao T, Nagasawa T, Mizushima K, Sato R (2017) Zero-dc-field rotation-direction dependent magnetization switching induced by a circularly polarized microwave magnetic field. Sci Rep 7:13804Google Scholar
  24. 24.
    Kiselev SI, Sankey JC, Krivorotov IN, Emley NC, Schoelkopf RJ, Buhrman RA, Ralph DC (2003) Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425:380–383CrossRefGoogle Scholar
  25. 25.
    Slonczewski JC (1996) Current-driven excitation of magnetic multilayers. J Magn Magn Mater 159:L1–L7CrossRefGoogle Scholar
  26. 26.
    Kaka S, Pufall MR, Rippard WH, Silva TJ, Russek SE, Katine JA (2005) Mutual phase-locking of microwave spin torque nano-oscillators. Nature 437:389–392CrossRefGoogle Scholar
  27. 27.
    Kudo K, Nagasawa T, Mizushima K, Suto H, Sato R (2010) Numerical simulation on temporal response of spin-torque oscillator to magnetic pulses. Appl Phys Express 3:043002CrossRefGoogle Scholar
  28. 28.
    Choi HS, Kang SY, Cho SJ, Oh I-Y, Shin M, Park H, Jang C, Min B-C, Kim S-I, Park S-Y, Park CS (2014) Spin nano-oscillator-based wireless communication. Sci Rep 4:5486CrossRefGoogle Scholar
  29. 29.
    Zhu J-G, Wang Y (2010) Microwave assisted magnetic recording utilizing perpendicular spin torque oscillator with switchable perpendicular electrodes. IEEE Trans Magn 46:751–757CrossRefGoogle Scholar
  30. 30.
    Sato Y, Sugiura K, Igarashi M, Watanabe K, Shiroishi Y (2013) Thin spin-torque oscillator with high AC-field for high density microwave-assisted magnetic recording. IEEE Trans Magn 49:3632–3635CrossRefGoogle Scholar
  31. 31.
    Igarashi M, Suzuki Y, Sato Y (2010) Oscillation feature of planar spin-torque oscillator for microwave-assisted magnetic recording. IEEE Trans Magn 46:3738–3841CrossRefGoogle Scholar
  32. 32.
    Yoshida K, Yokoe M, Ishikawa Y, Kanai Y (2010) Spin torque oscillator with negative magnetic anisotropy materials for MAMR. IEEE Trans Magn 46:2466–2469CrossRefGoogle Scholar
  33. 33.
    Suto H, Kanao T, Nagasawa T, Kudo K, Mizushima K, Sato R (2017) Switching field reduction of a perpendicular magnetic nanodot in a microwave magnetic field emitted from a spin-torque oscillator. Appl Phys Lett 110:132403CrossRefGoogle Scholar
  34. 34.
    Winkler G, Suess D, Lee JJ, Fidler Bashir MA, Dean J, Goncharov A, Hrkac G, Bance S, Schrefl T (2009) Microwave-assisted three-dimensional multilayer magnetic recording. Appl Phys Lett 94:232501CrossRefGoogle Scholar
  35. 35.
    Li S, Livshitz B, Bertram HN, Fullerton EE, Lomakin V (2009) Microwave-assisted magnetization reversal and multilevel recording in composite media. J Appl Phys 105:07B909CrossRefGoogle Scholar
  36. 36.
    Tanaka T, Otsuka Y, Furomoto Y, Matsuyama K, Nozaki Y (2013) Selective magnetization switching with microwave assistance for three-dimensional magnetic recording. J Appl Phys 113:143908CrossRefGoogle Scholar
  37. 37.
    Greaves S, Kanai Y, Muraoka H (2017) Multiple layer microwave-assisted magnetic recording. IEEE Trans Magn 53:3000510Google Scholar
  38. 38.
    Suto H, Nagasawa T, Kudo K, Kanao T, Mizushima K, Sato R (2016) Layer-selective switching of a double-layer perpendicular magnetic nanodot using microwave assistance. Phys Rev Appl 5:014003CrossRefGoogle Scholar
  39. 39.
    Lu Y, Okamoto S, Kikuchi N, Kitakami O, Shimatsu T (2018) Layer-selective microwave-assisted magnetization switching in a dot of double antiferromagnetically coupled (AFC) layers. Appl Phys Lett 112:162404CrossRefGoogle Scholar
  40. 40.
    Kanao T, Suto H, Kudo K, Nagasawa T, Mizushima K, Sato R (2018) Transient magnetization dynamics of spin-torque oscillator and magnetic dot coupled by magnetic dipolar interaction: reading of magnetization direction using magnetic resonance. J Appl Phys 123:043903CrossRefGoogle Scholar
  41. 41.
    Suto H, Nagasawa T, Kudo K, Mizushima K, Sato R (2014) Nanoscale layer-selective readout of magnetization direction from a magnetic multilayer using a spin-torque oscillator. Nanotechnology 25:245501CrossRefGoogle Scholar
  42. 42.
    Yang T, Suto H, Nagasawa T, Kudo K, Mizushima K, Sato R (2013) Readout method from antiferromagnetically coupled perpendicular magnetic recording media using ferromagnetic resonance. J Appl Phys 114:213901CrossRefGoogle Scholar
  43. 43.
    Nakayama Y, Kusanagi Y, Shimatsu T, Kikuchi N, Okamoto S, Kitakami O (2016) Microwave-assistance effect on magnetization switching in antiferromagnetically coupled CoCrPt granular media. IEEE Trans Magn 52:3201203CrossRefGoogle Scholar
  44. 44.
    Greaves S, Kanai Y, Muraoka H (2018) Antiferromagnetically coupled media for microwave-assisted magnetic recording. IEEE Trans Magn 54:3000111Google Scholar
  45. 45.
    Suto H, Nagasawa T, Kudo K, Mizushima K, Sato R (2011) Real-time measurement of temporal response of a spin-torque oscillator to magnetic pulses. Appl Phys Express 4:013003CrossRefGoogle Scholar
  46. 46.
    Nakamura Y, Nishikawa M, Osawa H, Okamoto Y, Kanao T, Sato R (2018) Envelope detection using temporal magnetization dynamics of resonantly interacting spin-torque oscillator. AIP Adv 8:056512CrossRefGoogle Scholar
  47. 47.
    Hagenauer J, Hoeher P (1989) A viterbi algorithm with soft-decision output and its applications. In: Proceedings of IEEE GLOBECOM, Dallas, TX, USA, 27–30 Nov 1989, pp 1680–1686Google Scholar
  48. 48.
    Kretzmer E.R (1966) Generalization of a technique for binary data communications. IEEE Trans Commun Technol COM-14, 67–68Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku UniversitySendaiJapan

Personalised recommendations