Solid-State RF Power Generators

  • Roger WilliamsEmail author


This chapter is intended to provide an overview of the benefits that solid-state RF generators can provide to industrial, scientific, and medical (ISM) ‘RF energy’ applications, and the technologies, architectures, and design philosophies used in such generators. Our intention is to look at this from the end-user’s viewpoint and to provide information that will be most helpful to
  • researchers in a broad range of scientific and medical disciplines who want to learn how to use solid-state RF generation in their applications;

  • designers with ideas for products based on technology from these disciplines who want to learn about the feasibility of a solid-state generator and the tradeoffs they will need to consider;

  • ISM equipment manufacturers who are looking for an overview of solid-state generator technology to decide if and how they should get involved with it.

Solid-state RF power has been used for decades in 1–500 MHz ISM applications. However, power generation in the important 915 MHz, 2.45 GHz, and 5.8 GHz ISM bands has until recently been dominated by magnetrons, so those frequencies are the focus of this chapter.


  1. 1.
    Collins GB (1948) Microwave magnetrons, vol 6. McGraw-Hill Book CompanyGoogle Scholar
  2. 2.
    Dexter A (2014) Phase locked magnetrons for accelerators. In: 27th international linear accelerator conference (LINAC14), pp 751–755Google Scholar
  3. 3.
    Wesson R (2016) RF solid state cooking white paper. Tech. rep, AmpleonGoogle Scholar
  4. 4.
    Kuo L, Kuo YH (1976) Chinese folk tales. Celestial ArtsGoogle Scholar
  5. 5.
    Johnsen RJ, Granberg H (1979) Design, construction, and performance of high power RF VMOS devices. In: 1979 international electron devices meeting. IEEE, pp 93–96Google Scholar
  6. 6.
    Runton DW, Trabert B, Shealy JB, Vetury R (2013) History of GaN: High-power RF gallium nitride (GaN) from infancy to manufacturable process and beyond. IEEE Microw Mag 14(3):82–93CrossRefGoogle Scholar
  7. 7.
    Theeuwen SJCH, Mollee H, Heeres R, Van Rijs F (2018) LDMOS technology for power amplifiers up to 12 GHz. In: 2018 13th European microwave integrated circuits conference (EuMIC). IEEE, pp 162–165Google Scholar
  8. 8.
    Lim TC, Armstrong GA (2006) The impact of the intrinsic and extrinsic resistances of double gate SOI on RF performance. Solid-State Electron 50(5):774–783CrossRefGoogle Scholar
  9. 9.
    Van Rijs F, Theeuwen SJCH (2018) Efficiency improvement of LDMOS transistors for base stations: towards the theoretical limit. In: 2006 international electron devices meeting. IEEE, pp 1–4Google Scholar
  10. 10.
    Aadit MNA, Kirtania SG, Afrin F, Alam MK, Khosru QDM (2017) High electron mobility transistors: performance analysis, research trend and applications. In: Different types of field-effect transistors: theory and applications, chap. 3. Books on Demand, pp 45–64Google Scholar
  11. 11.
    Gurnett K, Adams T (2006) GaN makes inroads in the wireless infrastructure. III-Vs Rev 19(9):33–35Google Scholar
  12. 12.
    Ampleon (2013) Lifetime of BLF574XR in broadcast and ISM applications. Application Note AN11287Google Scholar
  13. 13.
    Black JR (1969) Electromigration failure modes in aluminum metallization for semiconductor devices. Proc IEEE 57(9):1587–1594CrossRefGoogle Scholar
  14. 14.
    Burdeaux DC, Burger WR (2011) Intrinsic reliability of RF power LDMOS FETs. In: 2011 international reliability physics symposium. IEEE, pp 5A.2.1–5A.2.9Google Scholar
  15. 15.
    Curtice W, Pla J, Bridges D, Liang T, Shumate E (1999) A new dynamic electro-thermal nonlinear model for silicon RF LDMOS FETs. In: 1999 IEEE MTT-S international microwave symposium digest (Cat. No. 99CH36282), vol 2, IEEE, pp 419–422Google Scholar
  16. 16.
    Hammes P, Monsauret N, Loysel S, Schmidt-Szalowski M, van der Zanden J (2017) A robust, large-signal model for LDMOS RF power transistors. Microwaves & RF 56Google Scholar
  17. 17.
    Cripps SC (2006) RF power amplifiers for wireless communications. Artech HouseGoogle Scholar
  18. 18.
    Raab FH (2001) Class-E, class-C, and class-F power amplifiers based upon a finite number of harmonics. IEEE Trans Microw Theory Tech 49(8):1462–1468CrossRefGoogle Scholar
  19. 19.
    NXP (2019) MRF24G300H RF power GaN transistor data sheet.
  20. 20.
    Ampleon (2011) LDMOS bias module. Application report CA-330-11Google Scholar
  21. 21.
    Ampleon (2011) Bias module for 50 V GaN demonstration boards. Application note AN11130Google Scholar
  22. 22.
    Alim MA, Rezazadeh AA, Gaquiere C (2015) Thermal characterization of DC and small-signal parameters of 150 nm and 250 nm gate-length AlGaN/GaN HEMTs grown on a SiC substrate. Semicond Sci Technol 30(12):125005CrossRefGoogle Scholar
  23. 23.
    Paul CR (2011) Inductance: loop and partial. WileyGoogle Scholar
  24. 24.
    Shi T, Li K (2012) High power solid-state oscillator for microwave oven applications. In: 2012 IEEE/MTT-S international microwave symposium digest. IEEE, pp 1–3Google Scholar
  25. 25.
    Ikeda H, Itoh Y (2018) 2.4-GHz-band high-power and high-efficiency solid-state injection-locked oscillator. IEEE Trans Microw Theory Tech 66(7):3315–3322Google Scholar
  26. 26.
    Mohr R (1961) A microwave power divider (correspondence). IRE Trans Microw Theory Tech 9(6):573–573CrossRefGoogle Scholar
  27. 27.
    Tahara Y, Oh-Hashi H, Ban T, Totani K, Miyazaki M (2001) A low-loss serial power combiner using novel suspended stripline couplers. In: 2001 IEEE MTT-S international microwave sympsoium digest (Cat. No. 01CH37157), vol 1, IEEE, pp 39–42Google Scholar
  28. 28.
    Wilkinson EJ (1960) An N-way hybrid power divider. IRE Trans Microw Theory Tech 8(1):116–118CrossRefGoogle Scholar
  29. 29.
    Gysel UH (1975) A new N-way power divider/combiner suitable for high-power applications. In: 1975 IEEE-MTT-S international microwave symposium. IEEE, pp 116–118Google Scholar
  30. 30.
    Mendenhall GN, Shrestha M, Anthony E (1992) FM broadcast transmitters. In: NAB engineering handbook. Taylor & Francis, pp 561–562Google Scholar
  31. 31.
    Aves D, Kolvek SJ (1999) N-way RF power combiner/divider. U.S. Patent 5 880 648Google Scholar
  32. 32.
    Ardemagni F (1983) An optimized L-band eight-way Gysel power divider-combiner. IEEE Trans Microw Theory Tech 31(6):491–495CrossRefGoogle Scholar
  33. 33.
    Beyragh DS, Abnavi S, Motahari SR (2010) Implementation of N-way Gysel combiners using back to back microstrip structure. In: 2010 IEEE international conference on ultra-wideband, vol 2. IEEE, pp 1–4Google Scholar
  34. 34.
    Chen H, Wang X, Che W, Zhou Y, Xue Q (2018) Development of compact HMSIW Gysel power dividers with microstrip isolation networks. IEEE Access 6:60429–60437CrossRefGoogle Scholar
  35. 35.
    Jain A, Sharma D, Gupta A, Hannurkar P, Pathak S (2013) Compact solid state radio frequency amplifiers in kW regime for particle accelerator subsystems. Sadhana 38(4):667–678CrossRefGoogle Scholar
  36. 36.
    Wu XH, Kishk AA (2010) Analysis and design of substrate integrated waveguide using efficient 2D hybrid method. Synth Lect Comput Electromagn 5(1):1–90CrossRefGoogle Scholar
  37. 37.
    Pozar DM (2011) Microwave engineering. Wiley, p 113Google Scholar
  38. 38.
    Cassivi Y, Perregrini L, Arcioni P, Bressan M, Wu K, Conciauro G (2002) Dispersion characteristics of substrate integrated rectangular waveguide. IEEE Microw Wirel Compon Lett 12(9):333–335CrossRefGoogle Scholar
  39. 39.
    Lakhdhar S, Harabi F, Gharsallah A (2017) Novel compact power dividers designs and comparison. In: 2017 international conference on engineering & MIS (ICEMIS). IEEE, pp 1–5Google Scholar
  40. 40.
    Djerafi T, Wu K (2016) Multilayer integration and packaging on substrate integrated waveguide for next generation wireless applications. In: 2016 46th European microwave conference (EuMC). IEEE, pp 858–861Google Scholar
  41. 41.
    Bochra R, Mohammed F, Tao J (2014) Analysis of S band substrate integrated waveguide power divider, circulator and coupler. Int J Comput Sci Eng Appl (IJCSEA) 4(2):Google Scholar
  42. 42.
    Moznebi AR, Afrooz K (2015) Four-way substrate integrated waveguide (SIW) power divider/combiner for high power applications. J Commun Eng 4(2):122–131Google Scholar
  43. 43.
    Williams R, Ikeda Y (2015) Real-time impedance measurement and frequency control in an automotive plasma ignition system. In: 2015 IEEE MTT-S international microwave symposium. IEEE, pp 1–4Google Scholar
  44. 44.
    Edwards ML (2001) Calibration and measurement of S-parameters. In: Microwave & RF circuits: analysis, design, fabrication, & measurement, chap. 7. UnpublishedGoogle Scholar
  45. 45.
    Agilent (2004) De-embedding and embedding S-parameter networks using a vector network analyzer. Application note 1364-1Google Scholar
  46. 46.
    Yakovlev VV (2015) Frequency control over the heating patterns in a solid-state dual-source microwave oven. In: 2015 IEEE MTT-S international microwave symposium. IEEE, pp 1–4Google Scholar
  47. 47.
    Narumanchi S, Mihalic M, Kelly K, Eesley G (2008) Thermal interface materials for power electronics applications. In: 2008 11th intersociety conference on thermal and thermomechanical phenomena in electronic systems. IEEE, pp 395–404Google Scholar
  48. 48.
    Brinson ME, Jahn S (2009) Qucs: a GPL software package for circuit simulation, compact device modelling and circuit macromodelling from DC to RF and beyond. Int J Numer Model Electron Netw Devices Fields 22(4):297–319CrossRefGoogle Scholar
  49. 49.
    Brinson ME, Kuznetsov V (2016) A new approach to compact semiconductor device modelling with Qucs Verilog-A analogue module synthesis. Int J Numer Model Electron Netw Devices Fields 29(6):1070–1088CrossRefGoogle Scholar
  50. 50.
    Liebig T (2015) OpenEMS—open electromagnetic field solver.
  51. 51.
    Doñoro DG (2014) A new software suite for electromagnetics. Ph.D. thesis, Universidad Carlos III de MadridGoogle Scholar
  52. 52.
    Cripps SC (2006) RF power amplifiers for wireless communications. Artech House, pp 40–43Google Scholar
  53. 53.
    Quaglia R, Shepphard DJ, Cripps S (2016) A reappraisal of optimum output matching conditions in microwave power transistors. IEEE Trans Microw Theory Tech 65(3):838–845CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.3D RF Energy CorpProvidenceUSA

Personalised recommendations