Microwave Flow Chemistry

  • Joshua P. BarhamEmail author
  • Emiko Koyama
  • Yasuo Norikane
  • Takeo YoshimuraEmail author


This chapter presents examples of and advocates for the adoption of tunable solid-state (semiconductor) oscillator single-mode microwave flow reactors toward laboratory and larger-scale synthetic chemistry applications. Tunable solid-state oscillator single-mode microwave flow reactors are more versatile heaters that impart both better process control and energy efficiency than conventional magnetron oscillator flow reactors when operated in single-mode or multimode.



We thank Professors Y. Hamashima, H. Egami and Akai (University of Shizuoka), Professors H. Sajiki and Y. Monguchi (Gifu Pharmaceutical University), Professors N. Mase, K. Takeda and K. Sato (Shizuoka University), Professor S. V. Ley (University of Cambridge), Professors Y. Norikane and J. Sugiyama (National Institute for Advanced Industrial Science and Technology (AIST), Japan) for collaborations and helpful discussions. We thank Mr. T. Okamoto and Mr. H. Odajima at Pacific Microwave Technologies for assisting with resonator and reactor design. We thank Professors Y. Wada, E. Suzuki, S. Fujii, M. Maitani and S. Tsubaki (Tokyo Institute of Technology), Professor S. Mineki (Tokyo University of Science), and Professor S. Ohuchi (Kyushu Institute of Technology) for their supports. We are grateful for the financial support from the Subsidy Program for Innovative Business Promotion of Shizuoka Prefecture to support our collaborative work. Joshua P. Barham is a former JSPS International Research Fellow and is grateful for financial support from JSPS.

References and Notes

  1. 1.
    Stuerga D (2006) Microwaves in organic synthesis, 2nd edn, Loupy A (ed). Wiley-VCH, WeinheimGoogle Scholar
  2. 2.
    Gabriel C, Gabriel S, Grant EH, Halstead BSJ, Mingos DMP (1998) Dielectric parameters relevant to microwave dielectric heating. Chem Soc Rev 27:213–224CrossRefGoogle Scholar
  3. 3.
    Bogdal D, Prociak A (2008) Microwave-enhanced polymer chemistry and technology. Wiley-VCH, WeinheimGoogle Scholar
  4. 4.
  5. 5.
    Gulich R, Köhler M, Lunkenheimer P, Loidl A (2009) Dielectric spectroscopy on aqueous electrolytic solutions. Radiat Environ Biophys 48:107–114CrossRefGoogle Scholar
  6. 6.
    Metaxas AC, Meredith RJ (2008) Industrial microwave heating, Johns AT, Ratcliff G, Platts JR (eds). Lightning Source UK Ltd, Milton KeynesGoogle Scholar
  7. 7.
    Sturm GSJ, Verweij MD, van Gerven T, Stankiewicz AI, Stefanidis GD (2012) On the effect of resonant microwave fields on temperature distribution in time and space. Int J Heat Mass Transf 55:3800–3811CrossRefGoogle Scholar
  8. 8.
    Weeson R, Jerby E, Schwarz E, Gerling JF, Werner K, Durnan G, Yakovlev VV, Achkasov K, Meir Y, Metaxas AC (2016) Trends in RF and microwave heating: special issue on solid-state microwave heating. AMPERE Newslett. Scholar
  9. 9.
    Schwartz E, Anaton A, Huppert D, Jerby E (2006) Transistor-based miniature microwave heater. In: 40th annual microwave symposium proceedings.
  10. 10.
    Horikoshi S, Schiffmann RF, Fukushima J, Serpone N (2018) Microwave chemical and materials processing. A tutorial. Springer Nature, Singapore.
  11. 11.
    Atuonwu JC, Tassou SA (2019) Energy issues in microwave food processing: a review of developments and the enabling potentials of solid-state power delivery. Crit Rev Food Sci Nutr 59(9): 1392–1407. Scholar
  12. 12.
    Atuonwu JC, Tassou SA (2018) Quality assurance in microwave food processing and the enabling potentials of solid-state power generators: a review. J Food Eng 234: 1–15. Scholar
  13. 13.
    Ohtani T (1973) Hybrid microwave heating apparatus. New Nippon Electron Co. Ltd. US Patent No. US3867607AGoogle Scholar
  14. 14.
    Metaxas AC, Meredith RJ (1983) Industrial microwave heating. Peter Peregrinus Ltd, LondonGoogle Scholar
  15. 15.
    Chandrasekaran S, Ramanathan S, Basak T (2012) Microwave material processing—a review. AIChE J 58:330–363CrossRefGoogle Scholar
  16. 16.
    Kappe CO, Stadler A, Dallinger D (2013) Microwaves in organic and medicinal chemistry, Mannhold R, Kubinyi H, Folkers G (eds), Chaps. 3.3–3.5. Wiley-VCH, WeinheimGoogle Scholar
  17. 17.
    Kurniawan H, Alapati S, Che WS (2015) Effect of mode stirrers in a multimode microwave-heating applicator with the conveyor belt. Int J Prec Eng Manuf 2:31–36Google Scholar
  18. 18.
    Ano T, Kishimoto F, Sasaki R, Tsubaki S, Maitani MM, Suzuki E, Wada Y (2016) In situ temperature measurements of reaction spaces under microwave irradiation using photoluminescent probes. Phys Chem Chem Phys 18:13173–13179CrossRefGoogle Scholar
  19. 19.
    Razzaq T, Kremsner JM, Kappe CO (2008) Investigating the existence of nonthermal/specific microwave effects using silicon carbide heating elements as power modulators. J Org Chem 73:6321–6329CrossRefGoogle Scholar
  20. 20.
    Gutmann B, Obermayer D, Reichart B, Prekodravac B, Irfan M, Kresmsner JM, Kappe CO (2010) Sintered silicon carbide: a new ceramic vessel material for microwave chemistry in single-mode reactors. Chem Eur J 16:12182–12194CrossRefGoogle Scholar
  21. 21.
    Liu X, Zhang Z, Wu Y (2011) Absorption properties of carbon black/silicon carbide microwave absorbers. Compos B Eng 42:326–329CrossRefGoogle Scholar
  22. 22.
    Kappe CO (2013) Unraveling the mysteries of microwave chemistry using silicon carbide reactor technology. Acc Chem Res 46:1579–1587CrossRefGoogle Scholar
  23. 23.
    (a) Giguere RJ, Bray TL, Duncan SM, Majetich G (1986) Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett 27(41):4945–4948; (b) Gedye R, Smith F, Westaway K, Ali H, Baldisera L, Laberge L, Rousell J (1986) The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett 27(3):279–282Google Scholar
  24. 24.
    Strauss CR, Trainor RW (1995) Developments in microwave-assisted organic chemistry. Aust J Chem 48:1665–1692CrossRefGoogle Scholar
  25. 25.
    Ngoc TL, Roberts BA, Strauss CR (2006) Microwaves in organic synthesis, 2nd edn, Loupy A (ed). Wiley-VCH, WeinheimGoogle Scholar
  26. 26.
    Devine WG, Leadbeater NE (2011) Probing the energy efficiency of microwave heating and continuous-flow conventional heating as tools for organic chemistry. Arkivoc 5:127–143Google Scholar
  27. 27.
    Roberge DM, Zimmermann B, Rainone F, Gottsponer M, Eyholzer M, Kockmann N (2008) Microreactor technology and continuous processes in the fine chemical and pharmaceutical industry: is the revolution underway? Org Process Res Dev 12:905–910CrossRefGoogle Scholar
  28. 28.
    Gutmann B, Cantillo D, Kappe CO (2015) Continuous-flow technology—a tool for the safe manufacturing of active pharmaceutical ingredients. Angew Chem Int Ed 54:6688–6728CrossRefGoogle Scholar
  29. 29.
    Cole KP, Groh JM, Johnson MD, Burcham CL, Campbell BM, Diseroad WD, Heller MR, Howell JR, Kallman NJ, Koenig TM, May SA, Miller RD, Mitchell D, Myers DP, Myers SS, Phillips JL, Polster CS, White TD, Cashman J, Hurley D, Moylan R, Sheehan P, Spencer RD, Desmond K, Desmond P, Gowran O (2017) Kilogram-scale prexasertib monolactate monohydrate synthesis under continuous-flow CGMP conditions. Science 356:1144–1150CrossRefGoogle Scholar
  30. 30.
    Myers RM, Fitzpatrick DE, Turner RM, Ley SV (2014) Flow chemistry meets advanced functional materials. Chem Eur J 20:12348–12366CrossRefGoogle Scholar
  31. 31.
    Moghaddam MM, Baghbanzadeh M, Sadeghpour A, Glatter O, Kappe CO (2013) Continuous-flow synthesis of CdSe quantum dots: a size-tunable and scalable approach. Chem Eur J 19:11629–11636CrossRefGoogle Scholar
  32. 32.
    Jensen KF, Reizman BJ, Newman SG (2014) Tools for chemical synthesis in microsystems. Lab Chip 14:3206–3212CrossRefGoogle Scholar
  33. 33.
    Gérardy R, Emmanuel N, Toupy T, Kassin V-E, Tshibalonza NN, Schmitz M, Monbaliu JCM (2018) Continuous flow organic chemistry: successes and pitfalls at the interface with current societal challenges. Eur J Org Chem 2301–2351Google Scholar
  34. 34.
    Vaddula BR, Gonzalez MA (2013) Flow chemistry for designing sustainable chemical synthesis. Chim Oggi 31:16–20Google Scholar
  35. 35.
    MacQuarrie DJ (2010) Heterogenized homogenous catalysts for fine chemicals production: materials and processes, Barbaro P, Liguori F (eds). Springer, DordrechtGoogle Scholar
  36. 36.
    Granda JM, Donina L, Dragone V, Long D-L, Cronin L (2018) Controlling an organic synthesis robot with machine learning to search for new reactivity. Nature 559:377–381CrossRefGoogle Scholar
  37. 37.
    Vámosi P, Matsuo K, Masuda T, Sato K, Narumi T, Takeda K, Mase N (2019) Rapid optimization of reaction conditions based on comprehensive reaction analysis using a continuous flow microwave reactor. Chem Rec 19:77–84. Scholar
  38. 38.
    Wegner J, Ceylan S, Kirschning A (2012) Flow chemistry—a key enabling technology for (multistep) organic synthesis. Adv Synth Catal 354:17–57CrossRefGoogle Scholar
  39. 39.
    Carter CF, Lange H, Ley SV, Baxendale IR, Wittkamp B, Goode JG, Gaunt NL (2010) ReactIR flow cell: a new analytical tool for continuous flow chemical processing. Org Process Res Dev 14:393–404CrossRefGoogle Scholar
  40. 40.
    Hartman RL, Naber JR, Zaborenko N, Buchwald SL, Jensen KF (2010) Overcoming the challenges of solid bridging and constriction during Pd-catalyzed C-N bond formation in microreactors. Org Process Res Dev 14:1347–1357CrossRefGoogle Scholar
  41. 41.
    Kappe CO (2004) Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 43:6250–6284CrossRefGoogle Scholar
  42. 42.
    Leonelli C (2017) Microwave chemistry, Cravotto G, Carnaroglio D (eds). Walter de Gruyter GmbH & Co. KG, pp 39–45Google Scholar
  43. 43.
    Cablewski T, Faux AF, Strauss CR (1994) Development and application of a continuous microwave reactor for organic synthesis. J Org Chem 59:3408–3412CrossRefGoogle Scholar
  44. 44.
    Singh BK, Kaval N, Tomar S, der Eycken EV, Parmar VS (2008) Transition metal-catalyzed carbon-carbon bond formation Suzuki, Heck, and Sonogashira reactions using microwave and microtechnology. Org Process Res Dev 12:468–474CrossRefGoogle Scholar
  45. 45.
    Baxendale IR, Hornung C, Ley SV, Molina JDMM, Wilkström A (2013) Flow microwave technology and microreactors in synthesis. Aust J Chem 66:131–144Google Scholar
  46. 46.
    Strauss CR (1990) A continuous microwave reactor for laboratory-scale synthesis. Chem Aust 186Google Scholar
  47. 47.
    Chen S-T, Chiou S-H, Wang K-T (1990) Preparative scale organic synthesis using a kitchen microwave oven. J Chem Soc Chem Commun 807–809Google Scholar
  48. 48.
    Kremsner JM, Alexander S, Kappe CO (2006) The scale-up of microwave-assisted organic synthesis. Top Curr Chem 266:233–278CrossRefGoogle Scholar
  49. 49.
    Baxendale IR, Hayward JJ, Ley SV (2007) Microwave reactions under continuous flow conditions. Comb Chem High Throughput Screening 10:802–836CrossRefGoogle Scholar
  50. 50.
    Glasnov TN, Kappe CO (2007) Microwave-assisted synthesis under continuous-flow conditions. Macromol Rapid Commun 28:395–410CrossRefGoogle Scholar
  51. 51.
    Moseley JD, Lenden P, Lockwood M, Ruda K, Sherlock J-P, Thomson AD, Gilday JP (2008) A comparison of commercial microwave reactors for scale-up within process chemistry. Org Process Res Dev 12:30–40CrossRefGoogle Scholar
  52. 52.
    Bowman MD, Holcomb JL, Kormos CM, Leadbeater NE, Williams VA (2008) Approaches for scale-up of microwave-promoted reactions. Org Process Res Dev 12:41–57CrossRefGoogle Scholar
  53. 53.
    Strauss CR (2009) On scale up of organic reactions in closed vessel microwave systems. Org Process Res Dev 13:915–923CrossRefGoogle Scholar
  54. 54.
    Estel L, Poux M, Benamara N, Polaert I (2017) Continuous flow-microwave reactor: where are we? Chem Eng Process 113:56–64CrossRefGoogle Scholar
  55. 55.
    Chen S-T, Chiou S-H, Wang K-T (1991) Enhancement of chemical reactions by microwave irradiation. J Chin Chem Soc 38:85–91CrossRefGoogle Scholar
  56. 56.
    Raner KD, Strauss CR, Trainor RW, Thorn JS (1995) A new microwave reactor for batchwise organic synthesis. J Org Chem 60:2456–2460CrossRefGoogle Scholar
  57. 57.
    Horikoshi S, Abe H, Torigoe K, Abe M, Serpone N (2010) Access to small size distributions of nanoparticles by microwave-assisted synthesis. Formation of Ag nanoparticles in aqueous carboxymethylcellulose solutions in batch and continuous-flow reactors. Nanoscale 2:1441–1447CrossRefGoogle Scholar
  58. 58.
    Dallinger D, Lehmann H, Moseley JD, Stadler A, Kappe CO (2011) Scale-up of microwave-assisted reactions in a multimode bench-top reactor. Org Process Res Dev 15:841–854CrossRefGoogle Scholar
  59. 59.
    Shieh W-C, Dell S, Repič O (2001) 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) and microwave-accelerated green chemistry in methylation of phenols, indoles, and benzimidazoles with dimethyl carbonate. Org Lett 3:4279–4281CrossRefGoogle Scholar
  60. 60.
    Shieh W-C, Dell S, Repič O (2002) Large scale microwave-accelerated esterification of carboxylic acids with dimethyl carbonate. Tetrahedron Lett 43:5607–5609CrossRefGoogle Scholar
  61. 61.
    Shieh W-C, Lozanov M, Repič O (2003) Accelerated benzylation reaction utilizing dibenzyl carbonate as an alkylating reagent. Tetrahedron Lett 44:6943–6945CrossRefGoogle Scholar
  62. 62.
    Savin KA, Robertson M, Gernert D, Green S, Hembre EJ, Bishop J (2003) A study of the synthesis of triazoles using microwave irradiation. Mol Divers 7:171–174CrossRefGoogle Scholar
  63. 63.
    Wilson NS, Sarko CR, Roth GP (2004) Development and applications of a practical continuous flow microwave cell. Org Process Res Dev 8:535–538CrossRefGoogle Scholar
  64. 64.
    He P, Haswell SJ, Fletcher PDI (2004) Microwave-assisted Suzuki reactions in a continuous flow capillary reactor. Appl Catal A 274:111–114CrossRefGoogle Scholar
  65. 65.
    He P, Haswell SJ, Fletcher PDI (2005) Efficiency, monitoring and control of microwave heating within a continuous flow capillary reactor. Sens Actuators B 105:516–520CrossRefGoogle Scholar
  66. 66.
    Bagley MC, Lenkins RL, Lubinu MC, Mason C, Wood R (2005) A simple continuous flow microwave reactor. J Org Chem 70:7003–7006CrossRefGoogle Scholar
  67. 67.
    Saaby S, Baxendale IR, Ley SV (2005) Non-metal-catalysed intramolecular alkyne cyclotrimerization reactions promoted by focused microwave heating in batch and flow modes. Org Biomol Chem 3:3365–3368CrossRefGoogle Scholar
  68. 68.
    Comer E, Organ MG (2005) A microreactor for microwave-assisted capillary (continuous flow) organic synthesis. J Am Chem Soc 127:8160–8167CrossRefGoogle Scholar
  69. 69.
    Comer E, Organ MG (2005) A microcapillary system for simultaneous, parallel microwave-assisted synthesis. Chem Eur J 11:7223–7227CrossRefGoogle Scholar
  70. 70.
    Shore G, Morin S, Organ MG (2006) Catalysis in capillaries by Pd thin films using microwave-assisted continuous-flow organic synthesis (MACOS). Angew Chem Int Ed 45:2761–2766lCrossRefGoogle Scholar
  71. 71.
    Baxendale IR, Griffiths-Jones CM, Ley SV, Tranmer GK (2006) Microwave-assisted Suzuki coupling reactions with an encapsulated palladium catalyst for batch and continuous-flow transformations. Chem Eur J 12:4407–4416CrossRefGoogle Scholar
  72. 72.
    Glasnov TN, Vugts DJ, Koningstein MM, Desai B, Fabian WMF, Orru RVA, Kappe CO (2006) Microwave-assisted Dimroth rearrangement of thiazines to dihydropyrimidinethiones: synthetic and mechanistic aspects. QSAR Comb Sci 26:509–518CrossRefGoogle Scholar
  73. 73.
    Bremnar WS, Organ MG (2007) Multicomponent reactions to form heterocycles by microwave-assisted continuous flow organic synthesis. J Comb Chem 9:14–16CrossRefGoogle Scholar
  74. 74.
    Smith CJ, Iglesias-Sigüenza FJ, Baxendale IR, Ley SV (2007) Flow and batch mode focused microwave synthesis of 5-amino-4-cyanopyrazoles and their further conversion to 4-aminopyrazolopyrimidines. Org Biomol Chem 5:2758–2761CrossRefGoogle Scholar
  75. 75.
    Shore G, Morin S, Mallik D, Organ MG (2008) Pd PEPPSI-IPr-mediated reactions in metal-coated capillaries under MACOS: the synthesis of indoles by sequential aryl amination/Heck coupling. Chem Eur J 14:1351–1356CrossRefGoogle Scholar
  76. 76.
    Bergamelli F, Iannelli M, Marafie JA, Moseley JD (2010) A commercial continuous flow microwave reactor evaluated for scale-up. Org Process Res Dev 14:926–930CrossRefGoogle Scholar
  77. 77.
    Dressen MHCL, van de Kruijs BHP, Meuldijk J, Vekemans JAJM, Hulshof LA (2009) From batch to flow processing: racemization of N-acetylamino acids under microwave heating. Org Process Res Dev 13:888–895CrossRefGoogle Scholar
  78. 78.
    Bagley MC, Fusillo V, Jenkins RL, Lubinu MC, Mason C (2010) Continuous flow processing from microreactors to mesoscale: the Bohlmann-Rahtz cyclodehydration reaction. Org Biomol Chem 8:2245–2251CrossRefGoogle Scholar
  79. 79.
    Sauks JM, Mallik D, Lawryshyn Y, Bender T, Organ M (2014) A continuous-flow microwave reactor for conducting high-temperature and high-pressure chemical reactions. Org Process Res Dev 18:1310–1314CrossRefGoogle Scholar
  80. 80.
    Öhrngren P, Fardost A, Russo F, Schanche J-S, Fagrell M, Larhed M (2012) Evaluation of a nonresonant microwave applicator for continuous-flow chemistry applications. Org Process Res Dev 16:1053–1063CrossRefGoogle Scholar
  81. 81.
    Fardost A, Russo F, Larhed M (2012) A non-resonant microwave applicator fully dedicated to continuous flow chemistry. Chim Oggi 30:14–17Google Scholar
  82. 82.
    Engen K, Sävmarker J, Rosenström U, Wannberg J, Lundbäck T, Jenmalm-Jensen A, Larhed M (2014) Microwave heated flow synthesis of spiro-oxindole dihydroquinazolinone based IRAP inhibitors. Org Process Res Dev 18:1582–1588CrossRefGoogle Scholar
  83. 83.
    Kumpiņa I, Isaksson R, Sävmarker J, Wannberg J, Larhed M (2016) Microwave promoted transcarbamylation reaction of sulfonylcarbamates under continuous-flow conditions. Org Process Res Dev 20:440–445CrossRefGoogle Scholar
  84. 84.
    Skillinghaug B, Rydfjord J, Sävmarker J, Larhed M (2016) Microwave heated continuous flow palladium(II)-catalyzed desulfitative synthesis of aryl ketones. Org Process Res Dev 20:2005–2011CrossRefGoogle Scholar
  85. 85.
    Nishioka M, Miyakawa M, Kataoka H, Koda H, Sato K, Suzuki TM (2011) Continuous synthesis of monodispersed silver nanoparticles using a homogeneous heating microwave reactor system. Nanoscale 3:2621–2626CrossRefGoogle Scholar
  86. 86.
    Nishioka M, Miyakawa M, Daino Y, Kataoka H, Koda H, Sato K, Suzuki TM (2011) Facile and continuous synthesis of Ag@SiO2 core-shell nanoparticles by a flow reactor system assisted with homogeneous microwave heating. Chem Lett 40:1204–1206CrossRefGoogle Scholar
  87. 87.
    Nishioka M, Miyakawa M, Daino Y, Kataoka H, Koda H, Sato K, Suzuki TM (2011) Rapid and continuous polyol process for platinum nanoparticle synthesis using a single-mode microwave flow reactor. Chem Lett 40:1327–1329CrossRefGoogle Scholar
  88. 88.
    Nishioka M, Miyakawa M, Daino Y, Kataoka H, Koda H, Sato K, Suzuki TM (2013) Single-mode microwave reactor used for continuous flow reactions under elevated pressure. Ind Eng Chem Res 52:4683–4687CrossRefGoogle Scholar
  89. 89.
    Matsuzawa M, Togashi S, Hasebe S (2012) Isothermal reactor for continuous flow microwave-assisted chemical reaction. J Therm Sci Technol 7:58–74CrossRefGoogle Scholar
  90. 90.
    Yokozawa S, Ohneda N, Muramatsu K, Okamoto T, Odajima H, Ikawa T, Sugiyama J, Fujita M, Sawairi T, Egami H, Hamashima Y, Egi M, Akai S (2015) Development of a highly efficient single-mode microwave applicator with a resonant cavity and its application to continuous flow syntheses. RSC Adv 5:10204–10210CrossRefGoogle Scholar
  91. 91.
    Musio B, Mariani F, Śliwiński EP, Kabeshov MA, Odajima H, Ley SV (2016) Combination of enabling technologies to improve and describe the stereoselectivity of Wolff-Staudinger cascade reaction. Synthesis 48:3515–3526CrossRefGoogle Scholar
  92. 92.
    Barham JP, Tanaka S, Koyama E, Ohneda N, Okamoto T, Odajima H, Sugiyama J, Norikane Y (2018) Selective, scalable synthesis of C60-fullerene/indene monoadducts using a microwave flow applicator. J Org Chem 83:4348–4354CrossRefGoogle Scholar
  93. 93.
    Ichikawa T, Mizuno M, Ueda S, Ohneda N, Odajima H, Sawama Y, Monguchi Y, Sajiki H (2018) A practical method for heterogeneously-catalyzed Mizoroki-heck reaction: flow system with adjustment of microwave resonance as an energy source. Tetrahedron Lett 74:1801–1816Google Scholar
  94. 94.
    Egami H, Sawairi T, Tamaoki S, Ohneda N, Okamoto T, Odajima H, Hamashima Y (2018) (E)-3-[4-(Pent-4-en-1-yloxy)phenyl]acrylicc acid. Molbank, M996Google Scholar
  95. 95.
    Yadav VS, Sahu DK, Singh Y, Kumar M, Dhubkarya DC (2010) Frequency and temperature dependence of dielectric properties of pure poly vinylidene fluoride (PVDF) thin films. AIP Conf Proc 1285:267–278CrossRefGoogle Scholar
  96. 96.
    The limited examples of microwave flow reactions using non-polar solvents (defined by those with a permittivity ε < 5) use polar/ionic additives, high substrate concentrations or SiC reactor tubes (known to absorb microwave irradiation efficiently; thus acting as a conventional heater) to circumvent the poor microwave absorption of hydrocarbon solvents. See also Refs. 19–22, 62, 74, 75, 77, 79Google Scholar
  97. 97.
    Saida H, Odajima H, Ohneda N, Yokozawa S (2012). SAIDA FDS Inc., World Patent No. WO/2012/043753Google Scholar
  98. 98.
    Barham JP, Koyama E, Norikane Y, Ohneda N, Yoshimura T (2019) Microwave flow: a perspective on reactor and microwave configurations and the emergence of tunable single-mode heating toward large-scale applications. Chem Rec 18:183–203. Scholar
  99. 99.
    Xu D-Q, Yang W-L, Luo S-P, Wang B-T, Wu J, Xu Z-Y (2007) Fischer indole synthesis in Brønsted acidic ionic liquids: a green, mild, and regiospecific reaction system. Eur J Org Chem 6:1007–1012CrossRefGoogle Scholar
  100. 100.
    Fitzpatrick JT, Hiser RD (1957) Noncatalytic Fischer indole synthesis. J Org Chem 22:1703–1704CrossRefGoogle Scholar
  101. 101.
    An J, Bagnell L, Cablewski T, Strauss CR, Trainor RW (1997) Applications of high-temperature aqueous media for synthetic organic reactions. J Org Chem 62:2505–2511CrossRefGoogle Scholar
  102. 102.
    Dubhashe YR, Sawant VM, Gaikar VG (2018) Process intensification of continuous flow synthesis of tryptophol. Ind Eng Chem Res 57:2787–2796CrossRefGoogle Scholar
  103. 103.
    Shore G, Organ MG (2008) Diels-Alder cycloadditions by microwave-assisted, continuous flow organic synthesis (MACOS): the role of metal films in the flow tube. Chem Commun 838–840Google Scholar
  104. 104.
    Leadbeater NE, Pillsbury SJ, Shanahan E, Williams VA (2005) An assessment of the technique of simultaneous cooling in conjunction with microwave heating for organic synthesis. Tetrahedron 61:3565–3585CrossRefGoogle Scholar
  105. 105.
    Deadman BJ, Collins SG, Maguire AR (2015) Taming hazardous chemistry in flow: the continuous processing of diazo and diazonium compounds. Chem Eur J 21:2298–2308CrossRefGoogle Scholar
  106. 106.
    Müller STR, Wirth T (2015) Diazo compounds in continuous-flow technology. Chemsuschem 8:245–250CrossRefGoogle Scholar
  107. 107.
    Fuse S, Otake Y, Nakamura H (2017) Integrated micro-flow synthesis based on photochemical Wolff rearrangement. Eur J Org Chem 44:6466–6473CrossRefGoogle Scholar
  108. 108.
    Puplovskis A, Kacens J, Neilands O (1997) New route for [60] fullerene functionalization in [4+2] cycloaddition reaction using indene. Tetrahedron Lett 38:285–288CrossRefGoogle Scholar
  109. 109.
    He Y, Chen H-Y, Hou J, Li Y (2010) Indene-C60 bisadduct: a new acceptor for high-performance polymer solar cells. J Am Chem Soc 132:1377–1382CrossRefGoogle Scholar
  110. 110.
    Campisciano V, Riela S, Not R, Gruttadauria M, Giacalone F (2014) Efficient microwave-mediated synthesis of fullerene acceptors for organic photovoltaics. RSC Adv 4:63200–63207CrossRefGoogle Scholar
  111. 111.
    Seyler H, Wong WWH, Jones DJ, Holmes AB (2011) Continuous flow synthesis of fullerene derivatives. J Org Chem 76:3551–3556CrossRefGoogle Scholar
  112. 112.
    Koyama E, Ito N, Sugiyama J, Barham JP, Norikane Y, Azumi R, Ohneda N, Ohno Y, Yoshimura T, Odajima H, Okamoto T (2018) A continuous-flow resonator-type microwave reactor for high-efficiency organic synthesis and Claisen rearrangement as a model reaction. J Flow Chem 8:147–156CrossRefGoogle Scholar
  113. 113.
    Egami H, Tamaoki S, Abe M, Ohneda N, Yoshimura T, Okamoto T, Odajima H, Mase N, Takeda K, Hamashima Y (2018) Scalable microwave-assisted Johnson-Claisen rearrangement with a continuous flow microwave system. Org Process Res Dev 22:1029–1033CrossRefGoogle Scholar
  114. 114.
    Harada Y, Sakajiri K, Kuwahara H, Kang S, Watanabe J, Tokita M (2015) Cholesteric films exhibiting expanded or split reflection bands prepared by atmospheric photopolymerisation of diacrylic nematic monomer doped with a photoresponsive chiral dopant. J Mater Chem C 3:3790–3795CrossRefGoogle Scholar
  115. 115.
    Kappe CO, Pieber B, Dallinger D (2013) Microwave effects in organic synthesis: myth or reality? Angew Chem Int Ed 52:1088–1094CrossRefGoogle Scholar
  116. 116.
    Barham JP, Tamaoki S, Egami H, Ohneda N, Okamoto T, Odajima H, Hamashima Y (2018) C-alkylation of N-alkylamides with styrenes in air and scale-up using a microwave flow reactor. Org Biomol Chem 16:7568–7573CrossRefGoogle Scholar
  117. 117.
    The microwave versus thermal comparison result and corresponding permittivity measurements disclosed herein have not been previously disclosed elsewhereGoogle Scholar
  118. 118.
    de la Hoz A, Díaz-Ortiz A, Moreno A (2004) Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev 34:164–178CrossRefGoogle Scholar
  119. 119.
    Horikoshi S, Nakamura T, Kawaguchi M, Serpone N (2015) Enzymatic proteolysis of peptide bonds by a metallo-endoproteinaseunder precise temperature control with 5.8-GHz microwave radiation. J Mol Catal B Enzym 116:52–59CrossRefGoogle Scholar
  120. 120.
    Tashima S, Nushiro K, Saito K, Yamada T (2016) Microwave specific effect on catalytic atropo-enantioselective ring-opening reaction of biaryl lactones. Bulletin Chem Soc Japan 89:833–835CrossRefGoogle Scholar
  121. 121.
    Ichikawa T, Netsu M, Mizuno M, Mizusaki T, Takagi Y, Sawama Y, Monguchi Y, Sajiki H (2017) Development of a unique heterogeneous palladium catalyst for the Suzuki-Miyaura reaction using (hetero)aryl chlorides and chemoselective hydrogenation. Adv Synth Catal 359:2269–2279CrossRefGoogle Scholar
  122. 122.
    Weissman SA, Anderson NG (2015) Design of experiments (DoE) and process optimization. A review of recent publications. Org Process Res Dev 19:1605–1633CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  2. 2.SAIDA FDS Inc.YaizuJapan

Personalised recommendations