Radio Frequency (RF) Discharge Lamps

  • Stephan HoltrupEmail author
  • Satoshi Horikoshi
  • Nick Serpone


This chapter guides the reader through a brief historical view of discharge lamps, especially RF discharge lamps, from their first accounts in the late nineteenth century until novel developments. Some principles of novel lamp technologies are explained, and their advantages pointed out in several special applications apart from the well-known general lighting.


  1. 1.
  2. 2.
    Edison TA (1880) Electric lamp. US Patent 223,898, 1880Google Scholar
  3. 3.
    Edison TA (1907) Fluorescent electric lamp. US Patent 865,367, 1907Google Scholar
  4. 4.
  5. 5.
    Bright AAJ (1949) The electric-lamp industry. MacMillan Publishers, New YorkGoogle Scholar
  6. 6.
  7. 7.
  8. 8.
  9. 9.
  10. 10.
  11. 11.
    Hewitt PC (1907) Method of producing electric light. US Patent 843,534, 1907Google Scholar
  12. 12.
    Hewitt PC (1910) Induction lamp. US Patent 966,204, 1910Google Scholar
  13. 13.
    Bouman et al (1987) Electrodeless low-pressure gas discharge lamp. US Patent 4,645,967, 1987Google Scholar
  14. 14.
  15. 15.
    Godyak VA (1998) High intensity electrodeless low pressure light source driven by a transformer core arrangement. US Patent 5,834,905, 1998Google Scholar
  16. 16.
  17. 17.
    Johnston CW, van der Heijden HWP, Janssen GM, van Dijk J, van der Mullen JJAM (2002) A self-consistent LTE model of a microwave-driven, high-pressure sulfur lamp. J Phys D Appl Phys 35:342–351 CrossRefGoogle Scholar
  18. 18.
    Turner BP, Ury MG, Leng Y, Love WG (1997) Sulfur lamps—progress in their development. J Illuminat Eng Soc 26:10–16CrossRefGoogle Scholar
  19. 19.
    Ciolkosz DE, Albright LD, Sager JC (1998) Microwave lamp characterization. Life Support Biosph Sci 5:167–174Google Scholar
  20. 20.
    Krizek DT, Mirecki RM, Britz SJ, Harris WG, Thimijan RW (1998) Spectral properties of microwave-powered sulfur lamps in comparison to sunlight and high pressure sodium/metal halide lamps. Biotronics 27:69–80Google Scholar
  21. 21.
    Horikoshi S, Abe M, Serpone N (2009) Novel designs of microwave discharge electrodeless lamps (MDEL) in photochemical applications. Use in advanced oxidation processes. Photochem Photobiol Sci 8:1087–1104Google Scholar
  22. 22.
    Ashikaga K, Kawamura K (2006) UV irradiation equipment using DC power supply. Kougyo Toso 201:40–44 (Japanese)Google Scholar
  23. 23.
    Ward HR, Wishnok JS (1968) The vacuum ultraviolet photolysis of benzene. J Am Chem Soc 90:5353–5357CrossRefGoogle Scholar
  24. 24.
    Církva V, Hájek M (1999) J Photochem Photobiol A: Chem 123:21–23CrossRefGoogle Scholar
  25. 25.
    Klán P, Literák J, Hájek M (1999) The electrodeless discharge lamp: a prospective tool for photochemistry. J Photochem Photobiol A: Chem 128:145–149CrossRefGoogle Scholar
  26. 26.
    Klán P, Hájek M, Církva V (2001) The electrodeless discharge lamp: a prospective tool for photochemistry Part 3. The microwave photochemistry reactor. J Photochem Photobiol A: Chem 140:185–189Google Scholar
  27. 27.
    Církva V, Vlková L, Relich S, Hájek M (2006) Microwave photochemistry IV: preparation of the electrodeless discharge lamps for photochemical applications. J Photochem Photobiol A: Chem 179:229–233CrossRefGoogle Scholar
  28. 28.
    Müllera P, Klán P, Církv V (2005) The electrodeless discharge lamp: a prospective tool for photochemistry Part 5: fill material-dependent emission characteristics. J Photochem Photobiol A: Chem 171:51–57CrossRefGoogle Scholar
  29. 29.
    Církv V, Kurfürstová J, Karban J, Hájek M (2004) Microwave photochemistry II. Photochemistry of 2-tert-butylphenol. J Photochem Photobiol A: Chem 168:197–204Google Scholar
  30. 30.
    Klán P, Církva V (2006) Microwaves in organic synthesis. In: Loupy A (ed) Wiley–VCH Verlag, Weinheim, Germany, pp 860–897. Chapter 19Google Scholar
  31. 31.
    Al-Shamma’a AI, Pandithas I, Lucas J (2001) Low-pressure microwave plasma ultraviolet lamp for water purification and ozone applications. J Phys D Appl Phys 34:2775–2781CrossRefGoogle Scholar
  32. 32.
    Howard AG, Labonne L, Rousay E (2001) Microwave driven ultraviolet photo-decomposition of organophosphate species. Analyst 126:141–143CrossRefGoogle Scholar
  33. 33.
    Klán P, Vavrik M (2006) Non-catalytic remediation of aqueous solutions by microwave-assisted photolysis in the presence of H2O2. J Photochem Photobiol A: Chem 177:24–33Google Scholar
  34. 34.
    Bergmanna H, Iourtchouk T, Schöps K, Bouzek K (2002) New UV irradiation and direct electrolysis—promising methods for water disinfection. Chem Eng J 85:111–117CrossRefGoogle Scholar
  35. 35.
    Iwaguch S, Matsumura K, Tokuoka Y, Wakui S, Kawashima N (2002) Sterilization system using microwave and UV light. Coll Surf B: Biointerfaces 25:299–304CrossRefGoogle Scholar
  36. 36.
    Florian D, Knapp G (2001) Anal Chem 73:1515–1520CrossRefGoogle Scholar
  37. 37. Accessed 2019
  38. 38.
    Fassler D, Drewitz A, Thomas Ch, Meyer A, Johne St. (2003) Proceedings 9th international conference AOTs-9, Montreal (Quebec), Canada, Oct 2003Google Scholar
  39. 39.
  40. 40.
    Horikoshi S, Osawa A, Abe M, Serpone N (2011) On the generation of hot-spots by microwave electric and magnetic fields and their impact on a microwave-assisted heterogeneous reaction in the presence of metallic Pd nanoparticles on an activated carbon support. J Phys Chem C 115:23030–23035CrossRefGoogle Scholar
  41. 41.
    Feasibility study on research and development of UV-C generators using compact, high-efficiency GaN oscillators. New Energy and Industrial Technology Development Organization (NEDO) project, 2015–2016, JapanGoogle Scholar
  42. 42.
  43. 43.
  44. 44.
    Horikoshi S, Kajitani M, Sato S, Serpone N (2007) A novel environmental risk-free microwave discharge electrodeless lamp (MDEL) in advanced oxidation processes, degradation of the 2,4-D herbicide. J Photochem Photobiol A: Chem 189:355–363CrossRefGoogle Scholar
  45. 45.
    Horikoshi S, Yamamoto D, Hagiwara K, Tsuchida A, Matsumoto I, Nishiura Y, Kiyoshima Y, Serpone N (2019) Development of a Hg-free UV light source and its performance in photolytic and photocatalytic applications. Photochem Photobiol Sci 18:328–335CrossRefGoogle Scholar
  46. 46.
    Hughes TG, Smith RB, Kiely DH (1983) Stored chemical energy propulsion system for underwater applications. J Energy 7:128–133CrossRefGoogle Scholar
  47. 47.
    Sansonetti JE, Martin WC (2005) Handbook of basic atomic spectroscopic data. J Phys Chem Ref Data 34:1559–2259CrossRefGoogle Scholar
  48. 48.
    Godyak VA (2002) Bright idea: radio-frequency light sources. IEEE Ind Appl Mag 8:42–49CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Stephan Holtrup
    • 1
    Email author
  • Satoshi Horikoshi
    • 2
  • Nick Serpone
    • 3
  1. 1.pinkRFNijmegenThe Netherlands
  2. 2.Department of Materials and Life SciencesSophia UniversityTokyoJapan
  3. 3.PhotoGreen Laboratory, Dipartimento di ChimicaUniversita di PaviaPaviaItaly

Personalised recommendations