Advertisement

Cancer Stem Cells in Patient Survival and Therapies in Cancer

  • Ying Yang
  • Chao Tian
  • Wen-Jian Meng
Chapter
  • 66 Downloads

Abstract

Cancer stem cells (CSCs) are a subpopulation of cancer cells and responsible for stemness properties of cancer cell. It is regarded as one of the major causes of cancer formation, recurrence, and metastasis. Recent studies demonstrated that CSCs are closely related to the prognosis and treatment of many tumors including lung cancer, colorectal cancer, breast cancer, gastric cancer, and melanoma by targeting cell surface markers, signaling pathways, and microRNAs (miRNAs) to affect stemness features of CSCs. In addition, the application of nanotechnology in CSCs also makes it a novel and potential target in therapy of tumor. However, given the limitations of CSCs as mentioned in this paper, its clinical applications as a target of cancer face many challenges. Further research is needed to explore its clinical application as a target for tumor therapy.

Keywords

Cancer stem cells Cell surface markers Signaling pathway MicroRNA Drug resistance Survival 

Abbreviations

5FUR

5-Fluorouracil-resistant

ABC

ATP-binding cassette

ABCB

ATP-binding cassette subfamily B

ABCB5

ATP-binding cassette subfamily B member 5

ALDH

Aldehyde dehydrogenase

ALDH1A1

ALDH1 family member A1

ATRA

All-trans retinoic acid

BCRP

Breast cancer resistance protein

BCSCs

Breast CSCs

CAPE

Caffeic acid phenethyl ester

CDDP

Cisplatin

CDF

Difluorinated-curcumin

CRC

Colorectal cancer

CSCs

Cancer stem cells

CSLCs

Cancer stemlike cells

CTCs

Circulating tumor cells

CTL

Cytotoxic T lymphocytes

CTNNBIP1

Catenin beta interacting protein 1

DCs

Dendritic cells

DFS

Disease-free survival

EGCG

Epigallocatechin-3-gallate

EGFR

Epidermal growth factor receptor

EMT

Epithelial-to-mesenchymal transition

EpCAM

Epithelial cellular adhesion molecule

GCSCs

Gastric CSCs

GSI

Gamma secretase inhibitors

HA-SLNs

Solid lipid nanoparticles with hyaluronan

HH

Hedgehog

HHAT

HH acyl transferase

HIF

Hypoxia-inducible factor

HMGA2

High mobility group AT-hook 2

LAC

Lung adenocarcinoma

LGR5

Leucine-rich repeat-containing G-protein-coupled receptor 5

LSCC

Lung squamous cell carcinoma

LSD1

Lysine-specific demethylase 1

MAPK

Mitogen-activated protein kinase

MDR1

Multiple drug resistance

miRNA, miR

MicroRNA

MRP

Multidrug resistance-associated proteins

mTOR

Mammalian target of rapamycin

N2IC

Notch2 intracellular domain

NSCLC

Non-small cell lung cancer

OPN

Osteopontin

OS

Overall survival

PAF

Proliferating cell nuclear antigen-associated factor

PCNA

Proliferating cell nuclear antigen

P-gp

P-Glycoprotein

PRKCI

Protein kinase C iota

PTX

Paclitaxel

Rh123low

Low rhodamine 123

ROS

Reactive oxygen species

SCLC

Small cell lung cancer

SDCSCs

Spheroid-derived CSCs

SIRT1/2

Sirtuin 1 and 2

Smo

Smoothened

SP

Side population

STAT3

Signal transducer and activator of transcription 3

TAM

Tumor-associated macrophage

TNBC

Triple-negative breast cancer

VCR

Vincristine

VEGF

Vascular endothelial growth factor

VM

Vasculogenic mimicry

Notes

Acknowledgement

Authors’ contributions: All authors contributed in the writing of this paper. In addition, Y Yang was responsible for writing the manuscript. C Tian helped to search the literatures and revise the manuscript. WJ Meng participated in its design and helped to draft the manuscript. All authors read and approved the final manuscript. Conflict of interest statement: The authors declare that they have no conflict of interest.

References

  1. 1.
    Batlle E, Clevers H (2017) Cancer stem cells revisited. Nat Med 23(10):1124–1134PubMedCrossRefGoogle Scholar
  2. 2.
    Diaz A, Leon K (2011) Therapeutic approaches to target cancer stem cells. Cancers (Basel) 3(3):3331–3352CrossRefGoogle Scholar
  3. 3.
    Yoshida GJ, Saya H (2016) Therapeutic strategies targeting cancer stem cells. Cancer Sci 107(1):5–11PubMedCrossRefGoogle Scholar
  4. 4.
    Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760PubMedCrossRefGoogle Scholar
  5. 5.
    de Beça FF, Caetano P, Gerhard R et al (2013) Cancer stem cells markers CD44, CD24 and ALDH1 in breast cancer special histological types. J Clin Pathol 66(3):187–191PubMedCrossRefGoogle Scholar
  6. 6.
    Takebe N, Miele L, Harris PJ et al (2015) Targeting notch, hedgehog, and Wnt pathways in cancer stem cells: clinical update.Nature reviews. Clin Oncol 12(8):445–464Google Scholar
  7. 7.
    Bu P, Wang L, Chen KY et al (2016) A miR-34a-numb feedforward loop triggered by inflammation regulates asymmetric stem cell division in intestine and colon cancer. Cell Stem Cell 18(2):189–202PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Fesler A, Guo S, Liu H et al (2017) Overcoming chemoresistance in cancer stem cells with the help of microRNAs in colorectal cancer. Epigenomics 9(6):793–796PubMedCrossRefGoogle Scholar
  9. 9.
    Planchard D, Popat S, Kerr K et al (2019) Metastatic non-small cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 30(5):863–870PubMedCrossRefGoogle Scholar
  10. 10.
    Lee HJ, Choe G, Jheon S et al (2010) CD24, a novel cancer biomarker, predicting disease-free survival of non-small cell lung carcinomas: a retrospective study of prognostic factor analysis from the viewpoint of forthcoming (seventh) new TNM classification. J Thorac Oncol 5(5):649–657PubMedCrossRefGoogle Scholar
  11. 11.
    Liu YP, Yang CJ, Huang MS et al (2013) Cisplatin selects for multidrug-resistant CD133+ cells in lung adenocarcinoma by activating notch signaling. Cancer Res 73(1):406–416PubMedCrossRefGoogle Scholar
  12. 12.
    Serrano D, Bleau AM, Fernandez-Garcia I et al (2011) Inhibition of telomerase activity preferentially targets aldehyde dehydrogenase-positive cancer stem-like cells in lung cancer. Mol Cancer 10:96PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Liang D, Shi Y (2012) Aldehyde dehydrogenase-1 is a specific marker for stem cells in human lung adenocarcinoma. Med Oncol 29(2):633–639PubMedCrossRefGoogle Scholar
  14. 14.
    Huang CP, Tsai MF, Chang TH et al (2013) ALDH-positive lung cancer stem cells confer resistance to epidermal growth factor receptor tyrosine kinase inhibitors. Cancer Lett 328(1):144–151PubMedCrossRefGoogle Scholar
  15. 15.
    Sullivan JP, Spinola M, Dodge M et al (2010) Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling. Cancer Res 70(23):9937–9948PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Takebe N, Ivy SP (2010) Controversies in cancer stem cells: targeting embryonic signaling pathways. Clin Cancer Res 16(12):3106–3112PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Park KS, Martelotto LG, Peifer M et al (2011) A crucial requirement for hedgehog signaling in small cell lung cancer. Nat Med 17(11):1504–1508PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Tian F, Mysliwietz J, Ellwart J et al (2012) Effects of the hedgehog pathway inhibitor GDC-0449 on lung cancer cell lines are mediated by side populations. Clin Exp Med 12(1):25–30PubMedCrossRefGoogle Scholar
  19. 19.
    Huang L, Walter V, Hayes DN et al (2014) Hedgehog-GLI signaling inhibition suppresses tumor growth in squamous lung cancer. Clin Cancer Res 20(6):1566–1575PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Justilien V, Walsh MP, Ali SA et al (2014) The PRKCI and SOX2 oncogenes are coamplified and cooperate to activate hedgehog signaling in lung squamous cell carcinoma. Cancer Cell 25(2):139–151PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Cai H, Lu W, Zhang Y et al (2019) Specific inhibition of Notch1 signaling suppresses properties of lung cancer stem cells. J Cancer Res Ther 15:1547–1552PubMedCrossRefGoogle Scholar
  22. 22.
    Liu J, Mao Z, Huang J et al (2014) Blocking the NOTCH pathway can inhibit the growth of CD133-positive A549 cells and sensitize to chemotherapy. Biochem Biophys Res Commun 444(4):670–675PubMedCrossRefGoogle Scholar
  23. 23.
    Chaib I, Karachaliou N, Pilotto S et al (2017) Co-activation of STAT3 and YES-associated protein 1 (YAP1) pathway in EGFR-mutant NSCLC. J Natl Cancer Inst 109(9):djx014PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Karachaliou N, Chaib I et al (2018) Common co-activation of AXL and CDCP1 in EGFR-mutation positive nonsmall cell lung cancer associated with poor prognosis. EBioMedicine 29:112–127PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Codony-Servat J, Codony-Servat C, Cardona AF et al (2019) Cancer stem cell biomarkers in EGFR-mutation-positive non-small-cell lung Cancer. Clin Lung Cancer 20(3):167–177PubMedCrossRefGoogle Scholar
  26. 26.
    Yeh CT, Wu AT, Chang PM et al (2012) Trifluoperazine, an antipsychotic agent, inhibits cancer stem cell growth and overcomes drug resistance of lung cancer. Am J Respir Crit Care Med 186(11):1180–1188PubMedCrossRefGoogle Scholar
  27. 27.
    Wiggins JF, Ruffino L, Kelnar K et al (2010) Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res 70(14):5923–5930PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Basak SK, Veena MS, Oh S et al (2013) The CD44(high) tumorigenic subsets in lung cancer biospecimens are enriched for low miR-34a expression. PLoS One 8(9):e73195PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Qi W, Chen J, Cheng X et al (2015) Targeting the Wnt-regulatory protein CTNNBIP1 by microRNA-214 enhances the Stemness and self-renewal of Cancer stem-like cells in lung adenocarcinomas. Stem Cells 33(12):3423–3436PubMedCrossRefGoogle Scholar
  30. 30.
    Dai FQ, Li CR, Fan XQ et al (2019) miR-150-5p inhibits non-small-cell lung Cancer metastasis and recurrence by targeting HMGA2 and β-catenin signaling. Mol Ther Nucleic Acids 16:675–685PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424CrossRefGoogle Scholar
  32. 32.
    Lanzardo S, Conti L, Rooke R et al (2016) Immunotargeting of antigen xCT attenuates stem-like cell behavior and metastatic progression in breast Cancer. Cancer Res 76(1):62–72PubMedCrossRefGoogle Scholar
  33. 33.
    Shackleton M, Quintana E, Fearon ER et al (2009) Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138(5):822–829PubMedCrossRefGoogle Scholar
  34. 34.
    Uchida H, Yamazaki K, Fukuma M et al (2010) Overexpression of leucine-rich repeat-containing G protein-coupled receptor 5 in colorectal cancer. Cancer Sci 101(7):1731–1737PubMedCrossRefGoogle Scholar
  35. 35.
    Takahashi H, Ishii H, Nishida N et al (2011) Significance of Lgr5(+ve) cancer stem cells in the colon and rectum. Ann Surg Oncol 18(4):1166–1174PubMedCrossRefGoogle Scholar
  36. 36.
    de Sousa e Melo F, Kurtova AV, Harnoss JM et al (2017) A distinct role for Lgr5 stem cells in primary and metastatic colon cancer. Nature 543(7647):676–680PubMedCrossRefGoogle Scholar
  37. 37.
    Shimokawa M, Ohta Y, Nishikori S et al (2017) Visualization and targeting of LGR5 human colon cancer stem cells. Nature 545(7653):187–192PubMedCrossRefGoogle Scholar
  38. 38.
    Junttila MR, Mao W, Wang X et al (2015) Targeting LGR5+ cells with an antibody-drug conjugate for the treatment of colon cancer. Sci Transl Med 7(314):314ra186PubMedCrossRefGoogle Scholar
  39. 39.
    Han Y, Xue X, Jiang M et al (2015) LGR5, a relevant marker of cancer stem cells, indicates a poor prognosis in colorectal cancer patients: a meta-analysis. Clin Res Hepatol Gastroenterol 39(2):267–273PubMedCrossRefGoogle Scholar
  40. 40.
    Hsu HC, Liu YS, Tseng KC et al (2013) Overexpression of Lgr5 correlates with resistance to 5-FU-based chemotherapy in colorectal cancer. Int J Color Dis 28(11):1535–1546CrossRefGoogle Scholar
  41. 41.
    Saigus AS, Inoue Y, Tanaka K et al (2013) Significant correlation between LKB1 and LGR5 gene expression and the association with poor recurrence-free survival in rectal cancer after preoperative chemoradiotherapy. J Cancer Res Clin Oncol 139(1):131–138CrossRefGoogle Scholar
  42. 42.
    He S, Zhou H, Zhu X et al (2014) Expression of Lgr5, a marker of intestinal stem cells, in colorectal cancer and its clinicopathological significance. Biomed Pharmacother 68(5):507–513PubMedCrossRefGoogle Scholar
  43. 43.
    Liu YS, Hsu HC, Tseng KC et al (2013) Lgr5 promotes cancer stemness and confers chemoresistance through ABCB1 in colorectal cancer. Biomed Pharmacother 67(8):791–799PubMedCrossRefGoogle Scholar
  44. 44.
    Jing F, Kim HJ, Kim CH et al (2015) Colon cancer stem cell markers CD44 and CD133 in patients with colorectal cancer and synchronous hepatic metastases. Int J Oncol 46(4):1582–1588PubMedCrossRefGoogle Scholar
  45. 45.
    Du L, Wang H, He L et al (2008) CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res 14(21):6751–6760PubMedCrossRefGoogle Scholar
  46. 46.
    Rao G, Wang H, Li B et al (2013) Reciprocal interactions between tumor-associated macrophages and CD44-positive cancer cells via osteopontin/CD44 promote tumorigenicity in colorectal cancer. Clin Cancer Res 19(4):785–797PubMedCrossRefGoogle Scholar
  47. 47.
    Sahlberg SH, Spiegelberg D, Glimelius B et al (2014) Evaluation of cancer stem cell markers CD133, CD44, CD24: association with AKT isoforms and radiation resistance in colon cancer cells. PLoS One 9(4):e94621PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Liu C, Zhao G, Liu J et al (2009) Novel biodegradable lipid nano complex for siRNA delivery significantly improving the chemosensitivity of human colon cancer stem cells to paclitaxel. J Control Release 140(3):277–283PubMedCrossRefGoogle Scholar
  49. 49.
    Jao SW, Chen SF, Lin YS et al (2012) Cytoplasmic CD133 expression is a reliable prognostic indicator of tumor regression after neoadjuvant concurrent chemoradiotherapy in patients with rectal cancer. Ann Surg Oncol 19(11):3432–3440PubMedCrossRefGoogle Scholar
  50. 50.
    Kanwar SS, Yu Y, Nautiyal J et al (2011) Difluorinated-curcumin (CDF): a novel curcumin analog is a potent inhibitor of colon cancer stem-like cells. Pharm Res 28(4):827–838PubMedCrossRefGoogle Scholar
  51. 51.
    Swindall AF, Londoño-Joshi AI, Schultz MJ et al (2013) ST6Gal-I protein expression is upregulated in human epithelial tumors and correlates with stem cell markers in normal tissues and colon cancer cell lines. Cancer Res 73(7):2368–2378PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Lugli A, Iezzi G, Hostettler I et al (2010) Prognostic impact of the expression of putative cancer stem cell markers CD133, CD166, CD44s, EpCAM, and ALDH1 in colorectal cancer. Br J Cancer 103(3):382–390PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Xiang D, Shigdar S, Bean AG et al (2017) Transforming doxorubicin into a cancer stem cell killer via EpCAM aptamer-mediated delivery. Theranostics 7(17):4071–4086PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Wang K, Liu L, Zhang T et al (2011) Oxaliplatin-incorporated micelles eliminate both cancer stem-like and bulk cell populations in colorectal cancer. Int J Nanomedicine 6:3207–3218PubMedPubMedCentralGoogle Scholar
  55. 55.
    Kahlert C, Gaitzsch E, Steinert G et al (2012) Expression analysis of aldehyde dehydrogenase 1A1 (ALDH1A1) in colon and rectal cancer in association with prognosis and response to chemotherapy. Ann Surg Oncol 19(13):4193–4201PubMedCrossRefGoogle Scholar
  56. 56.
    Deng Y, Zhou J, Fang L et al (2014) ALDH1 is an independent prognostic factor for patients with stages II-III rectal cancer after receiving radiochemotherapy. Br J Cancer 110(2):430–434PubMedCrossRefGoogle Scholar
  57. 57.
    Goossens-Beumer IJ, Zeestraten EC, Benard A et al (2014) Clinical prognostic value of combined analysis of Aldh1, Survivin, and EpCAM expression in colorectal cancer. Br J Cancer 110(12):2935–2944PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Cojoc M, Mäbert K, Muders MH et al (2015) A role for cancer stem cells in therapy resistance: cellular and molecular mechanisms. Semin Cancer Biol 31:16–27PubMedCrossRefGoogle Scholar
  59. 59.
    Cancer Genome Atlas Network (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487(7407):330–337CrossRefGoogle Scholar
  60. 60.
    Lin L, Fuchs J, Li C et al (2011) STAT3 signaling pathway is necessary for cell survival and tumorsphere forming capacity in ALDH(+)/CD133(+) stem cell-like human colon cancer cells. Biochem Biophys Res Commun 416(3–4):246–251PubMedCrossRefGoogle Scholar
  61. 61.
    Lin L, Liu Y, Li H et al (2011) Targeting colon cancer stem cells using a new curcumin analogue, GO-Y030. Br J Cancer 105(2):212–220PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Hubbard JM, Grothey A (2017) Napabucasin: an update on the first-in-class Cancer Stemness inhibitor. Drugs 77(10):1091–1103PubMedCrossRefGoogle Scholar
  63. 63.
    Jonker DJ, Nott L, Yoshino T et al (2018) Napabucasin versus placebo in refractory advanced colorectal cancer: a randomised phase 3 trial. Lancet Gastroenterol Hepatol 3(4):263–270PubMedCrossRefGoogle Scholar
  64. 64.
    Ordóñez-Morán P, Dafflon C, Imajo M et al (2015) HOXA5 counteracts stem cell traits by inhibiting Wnt signaling in colorectal Cancer. Cancer Cell 28(6):815–829PubMedCrossRefGoogle Scholar
  65. 65.
    Varnat F, Duquet A, Malerba M et al (2009) Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO Mol Med 1:338–351PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Hongdan L, Feng L (2018) miR-3120-5p promotes colon cancer stem cell stemness and invasiveness through targeting Axin2. Biochem Biophys Res Commun 496(2):302–308PubMedCrossRefGoogle Scholar
  67. 67.
    Zhai H, Fesler A, Ba Y et al (2015) Inhibition of colorectal cancer stem cell survival and invasive potential by hsa-miR-140-5p mediated suppression of Smad2 and autophagy. Oncotarget 6(23):19735–19746PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Huang B, Yang H, Cheng X et al (2017) tRF/miR-1280 suppresses stem cell-like cells and metastasis in colorectal cancer. Cancer Res 77(12):3194–3206PubMedCrossRefGoogle Scholar
  69. 69.
    Bitarte N, Bandres E, Boni V et al (2011) MicroRNA-451 is involved in the self-renewal, tumorigenicity, and chemoresistance of colorectal cancer stem cells. Stem Cells 29(11):1661–1671PubMedCrossRefGoogle Scholar
  70. 70.
    Xu XT, Xu Q, Tong JL et al (2012) MicroRNA expression profiling identifies miR-328 regulates cancer stem cell-like SP cells in colorectal cancer. Br J Cancer 106(7):1320–1330PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Chung SS, Oliva B, Dwabe S et al (2016) Combination treatment with flavonoid morin and telomerase inhibitor MST312 reduces cancer stem cell traits by targeting STAT3 and telomerase. Int J Oncol 49(2):487–498PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Toden S, Tran HM, Tovar-Camargo OA et al (2016) Epigallocatechin-3-gallate targets cancer stem-like cells and enhances 5-fluorouracil chemosensitivity in colorectal cancer. Oncotarget 7(13):16158–16171PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Luo M, Brooks M, Wicha MS (2015) Epithelial-mesenchymal plasticity of breast cancer stem cells: implications for metastasis and therapeutic resistance. Curr Pharm Des 21(10):1301–1310PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Van Phuc P, Nhan PL, Nhung TH et al (2011) Downregulation of CD44 reduces doxorubicin resistance of CD44CD24 breast cancer cells. Onco Targets Ther 4:71–78PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Pham PV, Phan NL, Nguyen NT et al (2011) Differentiation of breast cancer stem cells by knockdown of CD44: promising differentiation therapy. J Transl Med 9:209PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Brugnoli F, Grassilli S, Lanuti P et al (2017) Up-modulation of PLC-beta2 reduces the number and malignancy of triple-negative breast tumor cells with a CD133(+)/EpCAM(+) phenotype: a promising target for preventing progression of TNBC. BMC Cancer 17(1):617PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Battula VL, Shi Y, Evans KW et al (2012) Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis. J Clin Invest 122(6):2066–2078PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Koike Y, Ohta Y, Saitoh W et al (2017) Anti-cell growth and anti-cancer stem cell activities of the non-canonical hedgehog inhibitor GANT61 in triple-negative breast cancer cells. Breast Cancer 24(5):683–693PubMedCrossRefGoogle Scholar
  79. 79.
    Junichi K, Yoshikazu K, Yusuke O et al (2017) Anti-cancer stem cell activity of a hedgehog inhibitor GANT61 in estrogen receptor-positive breast cancer cells. Cancer Sci 108(5):918–930CrossRefGoogle Scholar
  80. 80.
    Fan P, Fan S, Wang H et al (2013) Genistein decreases the breast cancer stem-like cell population through hedgehog pathway. Stem Cell Res Ther 4(6):146PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Schott AF, Landis MD, Dontu G et al (2013) Preclinical and clinical studies of gamma secretase inhibitors with docetaxel on human breast tumors. Clin Cancer Res 19(6):1512–1524PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Shan NL, Wahler J, Lee HJ et al (2017) Vitamin D compounds inhibit cancer stem-like cells and induce differentiation in triple negative breast cancer. J Steroid Biochem Mol Biol 173:122–129PubMedCrossRefGoogle Scholar
  83. 83.
    Siddharth S, Das S, Nayak A et al (2016) SURVIVIN as a marker for quiescent-breast cancer stem cells-an intermediate, adherent, pre-requisite phase of breast cancer metastasis. Clin Exp Metastasis 33(7):661–675PubMedCrossRefGoogle Scholar
  84. 84.
    Wang T, Fahrmann JF, Lee H et al (2018) JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab 27(1):136–150PubMedCrossRefGoogle Scholar
  85. 85.
    Hu Y, Yagüe E, Zhao J et al (2018) Sabutoclax, pan-active BCL-2 protein family antagonist, overcomes drug resistance and eliminates cancer stem cells in breast cancer. Cancer Lett 423:47–59PubMedCrossRefGoogle Scholar
  86. 86.
    Delgado-Bellido D, Serrano-Saenz S, Fernández-Cortés M et al (2017) Vasculogenic mimicry signaling revisited: focus on non-vascular VE-cadherin. Mol Cancer 16(1):65PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Liu TJ, Sun BC, Zhao XL et al (2013) CD133+ cells with cancer stem cell characteristics associates with vasculogenic mimicry in triple-negative breast cancer. Oncogene 32(5):544–553PubMedCrossRefGoogle Scholar
  88. 88.
    Liu T, Sun B, Zhao X et al (2015) USP44+ cancer stem cell subclones contribute to breast cancer aggressiveness by promoting vasculogenic mimicry. Mol Cancer Ther 14(9):2121–2131PubMedCrossRefGoogle Scholar
  89. 89.
    Conley SJ, Baker TL, Burnett JP et al (2015) CRLX101, an investigational camptothecin-containing nanoparticle-drug conjugate, targets cancer stem cells and impedes resistance to antiangiogenic therapy in mouse models of breast cancer. Breast Cancer Res Treat Update 150(3):559–567CrossRefGoogle Scholar
  90. 90.
    Raja R, Kale S, Thorat D et al (2014) Hypoxia-driven osteopontin contributes to breast tumor growth through modulation of HIF1alpha-mediated VEGF-dependent angiogenesis. Oncogene 33(16):2053–2064PubMedCrossRefGoogle Scholar
  91. 91.
    Skvortsova I, Debbage P, Kumar V et al (2015) Radiation resistance: cancer stem cells (CSCs) and their enigmatic pro-survival signaling. Semin Cancer Biol 35:39–44PubMedCrossRefGoogle Scholar
  92. 92.
    Diehn M, Cho RW, Lobo NA et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458(7239):780–783PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Lai Y, Yu X, Lin X et al (2016) Inhibition of mTOR sensitizes breast cancer stem cells to radiation-induced repression of self-renewal through the regulation of MnSOD and Akt. Int J Mol Med 37(2):369–377PubMedCrossRefGoogle Scholar
  94. 94.
    Wang X, Jung YS, Jun S et al (2016) PAF-Wnt signaling-induced cell plasticity is required for maintenance of breast cancer cell stemness. Nat Commun 7:10633PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Butti R, Gunasekaran VP, Kumar TVS et al (2019) Breast cancer stem cells: biology and therapeutic implications. Int J Biochem Cell Biol 107:38–52PubMedCrossRefGoogle Scholar
  96. 96.
    Leonard GD, Fojo T, Bates SE (2003) The role of ABC transporters in clinical practice. Oncologist 8(5):411–424PubMedCrossRefGoogle Scholar
  97. 97.
    Moitra K, Lou H, Dean M (2011) Multidrug efflux pumps and cancer stem cells: insights into multidrug resistance and therapeutic development. Clin Pharmacol Ther 89(4):491–502PubMedCrossRefGoogle Scholar
  98. 98.
    Cherigo L, Lopez D, Martinez-Luis S (2015) Marine natural products as breast cancer resistance protein inhibitors. Mar Drugs 13(4):2010–2029PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Boulding T, McCuaig RD, Tan A et al (2018) LSD1 activation promotes inducible EMT programs and modulates the tumour microenvironment in breast cancer. Sci Rep 8(1):73PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Barbieri F, Thellung S, Ratto A et al (2015) In vitro and in vivo antiproliferative activity of metformin on stem-like cells isolated from spontaneous canine mammary carcinomas: translational implications for human tumors. BMC Cancer 15:228PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Zhang HH, Guo XL (2016) Combinational strategies of metformin and chemotherapy in cancers. Cancer Chemother Pharmacol 78(1):13–26PubMedCrossRefGoogle Scholar
  102. 102.
    Li M, Zhang B, Zhang Z et al (2014) Stem cell-like circulating tumor cells indicate poor prognosis in gastric cancer. Biomed Res Int 2014:981261PubMedPubMedCentralGoogle Scholar
  103. 103.
    Lau WM, Teng E, Chong HS et al (2014) CD44v8-10 is a cancer-specific marker for gastric cancer stem cells. Cancer Res 74(9):2630–2641PubMedCrossRefGoogle Scholar
  104. 104.
    Nguyen PH, Giraud J, Staedel C et al (2016) All-trans retinoic acid targets gastric cancer stem cells and inhibits patient-derived gastric carcinoma tumor growth. Oncogene 35(43):5619–5628PubMedCrossRefGoogle Scholar
  105. 105.
    Wang T, Ong CW, Shi J et al (2011) Sequential expression of putative stem cell markers in gastric carcinogenesis. Br J Cancer 105(5):658–565PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Gong X, Azhdarinia A, Ghosh SC et al (2016) LGR5-targeted antibody-drug conjugate eradicates gastrointestinal tumors and prevents recurrence. Mol Cancer Ther 15(7):1580–1590PubMedCrossRefGoogle Scholar
  107. 107.
    Salehi Z, Akrami H (2017) Target genes prediction and functional analysis of microRNAs differentially expressed in gastric cancer stem cells MKN-45. J Can Res Ther 13:477–483Google Scholar
  108. 108.
    Tseng YC, Tsai YH, Tseng MJ et al (2012) Notch2-induced COX-2 expression enhancing gastric cancer progression. Mol Carcinog 51(12):939–951PubMedCrossRefGoogle Scholar
  109. 109.
    Yoon C, Park DJ, Schmidt B et al (2014) CD44 expression denotes a subpopulation of gastric cancer cells in which hedgehog signaling promotes chemotherapy resistance. Clin Cancer Res 20(15):3974–3988PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Ishiguro H, Kimura M, Takeyama H (2014) Role of microRNAs in gastric cancer. World J Gastroenterol 20(19):5694–5699PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Liu J, Ma L, Wang Z et al (2014) MicroRNA expression profile of gastric cancer stem cells in the MKN-45 cancer cell line. Acta Biochim Biophys Sin 46(2):92–99PubMedCrossRefGoogle Scholar
  112. 112.
    Fan D, Ren B, Yang X et al (2016) Upregulation of miR-501-5p activates the wnt/β-catenin signaling pathway and enhances stem cell-like phenotype in gastric cancer. J Exp Clin Cancer Res 35(1):177PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Shao Q, Xu J, Guan X et al (2018) In vitro and effects of miRNA-19b/20a/92a on gastric cancer stem cells and the related mechanism. Int J Med Sci 15(1):86–94PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Huang TT, Ping YH, Wang AM et al (2015) The reciprocal regulation loop of Notch2 pathway and miR-23b in controlling gastric carcinogenesis. Oncotarget 6(20):18012–18026PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Zhang L, Guo X, Zhang D et al (2017) Upregulated miR-132 in Lgr5 gastric cancer stem cell-like cells contributes to cisplatin-resistance via SIRT1/CREB/ABCG2 signaling pathway. Mol Carcinog 56(9):2022–2034PubMedCrossRefGoogle Scholar
  116. 116.
    Fang D, Nguyen TK, Leishear K et al (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65(20):9328–9337PubMedCrossRefGoogle Scholar
  117. 117.
    Monzani E, Facchetti F, Galmozzi E et al (2007) Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer 43(5):935–946PubMedCrossRefGoogle Scholar
  118. 118.
    Schatton T, Murphy GF, Frank NY et al (2008) Identification of cells initiating human melanomas. Nature 451(7176):345–349PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Civenni G, Walter A, Kobert N et al (2011) Human CD271-positive melanoma stem cells associated with metastasis establish tumor heterogeneity and long-term growth. Cancer Res 71(8):3098–3109PubMedCrossRefGoogle Scholar
  120. 120.
    Luo Y, Dallaglio K, Chen Y et al (2012) ALDH1A isozymes are markers of human melanoma stem cells and potential therapeutic targets. Stem Cells 30(10):2100–2113PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Al Dhaybi R, Sartelet H, Powell J et al (2010) Expression of CD133+ cancer stem cells in childhood malignant melanoma and its correlation with metastasis. Mod Pathol 23(3):376–380PubMedCrossRefGoogle Scholar
  122. 122.
    Fusi A, Reichelt U, Busse A et al (2011) Expression of the stem cell markers nestin and CD133 on circulating melanoma cells. J Invest Dermatol 131(2):487–494PubMedCrossRefGoogle Scholar
  123. 123.
    Lai CY, Schwartz BE, Hsu MY (2012) CD133+ melanoma subpopulations contribute to perivascular niche morphogenesis and tumorigenicity through vasculogenic mimicry. Cancer Res 72(19):5111–5118PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Song H, Su X, Yang K et al (2015) CD20 antibody-conjugated Immunoliposomes for targeted chemotherapy of melanoma Cancer initiating cells. J Biomed Nanotechnol 11(11):1927–1946PubMedCrossRefGoogle Scholar
  125. 125.
    Santini R, Vinci MC, Pandolfi S et al (2012) Hedgehog-GLI signaling drives self-renewal and tumorigenicity of human melanoma-initiating cells. Stem Cells 30(9):1808–1818PubMedCrossRefGoogle Scholar
  126. 126.
    Lin X, Sun B, Zhu D et al (2016) Notch4+ cancer stem-like cells promote the metastatic and invasive ability of melanoma. Cancer Sci 107(8):1079–1091PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Kumar D, Kumar S, Gorain M et al (2016) Notch1-MAPK signaling Axis regulates CD133 Cancer stem cell-mediated melanoma growth and angiogenesis. J Invest Dermatol 136(12):2462–2474PubMedCrossRefGoogle Scholar
  128. 128.
    Forloni M, Dogra SK, Dong Y et al (2014) miR-146a promotes the initiation and progression of melanoma by activating notch signaling. Elife 3:e01460PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Adorno-Cruz V, Kibria G, Liu X et al (2015) Cancer stem cells: targeting the roots of cancer, seeds of metastasis, and sources of therapy resistance. Cancer Res 75(6):924–929PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Touil Y, Zuliani T, Wolowczuk I et al (2013) The PI3K/AKT signaling pathway controls the quiescence of the low-Rhodamine123-retention cell compartment enriched for melanoma stem cell activity. Stem Cells 31(4):641–651PubMedCrossRefGoogle Scholar
  131. 131.
    Fomeshi MR, Ebrahimi M, Mowla SJ et al (2015) Evaluation of the expressions pattern of miR-10b, 21, 200c, 373 and 520c to find the correlation between epithelial-to-mesenchymal transition and melanoma stem cell potential in isolated cancer stem cells. Cell Mol Biol Lett 20(3):448–465PubMedCrossRefGoogle Scholar
  132. 132.
    Noman MZ, Buart S, Romero P et al (2012) Hypoxia-inducible miR-210 regulates the susceptibility of tumor cells to lysis by cytotoxic T cells. Cancer Res 72(18):4629–4641PubMedCrossRefGoogle Scholar
  133. 133.
    Zhang P, Bai H, Liu G et al (2015) MicroRNA-33b, upregulated by EF24, a curcumin analog, suppresses the epithelial-to-mesenchymal transition (EMT) and migratory potential of melanoma cells by targeting HMGA2. Toxicol Lett 234(3):151–161PubMedCrossRefGoogle Scholar
  134. 134.
    Meier C, Hardtstock P, Joost S et al (2016) p73 and IGF1R regulate emergence of aggressive cancer stem-like features via miR-885-5p control. Cancer Res 76(2):197–205PubMedCrossRefGoogle Scholar
  135. 135.
    Liu S, Kumar SM, Lu H et al (2012) MicroRNA-9 up-regulates E-cadherin through inhibition of NF-κB1-Snail1 pathway in melanoma. J Pathol 226(1):61–72PubMedCrossRefGoogle Scholar
  136. 136.
    Plaks V, Kong N, Werb Z (2015) The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 16(3):225–238PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432(7015):332–337PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Kale S, Raja R, Thorat D et al (2014) Osteopontin signaling upregulates cyclooxygenase-2 expression in tumor-associated macrophages leading to enhanced angiogenesis and melanoma growth via alpha9beta1 integrin. Oncogene 33(18):2295–2306PubMedCrossRefGoogle Scholar
  139. 139.
    Harris AL (2002) Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2(1):38–47PubMedCrossRefGoogle Scholar
  140. 140.
    Hanna SC, Krishnan B, Bailey ST et al (2013) HIF1α and HIF2α independently activate SRC to promote melanoma metastases. J Clin Invest 123(5):2078–2093PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Yamada K, Uchiyama A, Uehara A et al (2016) MFG-E8 drives melanoma growth by stimulating mesenchymal stromal cell-induced angiogenesis and M2 polarization of tumor-associated macrophages. Cancer Res 76(14):4283–4292PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Wozniak M, Sztiller-Sikorska M, Czyz M (2015) Diminution of miR-340-5p levels is responsible for increased expression of ABCB5 in melanoma cells under oxygen-deprived conditions. Exp Mol Pathol 99(3):707–716PubMedCrossRefGoogle Scholar
  143. 143.
    El-Khattouti A, Sheehan NT, Monico J et al (2015) CD133+ melanoma subpopulation acquired resistance to caffeic acid phenethyl ester-induced apoptosis is attributed to the elevated expression of ABCB5: significance for melanoma treatment. Cancer Lett 357(1):83–104PubMedCrossRefGoogle Scholar
  144. 144.
    Dai W, Zhou J, Jin B et al (2016) Class III-specific HDAC inhibitor Tenovin-6 induces apoptosis, suppresses migration and eliminates cancer stem cells in uveal melanoma. Sci Rep 6:22622PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Lu L, Tao H, Chang AE et al (2015) Cancer stem cell vaccine inhibits metastases of primary tumors and induces humoral immune responses against cancer stem cells. Onco Targets Ther 4(3):e990767Google Scholar
  146. 146.
    Shen H, Shi S, Zhang Z et al (2015) Coating solid lipid nanoparticles with hyaluronic acid enhances antitumor activity against melanoma stem-like cells. Theranostics 5(7):755–771PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Wu RL, Sedlmeier G, Kyjacova L et al (2018) Hyaluronic acid-CD44 interactions promote BMP4/7-dependent Id1/3 expression in melanoma cells. Sci Rep 8:14913PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Davis ME, Chen ZG, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7(9):771–782PubMedCrossRefGoogle Scholar
  149. 149.
    Zhao Y, Alakhova DY, Kabanov AV (2013) Can nanomedicines kill cancer stem cells? Adv Drug Deliv Rev 65(13–14):1763–1783PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Bertrand N, Wu J, Xu X et al (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25PubMedCrossRefGoogle Scholar
  151. 151.
    Xiao H, Li W, Qi R et al (2012) Co-delivery of daunomycin and oxaliplatin by biodegradable polymers for safer and more efficacious combination therapy. J Control Release 163(3):304–314PubMedCrossRefGoogle Scholar
  152. 152.
    Kim YJ, Liu Y, Li S et al (2015) Co-eradication of breast cancer cells and cancer stem cells by cross-linked multilamellar liposomes enhances tumor treatment. Mol Pharm 12(8):2811–2822PubMedCrossRefGoogle Scholar
  153. 153.
    Oak PS, Kopp F, Thakur C et al (2012) Combinatorial treatment of mammospheres with trastuzumab and salinomycin efficiently targets HER2-positive cancer cells and cancer stem cells. Int J Cancer 131(12):2808–2819PubMedCrossRefGoogle Scholar
  154. 154.
    Sun R, Liu Y, Li SY et al (2015) Co-delivery of all-trans-retinoic acid and doxorubicin for cancer therapy with synergistic inhibition of cancer stem cells. Biomaterials 37:405–414PubMedCrossRefGoogle Scholar
  155. 155.
    LaBarge MA, Bissell MJ (2008) Is CD133 a marker of metastatic colon cancer stem cells? J Clin Invest 118(6):2021–2024PubMedPubMedCentralGoogle Scholar
  156. 156.
    Rocco A, Liguori E, Pirozzi G et al (2012) CD133 and CD44 cell surface markers do not identify cancer stem cells in primary human gastric tumors. J Cell Physiol 227(6):2686–2693PubMedCrossRefGoogle Scholar
  157. 157.
    Saygin C, Matei D, Majeti R et al (2019) Targeting cancer stemness in the clinic: from hype to hope. Cell Stem Cell 24(1):25–40PubMedCrossRefGoogle Scholar
  158. 158.
    Han L, Shi S, Gong T et al (2013) Cancer stem cells: therapeutic implications and perspectives in cancer therapy. Acta Pharm Sin B 3(2):65–75CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Ying Yang
    • 1
  • Chao Tian
    • 2
  • Wen-Jian Meng
    • 1
  1. 1.Department of Gastrointestinal Surgery, West China HospitalSichuan UniversityChengduChina
  2. 2.Department of Breast Surgery, Sichuan Cancer Hospital, School of MedicineThe University of Electronic Science and Technology of China (UESTC)ChengduChina

Personalised recommendations