Lung and Prostate Cancer Stem Cells

  • Sudeep BoseEmail author
  • Valentina Sain
  • Sartaj Khurana
  • Rajat Gupta


The most prominent cause of deaths due to cancer is lung cancer that typically includes the failure of treatment, reoccurrence of cancer, and dispersion that is only possible due to the existence of cancer stem cells (CSCs). The current development in translational and molecular investigation on lung cancer postulates the unique data and detailed comprehension of lung cancer biology and various treatment approaches. Targeting lung CSCs with detailed focus on specific markers of lung CSCs may give a conception to eliminate lung cancer without reoccurrence and may finally improve long-lasting clinical outcome. Prostate cancer (PCa) is the most prevalent type of cancer and the major cause of mortality in males around the globe. It is a heterogenous condition attributed to instability of genome and mechanisms related to epigenetics resulting in cellular differentiation. The previous decade has seen evidences that have clearly revealed the critical role of PCa stem cells (PCSCs) in PCa. Metastasis, till date, remains a big challenge in the treatment of these cancer types due to limited survival advantage of the second-generation drugs as observed in sufferers. Molecular mechanisms reveal that mutations in tumor suppressors together with oncogenic activation are capable of inducing a major mechanism termed as partial epithelial–mesenchymal transition (EMT), which provides plasticity to cancer stem cells (CSCs) and eventually contributes to metastasis. Thus, a clearer understanding of fundamental stem cell mechanisms pointing toward the various signaling pathways that regulate the fate of cell during development is crucial to improve stem cell-based regenerative medicine and anticancer strategies for both PCa and lung cancer.

In this chapter, we encapsulate our present understanding of normal stem/progenitor cells of prostate and lung cancer that highlight the recent progress that has been made on CSCs and discuss the properties and hallmarks of biology of prostate and lung CSCs and their involvement in resistance to therapy, tumor progression, and metastases.


Prostate cancer Lung cancer Cancer stem cells Metastasis Cancer stem cell markers Signaling pathways EMT Drug resistance 


  1. 1.
    Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30CrossRefGoogle Scholar
  2. 2.
    Zakaria N, Satar NA, Halim A, Hanis N, Ngalim SH, Yusoff NM, Lin J, Yahaya BH (2017) Targeting lung cancer stem cells: research and clinical impacts. Front Oncol 7:80PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65(1):5–29PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Shen MM, Abate-Shen C (2010) Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev 24(18):1967–2000PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Isaacs JT, Coffey DS (1989) Etiology and disease process of benign prostatic hyperplasia. Prostate Suppl 2:33–50PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Ross JS (2007) The androgen receptor in prostate cancer: therapy target in search of an integrated diagnostic test. Adv Anat Pathol 14(5):353–357PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Qin J, Liu X, Laffin B, Chen X, Choy G, Jeter CR, Calhoun-Davis T, Li H, Palapattu GS, Pang S, Lin K, Huang J, Ivanov I, Li W, Suraneni MV, Tang DG (2012) The PSA(−/lo) prostate cancer cell population harbors self-renewing long-term tumor-propagating cells that resist castration. Cell Stem Cell 10(5):556–569PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Koren E, Fuchs Y (2016) The bad seed: Cancer stem cells in tumor development and resistance. Drug Resist Updat 28:1–12PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Heppner GH, Miller BE (1983) Tumor heterogeneity: biological implications and therapeutic consequences. Cancer Metastasis Rev 2(1):5–23PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Dethlefsen L (1980) The growth dynamics of murine mammary tumor cells in situ. In: Cell biology of breast cancer. Academic, New York, pp 145–160Google Scholar
  11. 11.
    Giangreco A, Groot KR, Janes SM (2007) Lung cancer and lung stem cells: strange bedfellows? Am J Respir Crit Care Med 175(6):547–553PubMedCrossRefGoogle Scholar
  12. 12.
    Lee DK, Liu Y, Liao L, Wang F, Xu J (2014) The prostate basal cell (BC) heterogeneity and the p63-positive BC differentiation spectrum in mice. Int J Biol Sci 10(9):1007–1017PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Baccelli I, Trumpp A (2012) The evolving concept of cancer and metastasis stem cells. J Cell Biol 198(3):281–293PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Goldstein AS, Lawson DA, Cheng D, Sun W, Garraway IP, Witte ON (2008) Trop2 identifies a subpopulation of murine and human prostate basal cells with stem cell characteristics. Proc Natl Acad Sci U S A 105(52):20882–20887PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Trerotola M, Rathore S, Goel HL, Li J, Alberti S, Piantelli M, Adams D, Jiang Z, Languino LR (2010) CD133, Trop-2 and alpha2beta1 integrin surface receptors as markers of putative human prostate cancer stem cells. Am J Transl Res 2(2):135–144PubMedPubMedCentralGoogle Scholar
  16. 16.
    Wang X, Kruithof-de Julio M, Economides KD, Walker D, Yu H, Halili MV, Hu YP, Price SM, Abate-Shen C, Shen MM (2009) A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461(7263):495–500PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Taylor RA, Toivanen R, Frydenberg M, Pedersen J, Harewood L, Australian Prostate Cancer Bioresource, Collins AT, Maitland NJ, Risbridger GP (2012) Human epithelial basal cells are cells of origin of prostate cancer, independent of CD133 status. Stem Cells 30(6):1087–1096PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Bu Y, Cao D (2012) The origin of cancer stem cells. Front Biosci (Schol Ed) 4:819–830Google Scholar
  19. 19.
    Dittmar T, Nagler C, Niggemann B, Zanker K (2013) The dark side of stem cells: triggering cancer progression by cell fusion. Curr Mol Med 13(5):735–750PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Tomasetti C, Li L, Vogelstein B (2017) Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 355(6331):1330–1334PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Barthes J, Özçelik H, Hindié M, Ndreu-Halili A, Hasan A, Vrana NE (2014) Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances. Biomed Res Int 2014:921905PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Prasetyanti PR, Medema JP (2017) Intra-tumor heterogeneity from a cancer stem cell perspective. Mol Cancer 16(1):41PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Grandics P (2006) The cancer stem cell: evidence for its origin as an injured autoreactive T cell. Mol Cancer 5(1):6PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Golebiewska A, Brons NH, Bjerkvig R, Niclou SP (2011) Critical appraisal of the side population assay in stem cell and cancer stem cell research. Cell Stem Cell 8(2):136–147PubMedCrossRefGoogle Scholar
  25. 25.
    Ho MM, Ng AV, Lam S, Hung JY (2007) Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 67(10):4827–4833PubMedCrossRefGoogle Scholar
  26. 26.
    Chen Y-C, Hsu H-S, Chen Y-W, Tsai T-H, How C-K, Wang C-Y, Hung S-C, Chang Y-L, Tsai M-L, Lee Y-Y (2008) Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PLoS One 3(7):e2637PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Yan X, Luo H, Zhou X, Zhu B, Wang Y, Bian X (2013) Identification of CD90 as a marker for lung cancer stem cells in A549 and H446 cell lines. Oncol Rep 30(6):2733–2740PubMedCrossRefGoogle Scholar
  28. 28.
    Schlagenhauff B, Stroebel W, Ellwanger U, Meier F, Zimmermann C, Breuninger H, Rassner G, Garbe C (1997) Metastatic melanoma of unknown primary origin shows prognostic similarities to regional metastatic melanoma: recommendations for initial staging examinations. Cancer 80(1):60–65PubMedCrossRefGoogle Scholar
  29. 29.
    Zeilstra J, Joosten SP, Dokter M, Verwiel E, Spaargaren M, Pals ST (2008) Deletion of the WNT target and cancer stem cell marker CD44 in Apc (Min/+) mice attenuates intestinal tumorigenesis. Cancer Res 68(10):3655–3661PubMedCrossRefGoogle Scholar
  30. 30.
    Leung EL-H, Fiscus RR, Tung JW, Tin VP-C, Cheng LC, Sihoe AD-L, Fink LM, Ma Y, Wong MP (2010) Non-small cell lung cancer cells expressing CD44 are enriched for stem cell-like properties. PLoS One 5(11):e14062PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Zhang WC, Shyh-Chang N, Yang H, Rai A, Umashankar S, Ma S, Soh BS, Sun LL, Tai BC, Nga ME (2012) Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell 148(1–2):259–272PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Guler G, Guven U, Oktem G (2019) Characterization of CD133(+)/CD44(+) human prostate cancer stem cells with ATR-FTIR spectroscopy. Analyst 144(6):2138–2149PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer research 65(23):10946–10951PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Mateo F, Meca-Cortes O, Celia-Terrassa T, Fernandez Y, Abasolo I, Sanchez-Cid L, Bermudo R, Sagasta A, Rodriguez-Carunchio L, Pons M, Canovas V, Marin-Aguilera M, Mengual L, Alcaraz A, Schwartz S Jr, Mellado B, Aguilera KY, Brekken R, Fernandez PL, Paciucci R, Thomson TM (2014) SPARC mediates metastatic cooperation between CSC and non-CSC prostate cancer cell subpopulations. Mol Cancer 13:237PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Abe Y, Tanaka N (2016) The hedgehog signaling networks in lung cancer: the mechanisms and roles in tumor progression and implications for cancer therapy. Biomed Res Int 2016:7969286PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Ng JM, Curran T (2011) The Hedgehog’s tale: developing strategies for targeting cancer. Nat Rev Cancer 11(7):493–501PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Quijada L, Callejo A, Torroja C, Guerrero I (2007) The patched receptor: switching on/off the Hedgehog signaling pathway. In: Hedgehog-Gli signalling human diseases. Landes Bioscience, Austin, TX, p 23Google Scholar
  38. 38.
    He B, Barg RN, You L, Xu Z, Reguart N, Mikami I, Batra S, Rosell R, Jablons DM (2005) Wnt signaling in stem cells and non–small-cell lung cancer. Clin Lung Cancer 7(1):54–60PubMedCrossRefGoogle Scholar
  39. 39.
    Alketbi A, Attoub S (2015) Notch signaling in cancer: rationale and strategies for targeting. Curr Cancer Drug Targets 15(5):364–374PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S, Wiggins JF, Bader AG, Fagin R, Brown D, Tang DG (2011) The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17(2):211–215PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Rajasekhar VK, Studer L, Gerald W, Socci ND, Scher HI (2011) Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF-kappaB signalling. Nat Commun 2:162PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Martinez-Outschoorn UE, Balliet RM, Rivadeneira DB, Chiavarina B, Pavlides S, Wang C, Whitaker-Menezes D, Daumer KM, Lin Z, Witkiewicz AK, Flomenberg N, Howell A, Pestell RG, Knudsen ES, Sotgia F, Lisanti MP (2010) Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: a new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle 9(16):3256–3276PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Birnie R, Bryce SD, Roome C, Dussupt V, Droop A, Lang SH, Berry PA, Hyde CF, Lewis JL, Stower MJ, Maitland NJ, Collins AT (2008) Gene expression profiling of human prostate cancer stem cells reveals a pro-inflammatory phenotype and the importance of extracellular matrix interactions. Genome Biol 9(5):R83PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Pertega-Gomes N, Felisbino S, Massie CE, Vizcaino JR, Coelho R, Sandi C, Simoes-Sousa S, Jurmeister S, Ramos-Montoya A, Asim M, Tran M, Oliveira E, Lobo da Cunha A, Maximo V, Baltazar F, Neal DE, Fryer LG (2015) A glycolytic phenotype is associated with prostate cancer progression and aggressiveness: a role for monocarboxylate transporters as metabolic targets for therapy. J Pathol 236(4):517–530PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Tennakoon JB, Shi Y, Han JJ, Tsouko E, White MA, Burns AR, Zhang A, Xia X, Ilkayeva OR, Xin L, Ittmann MM, Rick FG, Schally AV, Frigo DE (2014) Androgens regulate prostate cancer cell growth via an AMPK-PGC-1alpha-mediated metabolic switch. Oncogene 33(45):5251–5261PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Hopkins JF, Sabelnykova VY, Weischenfeldt J, Simon R, Aguiar JA, Alkallas R, Heisler LE, Zhang J, Watson JD, Chua MLK, Fraser M, Favero F, Lawerenz C, Plass C, Sauter G, McPherson JD, van der Kwast T, Korbel J, Schlomm T, Bristow RG, Boutros PC (2017) Mitochondrial mutations drive prostate cancer aggression. Nat Commun 8(1):656PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Wong DJ, Liu H, Ridky TW, Cassarino D, Segal E, Chang HY (2008) Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell 2(4):333–344PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Liu R, Liu C, Zhang D, Liu B, Chen X, Rycaj K, Jeter C, Calhoun-Davis T, Li Y, Yang T, Wang J, Tang DG (2016) miR-199a-3p targets stemness-related and mitogenic signaling pathways to suppress the expansion and tumorigenic capabilities of prostate cancer stem cells. Oncotarget 7(35):56628–56642PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Nieto MA, Huang RY, Jackson RA, Thiery JP (2016) Emt: 2016. Cell 166(1):21–45PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Montanari M, Rossetti S, Cavaliere C, D’Aniello C, Malzone MG, Vanacore D, Di Franco R, La Mantia E, Iovane G, Piscitelli R, Muscariello R, Berretta M, Perdona S, Muto P, Botti G, Bianchi AAM, Veneziani BM, Facchini G (2017) Epithelial-mesenchymal transition in prostate cancer: an overview. Oncotarget 8(21):35376–35389PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Vela I, Gregory L, Gardiner EM, Clements JA, Nicol DL (2007) Bone and prostate cancer cell interactions in metastatic prostate cancer. BJU Int 99(4):735–742PubMedCrossRefGoogle Scholar
  52. 52.
    Logothetis CJ, Lin SH (2005) Osteoblasts in prostate cancer metastasis to bone. Nat Rev Cancer 5(1):21–28PubMedCrossRefGoogle Scholar
  53. 53.
    Debes JD, Tindall DJ (2004) Mechanisms of androgen-refractory prostate cancer. N Engl J Med 351(15):1488–1490PubMedCrossRefGoogle Scholar
  54. 54.
    Sun Y, Wang BE, Leong KG, Yue P, Li L, Jhunjhunwala S, Chen D, Seo K, Modrusan Z, Gao WQ, Settleman J, Johnson L (2012) Androgen deprivation causes epithelial-mesenchymal transition in the prostate: implications for androgen-deprivation therapy. Cancer Res 72(2):527–536PubMedCrossRefGoogle Scholar
  55. 55.
    Mercer BA, Lemaître V, Powell CA, D’Armiento J (2006) The epithelial cell in lung health and emphysema pathogenesis. Curr Resp Med Rev 2(2):101–142CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Sudeep Bose
    • 1
    • 2
    Email author
  • Valentina Sain
    • 1
  • Sartaj Khurana
    • 1
    • 2
  • Rajat Gupta
    • 1
  1. 1.Amity Institute of Biotechnology, Amity University Uttar PradeshNoidaIndia
  2. 2.Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar PradeshNoidaIndia

Personalised recommendations