Advertisement

Teacher Education and Research on Teaching

  • Rolf Biehler
Chapter
  • 407 Downloads
Part of the Mathematics Education Library book series (MELI, volume 13)

Keywords

Teaching System Phase Portrait Teaching Content Algebraic Setting Teaching Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dörfler, W., & McLone, R. R. (1986). Mathematics as a school subject. In B. Christiansen, A. G. Howson, & M. Otte (Eds.), Perspectives on mathematics education (pp. 49–97). Dordrecht, Netherlands: Reidel.Google Scholar
  2. Fennema, E., & Franke, M. L. (1992). Teachers’ knowledge and its impact. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 147–164). New York: Macmillan.Google Scholar
  3. Grouws, D. (Ed.). (1992). Handbook of research on mathematics teaching and learning. New York: Macmillan.Google Scholar
  4. Hoyles, C. (1992). Mathematics teaching and mathematics teacher: A meta-case study. For the Learning of Mathematics, 12(3), 32–45.Google Scholar
  5. Otte, M., & Reiss, V. (1979). The education and professional life of mathematics teachers. In International Commission on Mathematical Instruction (ICMI) (Ed.), New trends in mathematics teaching (Vol. IV, pp. 107–133). Paris: UNESCO.Google Scholar
  6. Steiner, H.-G. (Ed.). (1979). The education of mathematics teachers. IDM Materialien und Studien 15. Bielefeld: Universität Bielefeld.Google Scholar
  7. Steiner, H.-G. & Vermandel, A. (Eds.). (1988). Investigating and bridging the teaching-learning gap. Proceedings of the 3rd International TME Conference. Antwerp: University of Antwerp.Google Scholar
  8. Tall, D. (Ed.). (1991). Advanced mathematical thinking. Dordrecht, Netherlands: Kluwer.Google Scholar
  9. Thompson, A. G. (1992). Teachers’ beliefs and conceptions: A synthesis of research. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 127–146). New York: Macmillan.Google Scholar
  10. Wittmann, E. C. (1989). The mathematical training of teachers from the point of view of education. Journal für Mathematikdidaktik, 10(4), 291–308.Google Scholar

References

  1. Andelfinger, B. (1984). Arithmetische und algebraische Lerner-Konzepte in der S I. In Beiträge zum Mathematikunterricht 1984 (pp. 71–74). Bad Salzdetfurth: Franzbecker.Google Scholar
  2. Blankenagel, J. (1985). Numerische Mathematik im Rahmen der Schulmathematik. Mannheim: Bibliographisches Institut.Google Scholar
  3. Blum, W., & Kirsch, A. (1979). Zur Konzeption des Analysisunterrichts in Grundkursen. Der Mathematikunterricht, 25(3), 6–24.Google Scholar
  4. Blum, W., & Törner, G. (1983). Didaktik der Analysis. Göttingen: Vandenhoeck & Puprecht.Google Scholar
  5. Borovcnik, M. (1992). Stochastik im Wechselspiel von Intuitionen und Mathematik. Mannheim: Wissenschaftsverlag.Google Scholar
  6. Clark, D. C. (1971). Teaching concepts in the classroom: A set of teaching prescriptions derived from experimental research. Journal of Educational Psychology, 62(3), 253–278.Google Scholar
  7. Dyrszlag, Z. (1972a). Zum Verständnis mathematischer Begriffe 1. Mathematik in der Schule, 10(1), 36–44.Google Scholar
  8. Dyrszlag, Z. (1972b). Zum Verständnis mathematischer Begriffe 2. Mathematik in der Schule, 10(2), 105–114.Google Scholar
  9. Fischer, R. (1976). Fundamentale Ideen bei den reellen Funktionen. Zentralblatt für Didaktik der Mathematik, 8(4), 185–192.Google Scholar
  10. Fischer, R. (1978). Die Rolle des Exaktifizierens im Analysisunterricht. Didaktik der Mathematik, 6(3), 212–226.Google Scholar
  11. Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. Dordrecht, Netherlands: Reidel.Google Scholar
  12. Griesel, H. (1971). Die mathematische Analyse als Forschungsmittel in der Didaktik der Mathematik. In Beiträge zum Mathematikunterricht 1971 (pp. 72–81). Hannover: Schroedel.Google Scholar
  13. Griesel, H., & Steiner, H.-G., (1992), The organization of didactics of mathematics as a professional field. Zentralblatt für Didaktik der Mathematik, 24 (7), 287–295.Google Scholar
  14. Herscovics, N., & Bergeron, J. (1983). Models of understanding. Zentralblatt für Didaktik der Mathematik, 15(2), 75–83.Google Scholar
  15. Holland, G. (1988). Geometrie in der Sekundarstufe. Mannheim: Wissenschaftsverlag.Google Scholar
  16. Jahnke, H. N. (1978). Zum Verhältnis von Wissensentwicklung und Begründung in der Mathematik-Beweisen als didaktisches Problem. IDM Materialien und Studien 10. Bielefeld: Universität Bielefeld.Google Scholar
  17. Karcher, H. (1973). Analysis auf der Schule. Didaktik der Mathematik, 1(1), 46–69.Google Scholar
  18. Keitel, Ch., Otte, M., & Seeger, F. (1980). Text, Wissen, Tätigkeit. Königstein: Scriptor.Google Scholar
  19. Kirsch, A. (1977). Aspects of simplification in mathematics teaching. In H. Athen & H. Kunle (Eds.), Proceedings of the Third International Congress of Mathematical Education (pp. 98–120). Karlsruhe: Organizing Committee of the 3rd ICME.Google Scholar
  20. Klein, F. (1926). Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert (Vol. 1). Berlin: Springer.Google Scholar
  21. Klein, F. (1968). Elementarmathematik vom höheren Standpunkte aus (Vols 1–3, Reprint). Berlin: Springer.Google Scholar
  22. Laugwitz, D. (1973). Ist Differentialrechnung ohne Grenzwertbegriff möglich? Mathe-matisch-Physikalische Semesterberichte, 20 (2), 189–201.Google Scholar
  23. Mangoldt, H., & Knopp, K. von (1965). Einführung in die höhere Mathematik. (Vol. 3, 12th ed.). Leipzig: Hirzel.Google Scholar
  24. Ostrowski, A. (1952). Vorlesungen über Differential-und Integralrechnung (Vol. 1). Basel: Birkhäuser.Google Scholar
  25. Otte, M., & Steinbring, H. (1977). Probleme der Begriffsentwicklung — zum Stetigkeitsbegriff. Didaktik der Mathematik, 5(1), 16–25.Google Scholar
  26. Steinbring, H. (1988). “Eigentlich ist das nichts Neues für Euch!” — Oder: Läßt sich mathematisches Wissen auf bekannte Fakten zurückführen? Der Mathematikunterricht, 34(2), 30–43.Google Scholar
  27. Steiner, H.-G. (1966a). Vorlesungen über Grundlagen und Aufbau der Geometrie in didaktischer Sicht. Münster: Aschendorff.Google Scholar
  28. Steiner, H.-G. (1966b). Äquivalente Fassungen des Vollständigkeitsaxioms für die Theorie der reellen Zahlen. Mathematisch-Physikalische Semesterberichte, 13(2), 180–201.Google Scholar
  29. Steiner, H.-G. (1969). Aus der Geschichte des Funktionsbegriffs. Der Mathematikunterricht, 15(3), 13–39.Google Scholar
  30. Tietze, U.-P., Klika, M., & Wolpers, H. (1982). Didaktik des Mathematikunterrichts in der Sekundarstufe II. Braunschweig: Vieweg.Google Scholar
  31. Viet, U. (1978). Umgangssprache und Fachsprache im Geometrieunterricht des 5. und 6. Schuljahres. In H. Bauersfeld (Ed.), Fallstudien und Analysen zum Mathematikunterricht (pp. 13–23). Hannover: Schroedel.Google Scholar
  32. Voigt, J. (1991). Das Thema im Unterrichtsprozeß. In Beiträge zum Mathematikunterricht 1991 (pp. 469–472). Bad Salzdetfurth: Franzbecker.Google Scholar
  33. Vollrath, H.-J. (1973). Folgenringe. Der Mathematikunterricht, 19(4), 22–34.Google Scholar
  34. Vollrath, H.-J. (1974). Didaktik der Algebra. Stuttgart: Klett.Google Scholar
  35. Vollrath, H.-J. (1978). Lernschwierigkeiten, die sich aus dem umgangssprachlichen Verständnis geometrischer Begriffe ergeben. Schriftenreihe des IDM. Bielefeld: Universität Bielefeld, 18, 57–73.Google Scholar
  36. Vollrath, H.-J. (1984). Methodik des Begriffslehrens im Mathematikunterricht. Stuttgart: lett.Google Scholar
  37. Vollrath, H.-J. (1986). Zur Beziehung zwischen Begriff und Problem in der Mathematik. Journal für Mathematikdidaktik, 7(4), 243–268.Google Scholar
  38. Vollrath, H.-J. (1987). Begriffsbildung als schöpferisches Tun im Mathematikunterricht. Zentralblatt für Didaktik der Mathematik, 19(3), 123–127.Google Scholar
  39. Vollrath, H.-J. (1988). Mathematik bewerten lernen. In P. Bender (Ed.), Mathematikdidaktik: Theorie und Praxis, Festschrift für Heinrich Winter (pp. 202–209). Berlin: Cornelsen.Google Scholar
  40. Vollrath, H.-J. (1993). Paradoxien des Verstehens von Mathematik. Journal für Mathematikdidaktik, 14(1), 35–58.Google Scholar
  41. Weidig, I. (1992). On the school system in Germany and the regulation of mathematics teaching. Zentralblatt für Didaktik der Mathematik, 24(7), 214–219.Google Scholar
  42. Winter, H. (1983). Über die Entfaltung begrifflichen Denkens im Mathematikunterricht. Journal für Mathematikdidaktik, 4(3), 175–204.Google Scholar
  43. Wittmann, E. (1981). Grundfragen des Mathematikunterrichts. (6th ed.). Braunschweig: Vieweg.Google Scholar
  44. Wittmann, E. (1984). Teaching units as the integrating core of mathematics education. Educational Studies in Mathematics, 15(1), 25–36.CrossRefGoogle Scholar

References

  1. Begle, E. J. (1972). Teacher knowledge and student achievement in algebra (SMSG Reports No. 9). Stanford: SMSG.Google Scholar
  2. Bromme, R. (1981). Das Denken von Lehrern bei der Unterrichtsvorbereitung. Eine empirische Untersuchung zu kognitiven Prozessen von Mathematiklehrern. Weinheim: Beltz.Google Scholar
  3. Bromme, R. (1987). Teachers’ assessment of students’ difficulties and progress in understanding in the classroom. In J. Calderhead (Ed.), Exploring teachers’ thinking (pp. 125–146). London: Cassell.Google Scholar
  4. Bromme, R. (1992). Der Lehrer als Experte. Zur Psychologie des professionellen Wissens. Bern: Huber.Google Scholar
  5. Bromme, R., & Steinbring, H. (1990). Eine graphische Analysetechnik für Unterrichtsverläufe. In K. Haussmann & M. Reiss (Eds.), Mathematische Lehr-Lern-Denkprozesse (pp. 55–81). Göttingen: Hogrefe.Google Scholar
  6. Brophy, J., & Good, T. (1974). Teacher-student relationships. Causes and consequences. New York: Holt, Rinehart & Winston.Google Scholar
  7. Brophy, J., & Good, T. (1986). Teacher behavior and student achievement. In M. Wittrock (Ed.), Handbook of research on teaching (pp. 328–375). New York: McMillan.Google Scholar
  8. Carlsen, W. S. (1987, April). Why do you ask? The effects of science teacher subject-matter knowledge on teacher questioning and classroom discourse. Paper presented at the annual meeting of the American Educational Research Association, Washington, DC.Google Scholar
  9. Carpenter, T. P., Fennema, E., Peterson, P. L., & Carey, D. A. (1988). Teachers’ pedagogical content knowledge of students’ problem solving in elementary arithmetic. Journalfor Research in Mathematics Education, 19, 385–401.Google Scholar
  10. Carpenter, T. P., & Moser, J. (1984). The acquisition of addition and subtraction concepts in grades one through three. Journal of Research in Mathematics Education, 15, 179–202.Google Scholar
  11. Chevallard, Y. (1985). La transposition didactique. Grenoble: La Pensée Sauvage.Google Scholar
  12. Clift, R. T., Ghatala, E. S., & Naus, M. M. (1987, April). Exploring teachers’ knowledge of strategic study activity. Paper presented at the annual meeting of the American Educational Research Association, Washington, DC.Google Scholar
  13. Cooney, T. J. (1985). A beginning teacher’s view of problem solving. Journal for Research in Mathematics Education, 16, 324–336.Google Scholar
  14. Cooper, H. M. (1979). Pygmalion grows up: A model for teacher expectation, communication and performance influence. Review of Educational Research, 49, 389–410.Google Scholar
  15. Corno, L., & Snow, R. (1986). Adapting teaching to individual differences among learners. In M. Wittrock (Ed.), Handbook of research on teaching (pp. 605–629). New York: McMillan.Google Scholar
  16. Dobey, D. C, & Schäfer, L. E. (1984). The effects of knowledge on elementary science inquiry teaching. Science Education, 68, 39–51.Google Scholar
  17. Druva, C. A., & Anderson, R. D. (1983). Science teacher characteristics by teacher behavior and by student outcome. A meta-analysis of research. Journal of Research in Science Teaching, 20, 467–479.Google Scholar
  18. Dunkin, M. J., & Biddle, B. J. (1974). The study of teaching. New York: Rinehart & Winston.Google Scholar
  19. Eisenberg, T. A. (1977). Begle revisted: Teacher knowledge and student achievement in algebra. Journal for Research in Mathematics Education, 8, 216–222.Google Scholar
  20. Gage, N., & Berliner, D. (1977). Pädagogische Psychologie. München: Urban & Schwarzenberg.Google Scholar
  21. Greeno, J. G., Riley, M. S., & Gelman, R. (1984). Conceptual competence and children’s counting. Cognitive Psychology, 16, 94–134.CrossRefGoogle Scholar
  22. Grossman, P. L. (1990). The making of a teacher: Teacher knowledge and teacher education. New York: Teachers College Press.Google Scholar
  23. Gudmundsdottir, S., & Shulman, L. (1986). Pedagogical content knowledge in social studies. In J. Lowyck (Ed,), Teacher thinking and professional action. Proceedings of the Third IS ATT Conference (pp. 442–455). Leuven: University of Leuven.Google Scholar
  24. Hashweh, M. Z. (1986, April). Effects of subject-matter knowledge on the teaching of biology and physics. Paper presented at the annual meeting of the American Educational Research Association, San Francisco.Google Scholar
  25. Heymann, H. W. (1982). Didaktisches Handeln im Mathematikunterricht aus Lehrersicht. Bericht über zwei Fallstudien zu subjektiven Hintergründen des Lehrerhandelns. In H. Bauersfeld, H. W. Heymann, G. Krummheuer, J. H. Lorenz, & V. Reiβ (Eds.), Analysen zum Unterrichtshandeln (pp. 142–167). Köln: Aulis.Google Scholar
  26. Hoge, R. D., & Coladarci, T. (1989). Teacher-based judgments of academic achievement. Review of Educational Research, 59, 297–313.Google Scholar
  27. Hollon, R. E., & Anderson, C. W. (1987, April). Teachers’ beliefs about students’ learning processes in science: Self-reinforcing belief systems. Paper presented at the annual meeting of the American Educational Research Association, Washington DC.Google Scholar
  28. Jecker, J. D., Mackoby, W., & Breitrose, M. S. (1965). Improving accuracy in interpreting non-verbal cues of comprehension. Psychology in the Schools, 2, 239–244.Google Scholar
  29. Kesler, R. J. (1985). Teachers’ instructional behavior related to their conceptions of teaching mathematics and their level of dogmatism: Four case studies. Dissertation, University of Georgia. Ann Arbor: UMI.Google Scholar
  30. Kounin, J. (1970). Discipline and group managment in classrooms. New York: Holt, Rinehart & Winston.Google Scholar
  31. Leinhardt, G., & Smith, D. (1985). Expertise in mathematics instruction: Subject matter knowledge. Journal of Educational Psychology, 77, 247–271.CrossRefGoogle Scholar
  32. Marks, R. (1987, April). Problem solving with a small “p”: A teachers’ view. Paper presented at the annual meeting of the American Educational Research Association, Washington, DC.Google Scholar
  33. McGalliard, W. A. (1983). Selected factors in the conceptual system of geometry teachers: four case studies. Dissertation, University of Georgia, Athens. Ann Arbor: UMI.Google Scholar
  34. Nesher, P., & Teubal, E. (1975). Verbal cues as an interfering factor in verbal problem solving. Educational Studies in Mathematics, 6, 41–51.CrossRefGoogle Scholar
  35. Oser, F. (in press). Moral perspectives on teaching. Review of Research in Education.Google Scholar
  36. Pfeiffer, H. (1981). Zur sozialen Organisation von Wissen im Mathematikunterricht. IDM Materialien und Studien 21. Bielefeld: Universität Bielefeld.Google Scholar
  37. Putnam, R. T. (1987). Structuring and adjusting content for students: A study of live and simulated tutoring of addition. American Educational Research Journal, 24, 13–48.Google Scholar
  38. Roehler, L. R., Duffy, G. G., Conley, M., Hermann, B. A., Johnson, J., & Michelson, S. (1987, April). Exploring preservice teachers’ knowledge structures. Paper presented at the annual meeting of the American Educational Research Association, Washington DC.Google Scholar
  39. Romberg, T. (1988). Can teachers be professionals? In D. Grouws & T. J. Cooney (Eds.), Perspectives on research on effective mathematics Teaching (Vol. 1, pp. 224–245). Reston: NCTM & Erlbaum.Google Scholar
  40. Rosenthal, R., & Jacobsen, L. (1971). Pygmalion im Unterricht. Lehrererwartungen und Intelligenzentwicklung der Schüller. Weinheim: Beltz.Google Scholar
  41. Rutter, M., Manghan, B., Mortimore, P., & Queston, J. (1980). Fifteen thousand hours Secondary schools and their effects on children. London: Butler & Tanne.Google Scholar
  42. Schön, D. (1983). The reflective practitioner. New York: Basic Books.Google Scholar
  43. Schrader, F. W., & Helmke, A. (1990). Lassen sich Lehrer bei der Leistungsbeurteilung yon sachfremden Gesichtspunkten leiten? Eine Untersuchung zu Determinanten diagnostischer Lehrerurteile. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 22, 312–324.Google Scholar
  44. Shefelbine, J. L., & Shiel, G. (1987, April). Preservice teachers’ schemata for a diagnostic framework in reading. Paper presented at the annual meeting of the American Educational Research Association, Washington, DC.Google Scholar
  45. Shroyer, J. C. (1981). Critical moments in the teaching of mathematics: What makes teaching difficult? Dissertation, Michigan State University, East Lansing, MI.Google Scholar
  46. Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15, 4–14.Google Scholar
  47. Stein, M., Baxter, J., & Leinhardt, G. (1990). Subject-matter knowledge and elementary instruction: A case from functions and graphing. American Educational Research Journal, 27, 639–663.Google Scholar
  48. Steiner, H. G. (1987). Philosophical and epistemological aspects of mathematics and their interaction with theory and practice in mathematics education. For the Learning of Mathematics, 7(1), 7–13.Google Scholar
  49. Sträβer, R. (1985). Anwendung der Mathematik — Ergebnisse von Lehrer-Interviews. Mathematicia Didactica, 8, 167–178.Google Scholar
  50. Thompson, A. (1984). The relationship of teachers’ conceptions of mathematics and mathematics teaching to instructional practice. Educational Studies in Mathematics, 15,105–127.Google Scholar
  51. Tietze, U.-P. (1986). Der Mathematiklehrer in der Sekundarstufe II. Bericht aus einem For schungsprojekt (Texte zur mathematisch-naturwissenschaftlich-technischen Forschung und Lehre Nr. 18). Bad Salzdetfurth: Franzbecker.Google Scholar
  52. Yaacobi, D., & Sharan, S. (1985). Teacher beliefs and practices. The discipline carries the message. Journal of Education for Teaching, 11, 187–199.Google Scholar

References

  1. A. G. Mathematiklehrerbildung. (1981). Perspektiven für die Ausbildung des Mathematiklehrers. Köln: Aulis.Google Scholar
  2. Andelfinger, B. (1992). Softening the education of mathematics teachers. In F. Seeger & H. Steinbring (Eds.), (1992a), (pp. 225–230).Google Scholar
  3. Balacheff, N. (1987). Processus de preuve et situations de validation. Educational Studies in Mathematics, 18(2), 147–176.CrossRefGoogle Scholar
  4. Bartolini Bussi, M. (1992). Mathematics knowledge as a collective enterprise. In F. Seeger & H. Steinbring (Eds.), (1992a), (pp. 121–151).Google Scholar
  5. Bauersfeld, H. (1978). Kommunikationsmuster im Mathematikunterricht — Eine Analyse am Beispiel der Handlungsverengung durch Antworterwartung. In H. Bauersfeld (Ed.), Fallstudien und Analysen zum Mathematikunterricht (pp. 158–170). Hannover: Schroedel.Google Scholar
  6. Bazzini, L. (1991). Curriculum development as a meeting point for research and practice. Zentralblatt für Didaktikder Mathematik, 23(4), 128–131.Google Scholar
  7. Bell, A. (1992). Studying teaching. In F. Seeger & H. Steinbring (Eds.), (1992a), (pp. 153–163).Google Scholar
  8. Bromme, R., & Steinbring, H. (1990). Die epistemologische Struktur mathematischen Wissens im Unterrichtsprozeß. In R. Bromme, F. Seeger, & H. Steinbring (Eds.), Aufgaben als Anforderungen an Lehrer und Schüler (pp. 151–229). Köln: Aulis.Google Scholar
  9. Brown, S., & Cooney, T. J. (1991). Stalking the dualism between theory and practice. Zentralblatt für Didaktik der Mathematik, 23(4), 112–117.Google Scholar
  10. Burton, L. (1991). Models of systematic co-operation betweeen theory and practice. Zentralblatt für Didaktik der Mathematik, 23(4), 118–121.Google Scholar
  11. Christiansen, B. et. al. (1985). Systematic co-operation between theory and practice in mathematics education. Copenhagen: Royal Danish School of Educational Studies (ICME V).Google Scholar
  12. Cooney, T. J. (1988). The issue of reform: What have we learned from yesteryear? The Mathematics Teacher, 81(5), 352–363.Google Scholar
  13. Ernest, P. (1992). The relationship between the objective and subjective knowledge of mathematics. In F. Seeger & H. Steinbring (Eds.), (1992a), (pp. 33–48).Google Scholar
  14. Harten, G. von, & Steinbring, H. (1991). Lesson transcripts and their role in the in-service training of mathematics teachers. Zentralblatt für Didaktik der Mathematik, 23(5), 169–177.Google Scholar
  15. Jahnke, H. N. (1978). Zum Verhältnis von Wissensentwicklung und Begründung in der Mathematik — Beweisen als didaktisches Problem. IDM Materialien und Studien 10. Bielefeld: Universität Bielefeld.Google Scholar
  16. Kilpatrick, J. (1981). Research on mathematical learning and thinking in the United States. Recherches en Didactiques des Mathématiques, 2(3), 363–380.Google Scholar
  17. Lakatos, I. (1976). Proofs and refutations. The logic of mathematical discovery. Cambridge.Google Scholar
  18. Mason, J. (1987). What do symbols represent? In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 73–81). Hillsdale, NJ: Erlbaum.Google Scholar
  19. Mason, J. H. (1992). Reflections on dialogue between theory and practice, reconciled by awareness. In F. Seeger & H. Steinbring (Eds.), (1992a), (pp. 177–192).Google Scholar
  20. Odgen, C. K., & Richards, F. A. (1923). The meaning of meaning. London: Routledge and Kegan Paul.Google Scholar
  21. Otte, M. (1984a). Komplementarität. IDM Occasional Paper 42. Bielefeld: Universität Bielefeld.Google Scholar
  22. Otte, M. (1984b). Was ist Mathematik? IDM Occasional Paper 43. Bielefeld: Universität Bielefeld.Google Scholar
  23. Romberg, T. A. (1985a). Research and the job of teaching. In T. A. Romberg (Ed.), Using research in the professional life of mathematics teachers (ICME 5) (pp. 2–7). Madison, WI: Wisconsin Center for Education Research, School of Education, University of Wisconsin.Google Scholar
  24. Romberg, T. A. (Ed.). (1985b). Using research in the professional life of mathematics teachers (ICME 5). Madison, WI: Wisconsin Center for Education Research, School of Education, University of Wisconsin.Google Scholar
  25. Romberg, T. A. (1988). Can teachers be professionals? In D. A. Grouws, T. J. Cooney, & D. Jones (Eds.), Effective mathematics teaching (pp. 224–244). Reston, VA: NCTM & Lawrence Erlbaum.Google Scholar
  26. Rouchier, A., & Steinbring, H. (1988). The practice of teaching and research in didactics, Recherches en Didactique des Mathématiques, 9(2), 189–220.Google Scholar
  27. Seeger, F., & Steinbring, H. (Eds.). (1992a). The dialogue between theory and practice in mathematics education: Overcoming the broadcast metaphor. Proceedings of the Fourth Conference on Systematic Cooperation between Theory and Practice in Mathematics Education (SCTP). Brakel, Germany. IDM Materialien und Studien 38. Bielefeld: Universität Bielefeld.Google Scholar
  28. Seeger, F., & Steinbring, H. (1992b). The myth of mathematics. In F. Seeger & H. Steinbring (Eds.), (1992a), (pp. 69–89).Google Scholar
  29. Steinbring, H. (1989). Routine and meaning in the mathematics classroom. For the Learning of Mathematics, 9(1), 24–33.Google Scholar
  30. Steinbring, H. (1991a). The concept of chance in everyday teaching: Aspects of a social epistemology of mathematical knowledge. Educational Studies in Mathematics, 22, 503–522.CrossRefGoogle Scholar
  31. Steinbring, H. (1991b). Eine andere Epistemologie der Schulmathematik-Kann der Lehrer von seinen Schülern lernen? mathematica didactica, 14(2/3), 69–99.Google Scholar
  32. Steinbring, H. (1992). The relation between social and conceptual conventions in everyday mathematics teaching. Unpublished manuscript. Bielefeld: IDM.Google Scholar
  33. Steinbring, H. (in press). Epistemology of mathematical knowledge and teacher-learner interaction. The Journal of Mathematical Behavior.Google Scholar
  34. Verstappen, P. (1991). Ten major issues concerning systematic cooperation between theory and practice in mathematics education. Zentralblatt für Didaktik der Mathematik, 23(4), 122–127.Google Scholar
  35. Verstappen, P. F. L. (Ed.). (1988). Report of the Second Conference on Systematic Cooperation Between Theory and Practice in Mathematics Education. Lochem/Netherlands. Enschede: S.L.O.Google Scholar
  36. Voigt, J. (1991). Interaktionsanalysen in der Lehrerbildung. Zentralblatt für Didaktik der Mathematik, 23(5), 161–168.Google Scholar
  37. Wheeler, D. (1985). The utility of research. In T. A. Romberg (Ed.), Using research in the professional life of mathematics teachers (ICME 5) (pp. 8–15). Madison, WI: Wisconsin Center for Education Research, School of Education, University of Wisconsin.Google Scholar
  38. Wittmann, E. C. (1989). The mathematical training of teachers from the point of view of education. Journal für Mathematik-Didaktik, 10, 291–308.Google Scholar
  39. Wittmann, E. C. (1991). From inservice-courses to systematic cooperation between teachers and researchers. Zentralblatt für Didaktik der Mathematik, 23(5), 158–160.Google Scholar

References

  1. Ball, D. L. (1988, April). Prospective teachers’ understanding of mathematics: What do they bring with them to teacher education? Paper presented at the annual meeting of the American Educational Research Association, New Orleans, LA.Google Scholar
  2. Bauersfeld, H. (1988). Interaction, construction, and knowledge: Alternative perspectives for mathematics education. In D. Grouws, T. Cooney, & D. Jones (Eds.), Perspectives on research on effective mathematics teaching(pp. 27–46). Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  3. Bauersfeld, H. (1980). Hidden dimensions in the so-called reality of a mathematics classroom. Educational Studies in Mathematics, 11, 23–41.CrossRefGoogle Scholar
  4. Begle, E. G. (1968). Curriculum research in mathematics. In H. J. Klausmeier & G. T. O’Hearn (Eds.), Research and development toward the improvement of education (pp. 44–48). Madison, WI: Dembar Educational Research Services.Google Scholar
  5. Brophy, J. E. (1975, November). Reflections on research in elementary schools. Paper presented at the conference on research on teacher effects: An examination by decisionmakers and researchers, University of Texas, Austin, TX.Google Scholar
  6. Brown, C. A. (1985). A study of the socialization to teaching of beginning secondary mathematics teachers. Unpublished doctoral dissertation, University of Georgia, Athens, GA.Google Scholar
  7. Brown, S. I., Cooney, T. J., & Jones, D. (1990). Mathematics teacher education. In W. R. Houston, M. Haberman, & J. Sikula (Eds.), Handbook of research on teacher education (pp. 639–656). New York: Macmillan.Google Scholar
  8. Brownell, W. A. (1945). When is arithmetic meaningful. Journal of Educational Research, 38, 481–498.Google Scholar
  9. Bush, W. (1983). Preservice secondary mathematics teachers’ knowledge about teaching mathematics and decision-making during teacher training (Doctoral dissertation, University of Georgia, 1982). Dissertation Abstracts International, 43, 2264A.Google Scholar
  10. Cobb, P. (1986). Contexts, goals, beliefs, and learning mathematics. For the learning of mathematics. 6(2), 2–9.Google Scholar
  11. Cooney, T. (in press) Teacher education as an exercise in adaptation. In D. Aichele (Ed.), NCTM yearbook on teacher education. Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  12. Cooney, T. (1992). A survey of secondary teachers’ evaluation practices in Georgia. Athens, GA: University of Georgia.Google Scholar
  13. Davis, R. B. (1967). The changing curriculum: Mathematics. Washington, DC: Association for Supervision and Curriculum Development, NEA.Google Scholar
  14. Eisenberg, T. A. (1977). Begle revisited: Teacher knowledge and students achievement in algebra. Journal for Research in Mathematics Education, 8, 216–222.Google Scholar
  15. Feyerabend, P. (1988). Against method. New York: Verso.Google Scholar
  16. Fisher, L. C. (1988). Strategies used by secondary mathematics teachers to solve proportion problems. Journal for Research in Mathematics Education, 19, 157–168.Google Scholar
  17. Gage, N. (1972). Teacher effectiveness and teacher education: The search for a scientific basis. Palo Alto, CA: Pacific Books.Google Scholar
  18. Gallagher, J. J. (1970). Three studies of the classroom. In J. J. Gallagher, G. A. Nuthall, & B. Rosenshine (Eds.), Classroom obsservation. American Educational Research Association Monogaraph Series on Curriculum Evaluation, Monograph No. 6. Chicago: Rand McNally.Google Scholar
  19. Glasersfeld, E. von (1987). The construction of knowledge. Seaside, CA: Intersystems Publications.Google Scholar
  20. Glasersfeld, E. von (1989). Constructivism in education. In T. Husen & N. Postlethwaite (Eds.), International encyclopedia of education (pp. 162–163). (Supplementary Vol.). Oxford: Pergamon.Google Scholar
  21. Graeber, A., Tirosh, D., & Glover, R. (1986). Preservice teachers’ beliefs and performance on measurement and partitive division problems. In G. Lappan & R. Even (Eds.), Proceedings of the Eighth Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 262–267). East Lansing, MI: Michigan State University.Google Scholar
  22. Green, T. (1971). The activities of teaching. New York: McGraw-Hill.Google Scholar
  23. Helms, J. M. (1989). Preservice secondary mathematics teachers’ beliefs about mathematics and the teaching of mathematics: Two case studies. Unpublished doctoral dissertation, University of Georgia, Athens, GA.Google Scholar
  24. Henderson, E. M. (1988) Preservice secondary mathematics teachers’ geometric thinking and their flexibiltiy in teaching geometry. Unpublished doctoral dissertation, University of Georgia, Athens, GA.Google Scholar
  25. Hersh, R. (1986). Some proposals for revising the philosophy of mathematics. In T. Tymoczko (Ed.), New directions in the philosophy of mathematics (pp. 9–28). Boston: Birkhauser.Google Scholar
  26. Highet, G. (1950). The art of teaching. New York: Vintage Books.Google Scholar
  27. Jones, D. L. (1990). A study of the belief systems of two beginning middle school mathematics teachers. Unpublished doctoral dissertation, University of Georgia, Athens, GA.Google Scholar
  28. Kesler, T. (1985). Teachers’ instructional behavior related to their conceptions of teaching and mathematics and their level of dogmatism: Four case studies. Unpublished doctoral dissertation, University of Georgia, Athens, GA.Google Scholar
  29. Kuhn, T. (1970). The structure of scientific revolutions (2nd ed.). Chicago: University of Chicago Press.Google Scholar
  30. Lappan, G., Fitzgerald, W., Phillips, E., Winter, M. J., Lanier, P., Madsen-Nason, A., Even, R., Lee, B., Smith, J., & Weinberg, D. (1988). The middle grades mathematics project. The challenge: Good mathematics — taught well (Final report to the National Science Foundation for Grant #MDR8318218). East Lansing, MI: Michigan State University.Google Scholar
  31. Lortie, D. C. (1975). School teacher: A sociological study. Chicago: University of Chicago Press.Google Scholar
  32. Mayberry, J. (1983). The Van Hiele levels of geometric thought in undergraduate preservice teachers. Journal for Research in Mathematics Education, 14, 50–59.Google Scholar
  33. McGalliard, W. (1983). Selected factors in the conceptual systems of geometry teachers: Four case studies (Doctoral Dissertation, University of Georgia, 1982). Dissertation Abstracts International, 44, 1364A.Google Scholar
  34. Mitroff, I., & Kilmann, R. (1978). Methodological approaches to social sciences. San Francisco: Jossey-Bass.Google Scholar
  35. National Council of Teachers of Mathematics. (1989). Curriculum and evaluation stan?dards for school mathematics teaching. Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  36. National Council Of Teachers Of Mathematics. (1991). Professional standards for the teaching of mathematics. Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  37. Owens, J. (1987). A sudy of four preservice secondary mathematics teachers’ constructs of mathematics and mathematics teaching. Unpublished doctoral dissertation, University of Georgia, Athens, GA.Google Scholar
  38. Perry, W. (1970). Forms of intellectual and ethical development in the college years: A scheme. New York: Holt, Rinehart, & Winston.Google Scholar
  39. Peterson, P. L. (1988). Teaching for higher-order thinking in mathematics: The challenge for the next decade. In D. Grouws, T. Cooney, & D. Jones (Eds.), Perspectives on research on effective mathematics teaching (pp. 2–26). Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  40. Peterson, P. L., & Clark, C. M. (1978) Teachers’ reports of their cognitive processes during teaching. American Educational Research Journal, 15, 555–565.Google Scholar
  41. Rokeach, M. (1960) The open and closed mind. New York: Basic Books.Google Scholar
  42. Rosenshine, B., & Furst, N. (1973). The use of direct observation to study teaching. In R. Travers (Ed.), Second handbook of research on teaching (pp. 122–183). Chicago, IL: Rand McNally.Google Scholar
  43. Seiler, T., & Wannenmacher, W. (Eds.). (1983). Concept development and the development of word meaning. New York: Springer.Google Scholar
  44. Seiler, T. B. (1984). Was ist eine “konzeptuell akzeptable Kognitionstheorie”? Anmerkungen zu den Ausführungen von Theo Herrmann: Über begriffliche Schwächen kognitivistischer Kognitionstheorien. Sprache & Kognition, 2, 87–101.Google Scholar
  45. Snow, R. E. (1983). Theory construction for research on teaching. In R. W. Travers (Ed.), Second handbook of research on teaching (pp. 77–112.). Chicago, IL: Rand McNally.Google Scholar
  46. Thompson, A. (1982). Teachers’ conceptions of mathematics and mathematics teaching: Three case studies. Unpublished doctoral dissertation. University of Georgia. Athens, GA.Google Scholar
  47. Thompson, A. (1992). Teachers’ beliefs and conceptions: A synthesis of the research. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 127–146). New York: MacMillan.Google Scholar
  48. Weiss, I. R., Boyd, S. E., & Hessling, P. A. (1990). A look at exemplary NSF teacher enhancement projects. Chapel Hill, NC: Horizon Research.Google Scholar
  49. Wheeler, M. M., & Feghali, I. (1983). Much ado about nothing: Preservice elementary school teachers’ concept of zero. Journal for Research in Mathematics Education, 14, 147–155.Google Scholar
  50. Wilson, M. R. (1991). A study of three preservice secondary mathematics teacher’s knowledge and beliefs about mathematical functions. Unpublished doctoral dissertation, University of Georgia, Athens, GA.Google Scholar
  51. Wittmann, E. (1992). One source of the broadcast metaphor: Mathematical formalism. In F. Seeger & H. Steinbring (Eds.), The dialogue between theory and practice in mathematics education: Overcoming the broadcast metaphor. Proceedings of the Fourth Conference on Systematic Cooperation between Theory and Practice in Mathematics Education (SCTP). Brakel, Germany (pp. 111–119). IDM Materialien und Studien 38. Bielefeld: Universität Bielefeld.Google Scholar
  52. Yackel, E., Cobb, P., Wood, T., Wheatley, G., & Merkel, G. (1990). The importance of social interaction in children’s construction of mathematical knowledge. In T. J. Cooney & C. R. Hirsch (Eds.), Teaching and learning in the 1990s (pp. 12–21). Reston, VA: National Council of Teachers of Mathematics.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Rolf Biehler
    • 1
  1. 1.Bielefeld

Personalised recommendations