Advertisement

Interaction in the Classroom

  • Rudolf Sträßer
Chapter
  • 398 Downloads
Part of the Mathematics Education Library book series (MELI, volume 13)

Keywords

Function Concept Curriculum Development Senior High School Fundamental Idea School Reform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artigue, M. (1992). Didactical engineering. In R. Douady & A. Rouchier (Eds.), Research in Didactique of Mathematics (pp. 41–66). Grenoble: La Pensée Sauvage.Google Scholar
  2. Balacheff, N. (1990a). Towards a problśmatique for research on mathematics teaching. Journalfor Research in Mathematics Education, 21(4), 258–272.Google Scholar
  3. Balacheff, N. (1990b). Beyond a psychological approach of the psychology of mathematics education. For the Learning of Mathematics, 10(3), 2–8.Google Scholar
  4. Barra M., Ferrari M., Furinghetti F., Malara N.A., & Speranza F. (Eds.). (1992). The Italian research in mathematics education: Common roots and present trends. Progetto Strategico del C.N.R. — Tecnologie e Innovazioni Didattiche, 12.Google Scholar
  5. Bartolini Bussi, M. (1991). Social interaction and mathematical knowledge. In F. Furinghetti (Ed.), Proceedings of the 15th PME Conference, 1, 1–16.Google Scholar
  6. Bartolini Bussi, M. (1992). Mathematics knowledge as a collective enterprise. In F. Seeger & H. Steinbring (Eds.), The dialogue between theory and practice in mathematics education: Overcoming the broadcast metaphor (pp. 121–151). Materialien und Studien Band 38, IDM Bielefeld.Google Scholar
  7. Bartolini Bussi, M. (in press a). The mathematical discussion in primary school project: Analysis of long term processes. In L. Bazzini & H.-G. Steiner (Eds.), Proceedings of the Second Italian-German Bilateral Symposium on Didactics of Mathematics.Google Scholar
  8. Bartolini Bussi M. (in press b). Coordination of spatial perspectives: An illustrative example of internalization of strategies in real life drawing, The Journal of Mathematical Behavior.Google Scholar
  9. Bauersfeld, H. (1988). Interaction, construction and knowledge: Alternative perspectives for mathematics education. In T. A. Grouws & T. J. Cooney (Eds.), Perspectives on research on effective mathematics teaching (Vol. 1, pp. 27–46). Hillsdale NJ: Erlbaum.Google Scholar
  10. Bauersfeld, H. (1990). Activity theory and radical constructivism: What do they have in common and how do they differ? Occasional Paper 121, IDM Bielefeld.Google Scholar
  11. Bell, E. T. (1937). Men of mathematics. New York: Simon & Schuster.Google Scholar
  12. Boero, P. (1988). An innovative curriculum: Changes in didactic phenomena and related problems. In H.-G. Steiner & A. Vermandel (Eds.), Proceedings of the Second TME Conference (pp. 280–296). Bielefeld-Antwerpen.Google Scholar
  13. Boero, P. (1992). The crucial role of semantic fields in the development of problem solving skills in the school environment. In J. P. Ponte, J. F. Matos, J. M. Matos, & D. Fernandes (Eds.), Mathematical problem solving and new information technologies (pp. 77–91). Berlin: Springer.Google Scholar
  14. Brousseau, G. (1986). Théorisation des phénomenes d’enseignement des mathśmatiques. Postdoctoral dissertation, University of Bordeaux.Google Scholar
  15. Christiansen, B., & Walther, G. (1986). Task and activity. In B. Christiansen, A. G. Howson, & M. Otte (Eds.), Perspectives on mathematics education (pp. 243–307). Dordrecht: Reidel.Google Scholar
  16. Cobb, P., Wood T., & Yackel E. (in press). Discourse, mathematical thinking and classroom practice. In E. Forman, N. Minick & A. Stone (Eds.), Contexts for learning: Sociocultural dynamics in children development. Oxford: Oxford University Press.Google Scholar
  17. Davis, J. (1992). The role of the participant observer in the discipline of noticing. In F. Seeger & H. Steinbring (Eds.), The dialogue between theory and practice in mathemat?ics education:Overcoming the broadcast metaphor (pp. 167–176). Materialien und Studien Band 38, IDM Bielefeld.Google Scholar
  18. Davydov, V. V. (1991). The content and unsolved problems of activity theory. Multidisciplinary Newsletter for Activity Theory, 7/8, 30–35.Google Scholar
  19. Douady, R. & Mercier, A. (Eds.). (1992). Research in didactique of mathematics. Grenoble: La Pensée Sauvage.Google Scholar
  20. Duval, R. (1991). Structure du raisonnement deductif et apprentissage de la démonstration. Educational Studies in Mathematics, 22, 233–251.CrossRefGoogle Scholar
  21. Eisemberg, T. (1991). On building self-confidence in mathematics. In F. Furinghetti (Ed.), Proceedings of the 15th PME Conference, 2, 9–16.Google Scholar
  22. Eisenhart, M.A. (1988). The ethnographic research tradition and the mathematics education research. Journal for Research in Mathematics Education, 19(2), 99–114.Google Scholar
  23. Engestrom, Y. (1991). Activity theory and individual and social transformations. Multidisciplinary Newsletter for Activity Theory, 7/8, 6–17.Google Scholar
  24. Garnier, C., Bednarz, N., & Ulanovskaya, I. (Eds.). (1991). Aprés Vygotsky et Piaget: Perspectives sociale et constructiviste. Ecoles russe et occidentale. Bruxelles: De Boeck — Wesmael.Google Scholar
  25. ICMI (1993). What is research in mathematics education, and what are its results? — Discussion document for an ICMI study. Zentralblatt für Didaktik der Mathematik, 23(3), 114–116.Google Scholar
  26. Leont’ev, A.N. (1977). Attività, coscienza, personalità, Firenze: Giunti Barbéra. (Original work published in 1975)Google Scholar
  27. Maier, H., & Voigt, J. (1992). Teaching styles in mathematics education. In H. Schupp, W. Blum, C. Keitel, H.-G. Steiner, R. Straesser, & H.-J. Vollrath (Eds.), Mathematics edu-cation in the Federal Republic of Germany. Zentralblatt für Didaktik der Mathematik, 24(7), 248–252.Google Scholar
  28. Margolinas, C. (1992). Elements pour l’analyse du rôle du maître: Les phases de conclusion. Recherches en Didactique des Mathématiques, 12(1), 113–158.Google Scholar
  29. Mellin-Olsen, S. (1987). The politics of mathematics education. Dordrecht: ReidelGoogle Scholar
  30. Perret-Clermont, A. N. (1980). Social interaction and cognitive development in children. London: Academic Press.Google Scholar
  31. Piaget, J. (1936). La naissance de l’intelligence chez l’enfant. Neuchatel: Delachaux et Niestlé.Google Scholar
  32. Piaget, J. (1962). Comments on Vygotsky’s critical remarks concerning The Language and Thought of the Child, and Judgment and Reasoning in the Child. Boston, MA: M.I.T. Press.Google Scholar
  33. Raeithel, A. (1990). Production of reality and construction of possibilities: Activity theoretical answers to the challenge of radical constructivism. Multidisciplinary Newsletter for Activity Theory, 5/6, 30–43.Google Scholar
  34. Schupp, H., Blum, W., Keitel, C., Steiner, H.-G., Straesser, R., & Vollrath, H.-J. (Eds.). (1992). Mathematics education in the Federal Republic of Germany. Zentralblatt für Didaktik der Mathematik, 24(7).Google Scholar
  35. Steffe, L. P. (1991). The constructivist teaching experiment: Illustrations and implications. In E. von Glasersfeld (Ed.), Radical constructivism in mathematics education (pp. 177–194). Dordrecht: Kluwer.Google Scholar
  36. Steiner, H.-G. (1985). Theory of mathematics education: An introduction. For the Learning of Mathematics, 5(2), 11–17.Google Scholar
  37. Veer, R. van der & Valsiner, J. (1991). Understanding Vygotsky: A quest for synthesis. Oxford: Blackwell.Google Scholar
  38. Vygotsky, L. S. (1978). Mind in society: The development of higher phychological processes. Cambridge, MA: Harvard University Press.Google Scholar
  39. Vygotsky, L. S. (1990). Pensiero e linguaggio. Bari: Laterza.Google Scholar
  40. Wertsch, J. V. (1991). Voices of the mind: A sociocultural approach to mediated action. London: Harvester Wheatsheaf.Google Scholar

References

  1. Ausubel, D. P. (1968). Educational psychology: A cognitive view. New York: Holt, Rinehart & Winston.Google Scholar
  2. Bauersfeld, H. (1978). Kommunikationsmuster im Mathematikunterricht: Eine Analyse am Beispiel der Handlungsverengung durch Antworterwartung. In H. Bauersfeld (Ed.), Fallstudien und Analysen zum Mathematikunterricht (pp. 158–170). Hannover: Schroedel.Google Scholar
  3. Bauersfeld, H. (1983). Subjektive Erfahrungsbereiche als Grundlage einer Interaktionstheorie des Mathematiklernens und-lehrens. In H. Bauersfeld, H. Bussmann, G. Krummheuer, J. H. Lorenz, & J. Voigt (Eds.), Lernen und Lehren von Mathematik. IDM-series Untersuchungen zum Mathematikunterricht, Vol. 6 (pp. 1–56). Köln: Aulis Verlag Deubner.Google Scholar
  4. Bauersfeld, H. (1988). Interaction, construction, and knowledge: Alternative perspectives for mathematics education. In D. A. Grouws & T. J. Cooney (Eds.), Perspectives on research on effective mathematics teaching (pp. 27–46). Reston, VA: Erlbaum.Google Scholar
  5. Bauersfeld, H. (1991). Structuring the structures. In L. P. Steffe (Ed.), Constructivism and education. Hillsdale, NJ: Erlbaum.Google Scholar
  6. Bauersfeld, H. (1992a). Activity theory and radical constructivism — What do they have in common and how do they differ? Cybernetics and Human Knowing, 1, 15–25.Google Scholar
  7. Bauersfeld, H. (1992b). Integrating theories for mathematics education. For the Learning of Mathematics, 12(2), 19–28.Google Scholar
  8. Bereiter, C. (1991). Implications of connectionism for thinking about rules. Educational researcher, 20(3), 10–16.Google Scholar
  9. Berger, P. L., & Luckmann, T. (1966). The social construction of reality. Garden City, NY: Doubleday.Google Scholar
  10. Blumer, H. (1969). Symbolic interactionism. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  11. Cazden, C. B., John, V. P., & Hymes, D. (1972). Functions of language in the classroom. New York: Columbia University, Teachers College Press.Google Scholar
  12. Davis, P. J., & Hersh, R. (1980). The mathematical experience. Basel, Switzerland: Birkhäuser.Google Scholar
  13. Davydov, V. V. (1991). The content and unsolved problems of activity theory. The Multidisciplinary Newsletter for Activity Theory, 7/8, 30–35.Google Scholar
  14. Dunkin, M. J., & Biddle, B. J. (1974). The study of teaching. New York: Holt, Rinehart & Winston.Google Scholar
  15. Feyerabend, P. (1991). Three dialogues on knowledge. Oxford: Blackwell.Google Scholar
  16. Galison, P. L. (1987). How experiments end. Chicago, IL: University of Chicago Press.Google Scholar
  17. Glasersfeld, E. von (1991). Distinguishing the observer: An attempt at interpreting Maturana. Methodologia, V(8), 57–68.Google Scholar
  18. Goffman, E. (1974). Frame analysis — An essay on the organization of experience. Cambridge, MA: Harvard University Press.Google Scholar
  19. Hiebert, J., & Carpenter, T. P. (1992). Learning and teaching with understanding. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 65–97). New York: MacMillan.Google Scholar
  20. Hilgard, E. R., & Bower, G. H. (1975). Theories of learning. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  21. Jaroschewski, M. (1975). Psychologic im 20. Jahrhundert. Berlin: Volk und Wissen VEB.Google Scholar
  22. Jaspers, K. (1947). Von der Wahrheit. München: PiperGoogle Scholar
  23. Kozulin, A. (1990). Vygotsky’s psychology: A biography of ideas. London: Harvester Wheatsheaf.Google Scholar
  24. Krummheuer, G. (1992). Lernen mit “Format”: Elemente einer interaktionistischen Lerntheorie. Weinheim: Deutscher Studien Verlag.Google Scholar
  25. Krummheuer, G., & Voigt, J. (1991). Interaktionsanalysen von Mathematikunterricht: EinÜberblick über einige Bielefelder Arbeiten. In H. Maier & J. Voigt (Eds.), Interpretative Unterrichtsforschung. IDM-series Untersuchungen zum Mathematikunterricht, Vol. 17 (pp. 17–32). Köln: Aulis Verlag Deubner.Google Scholar
  26. Lektorskij, V. A. (1984). Subject — Object — Cognition. Moscow: Progress Publ.Google Scholar
  27. Lektorskij, V. A., & Engeström, Y. (Eds.). (1990). Activity: The theory, methodology and problems. Issues in Contemporary Soviet Psychology Series. Orlando, FL: Deutsch.Google Scholar
  28. Lichtenberg, G. Ch. (1971). Schriften und Briefe (Vol. 2). München: Hanser Verlag.Google Scholar
  29. Makarenko, A.S. (1954). Der Weg ins Leben — Ein pädagogisches Poem. Berlin: Aufbau-Verlag. [Original work published 1940]Google Scholar
  30. Markowitz, J. (1986). Verhalten im Systemkontext: Zum Begriff des sozialen Epigramms. Frankfurt/Main: Suhrkamp.Google Scholar
  31. Maturana, H. R., & Varela, F. J. (1980). Autopoiesis and cognition: The realization of the living. In R. S. Cohen & M. W. Wartofsky (Eds.), Boston studies in the philosophy of science (Vol. 42). Dordrecht, Netherlands: Reidel.Google Scholar
  32. Mehan, H., & Wood, H. (1975). The reality of ethnomethodology. New York: Wiley.Google Scholar
  33. Miller, M. (1986). Kollektive Lernprozesse. Studien zur Grundlegung einer soziologischen Lerntheorie. Frankfurt/Main: Suhrkamp.Google Scholar
  34. Minsky, M. (1987). The society of mind. London: HeinemannGoogle Scholar
  35. Pierce, C. S. (1965): Collected papers II — Elements of logic. Cambridge, MA: Harvard University Press.Google Scholar
  36. Pestalozzi, J. H. (1946). Stanser Brief. In P. Baumgartner (Ed.), Werke in 8 Bänden. Band 3: Schriften 1798–1804 (pp. 91–124). Erlenbach-Zürich, Switzerland: Rotapfel-Verlag. [Original work published 1799]Google Scholar
  37. Ramsey, W., Stich, S. P., & Rumelhart, D. E. (1991). Philosophy and connectionist theory. In D. E. Rumelhart (Ed.), Developments in connectionist theory. Hillsdale, NJ: Erlbaum.Google Scholar
  38. Resnick, L. B. (1989). Knowing, learning, and instruction. Hillsdale, NJ: Erlbaum.Google Scholar
  39. Resnick, L., Levine, J. M., & Teasley, S. D. (Eds.). (1991). Perspectives on socially shared cognition. Washington, DC: American Psychological Association.Google Scholar
  40. Rueckl, J. G., & Kosslyn, S. M. (1992). What good is connectionist modelling? A dialogue. In A. F. Healy, S. M. Kosslyn, & R. M. Shiffrin (Eds.), From learning theory to connectionist theory: Essays in honor of William K. Estes (Vol.1). Hillsdale, NJ: Erlbaum.Google Scholar
  41. Rumelhart, D. E. (1989). The architecture of mind: A connectionist approach. In M. I. Posner (Ed.), Foundations of cognitive science (pp. 133–159). Cambridge, MA: MIT Press.Google Scholar
  42. Snow, R. E., & Farr, M. J. (Eds.). (1987). Aptitude, learning, and instruction. Vol. 2: Cognitive process analyses of learning and problem solving. Hillsdale, NJ: ErlbaumGoogle Scholar
  43. Snow, R. E., Federico, P.-A., & Montague, W. E. (Eds.). (1980). Aptitude, learning, and instruction. Vol. 1: Cognitive process analyses of aptitude. Hillsdale, NJ: Erlbaum.Google Scholar
  44. Varela, F. J., & Thompson, E. (1991). The embodied mind. Newton, MA: MIT Press.Google Scholar
  45. Veer, R. van der, & Valsiner, J. (1991). Understanding Vygotsky: A quest for synthesis. Oxford: Blackwell.Google Scholar
  46. Voigt, J. (1984). Interaktionsmuster und Routinen im Mathematikunterricht. Weinheim: Beltz.Google Scholar
  47. Vygotsky, L. S. (1985). Die Krise der Psychologie in ihrer historischen Bedeutung. In J. Lompscher (Ed.), Ausgewählte Schriften (Vol. 1, pp. 57–277). Köln: Pahl-Rugenstein.Google Scholar
  48. Vygotsky, L. S. (1992). Geschichte der höheren psychischen Funktionen. W. Jantzen, J. Lompscher, A. Métraux, & M. Stadler (Eds.), Fortschritte der Psychologie (Vol. 5). Münster: Lit Verlag. [Original work published 1960]Google Scholar

References

  1. Balacheff, N. (1991). The benefits and limits of social interaction: The case of mathematical proof. In A. Bishop, S. van Dormolen, S. Mellin-Olsen (Eds.), Mathematical knowledge: Its growth through teaching (pp. 175–92). Dordrecht, Netherlands: Kluwer.Google Scholar
  2. Beaudichon, J., & Vandenplas-Helper, C. (1985). Analyse des interactions et de leurs effets dans la communication référentielle et la maîtrise de notions, In G. Mugny (Ed.), Psychologie sociale du développement cognitif (pp. 125–49). Bern: Lang.Google Scholar
  3. Brousseau, G. (1986). Fondements et méthodes de la didactique des mathématiques. Recherches en didactique des mathématiques, 7(2), 33–115.Google Scholar
  4. Carugati, F., & Mugny, G. (1985). La théorie du conflit socio-cognitif. In G. Mugny (Ed.), Psychologie sociale du développement cognitif (pp. 45–70). Bern: Lang.Google Scholar
  5. Cobb, P., Yackel, E., & Wood, T. (1992). Interaction and learning in mathematics classroom situations. Educational Studies in Mathematics, 23(1), 99–122.CrossRefGoogle Scholar
  6. Coulibaly, M. (1987). Les décimaux en quatriéme: Analyse des conceptions. Mémoire de DEA. Université Joseph Fourier, Grenoble 1, Laboratoire LSD2-IMAG.Google Scholar
  7. De Avila, E. (1988). Bilingualism, cognition and minorities. In R. Cocking & J. Mestre (Eds), Linguistic and cultural influences on learning mathematics (pp. 101–22). Hillsdale, NJ: Erlbaum.Google Scholar
  8. Gallou-Dumiel, E. (1988). Symétrie orthogonale et micro-ordinateur. Recherches en didactique des mathématiques, 8, 5–59.Google Scholar
  9. Garnier, C., Bednarz, N., & Ulanovskaya, I. (1991). Aprés Vygotsky et Piaget — Perpectives sociale et constructiviste. Ecoles russe et occidental. Bruxelles: De Boeck Wesmael.Google Scholar
  10. Grevsmühl, U. (1991). Children’s verbal communication in problem solving activities. In F. Furinghetti (Ed.), Proceedings of the Fifteenth PME Conference (Vol. 2, pp. 88–95). Dipartimento di Matematica dell’Universita di Genova.Google Scholar
  11. Grisvard, C., & Leonard, F. (1983). Comparaison de nombres décimaux, Bulletin de l’APMEP No. 340, September 1983, pp. 450–459.Google Scholar
  12. Hölzl, R. (1992). Interpretative Analyse eines Problemlöseversuchs im Zugmodus der Cabri-Geometrie. Zentralblatt für Didaktik der Mathematik, 4, 128–34.Google Scholar
  13. Hoyles, C., Healy, L. & Pozzi, S. (1993, February). Telling a story about computers, groups and learning mathematics. Paper presented at the ESRC InterSeminar, Collaborative Learning. Oxford.Google Scholar
  14. Hoyles, C., & Sutherland, R. (1990). Pupil collaboration and teacher intervention in the Logo environment. Journal für Mathematik-Didaktik, 11(4), 323–343.Google Scholar
  15. Krummheuer, G. (1993). Orientierungen für eine màthematikdidaktische Forschung zum Computereinsatz im Unterricht. Journal für Mathematik-Didaktik, 14(1), 59–92.Google Scholar
  16. Laborde, C. (1982). Langue naturelle et écriture symbolique: Deux codes en interaction dans l’enseignement mathématique. Unpublished postdoctoral dissertation, IMAG, Grenoble.Google Scholar
  17. Leonard, F., & Grisvard, C. (1981). Sur deux règles implicites utilisées dans la comparaison de nombres décimaux positifs. Bulletin de l’APMEP, No. 327, February 1981, pp.47–60.Google Scholar
  18. Margolinas, C. (1993). De l’importance du vrai et du faux en mathématiques. Grenoble: La Pensée suavage.Google Scholar
  19. Mugny, G. (1985). Psychologie sociale du développement cognitif. Bern: Lang.Google Scholar
  20. Pimm, D. (1987). Speaking mathematically: Communication in mathematics classrooms. London: Routledge & Kegan Paul.Google Scholar
  21. Pirie S., & Schwarzenberg R. (1988). Mathematical discussion and mathematical understanding. Educational Studies in Mathematics, 19(4), 459–470.CrossRefGoogle Scholar
  22. Polivanova, N. (1991). Particularités de la solution d’un problème combinatoire par des élèves en situation de coopération. In C. Garnier, N. Bednarz, & I. Ulanovskaya (Eds.), Après Vygotsky et Piaget-Perpectives sociale et constructiviste. Ecoles russe et occidentale. Bruxelles: De Boeck Wesmael.Google Scholar
  23. Rivina, I. (1991). L’organisation des activités en commun et le développement cognitif des jeunes éièves. In C. Garnier, N. Bednarz, & I. Ulanovskaya (Eds.), Après Vygotsky et Piaget — Perpectives sociale et constructiviste. Ecoles russe et occidentale (pp. 163–178). Bruxelles: De Boeck Wesmael.Google Scholar
  24. Robert, A., & Tenaud, I. (1989). Une expérience d’enseignement de la géométrie en Terminate C. Recherches en Didactique des Mathématiques, 9(1), 31–70.Google Scholar
  25. Rogoff, B. (1990). Apprenticeship in thinking. Oxford: Oxford University Press.Google Scholar
  26. Roubtsov, V. (1991). Activité en commun et acquisition de concepts théoriques par les écoliers sur le matériel physique. In C. Garnier, N. Bednarz, & I. Ulanovskaya (Eds.), Après Vygotsky et Piaget — Perpectives sociale et constructiviste. Ecoles russe et occidentale. Bruxelles: De Boeck Wesmael.Google Scholar
  27. Tudge, J. (1992). Processes and consequences of peer collaboration. Child Development, 63(6), 1364–1379.Google Scholar
  28. Vygotsky, L. (1985). Pensée et langage (Sève, F., Trans.). Paris: Editions Sociales. [Original work published 1934]Google Scholar
  29. Yackel, E. (1991). The role of peer questioning during class discussion in second grade mathematics. In F. Furinghetti (Ed.), Proceedings of the Fifteenth PME Conference. (Vol. 3, pp. 364–371). Dipartimento di Matematica dell’Universita di Genova.Google Scholar

References

  1. Aiken, L. (1972). Language factors in learning mathematics. Review of Educational Research, 42, 359–385.Google Scholar
  2. Ainley, J. (1987). Telling questions. Mathematics Teaching, 118, 24–26.Google Scholar
  3. Ainley, J. (1988). Perceptions of teachers’ questioning styles. In E. Borbás (Ed.), Proceedings of PME XII Conference (pp. 92–99). Veszprem: OOK Printing House.Google Scholar
  4. Barham, J., & Bishop, A. (1991). Mathematics and the deaf child. In K. Durkin & B. Shire (Eds.), Language in mathematical education (pp. 179–87). Milton Keynes: Open University Press.Google Scholar
  5. Barnes, D. (1976). From communication to curriculum. Harmondsworth: Penguin.Google Scholar
  6. Blanchard-Laville, C. (1991). La dimension du travail psychique dans la formation continue des enseignant(e)s des mathématiques. In F. Furinghetti (Ed.), Proceedings of PME XV (pp. 152–159). Assisi: Programme Committee of the 15th PME-Conference.Google Scholar
  7. Blanchard-Laville, C. (1992). The dimension of psychic work in the in-service training of teachers. For the learning of mathematics, 12(3), 45–51.Google Scholar
  8. Borasi, R., & Rose, B. (1989). Journal writing and mathematics instruction. Educational Studies in Mathematics, 20(4), 347–365.CrossRefGoogle Scholar
  9. Borasi, R., & Siegel, M. (1990). Reading to learn mathematics: New connections, new questions, new challenges. For the learning of mathematics, 10(3), 9–16.Google Scholar
  10. Brown, G. (1982). The spoken language. In R. Carter (Ed.), Linguistics and the teacher. London: Routledge & Kegan Paul.Google Scholar
  11. Chapman, A. (1993). Language practices in school mathematics: A social semiotic perspective. Unpublished doctoral dissertation. Murdoch University, Perth, Australia.Google Scholar
  12. Cocking, R., & Mestre, J. (Eds.). (1988). Linguistic and cultural influences on learning mathematics. Hillsdale, NJ: Erlbaum.Google Scholar
  13. DES (1982). Mathematics counts. London: HMSO.Google Scholar
  14. Durkin, K., & Shire, B. (Eds.). (1991). Language in mathematical education. Milton Keynes: Open University Press.Google Scholar
  15. Edwards, D., & Mercer, N. (1988). Common knowledge. London: Methuen.Google Scholar
  16. Ellerton, N., & Clements, M. (1991). Mathematics in language: A review of language factors in mathematics learning. Geelong, Australia: Deakin University Press.Google Scholar
  17. Frye, N. (1963). The educated imagination. Toronto: CBC Enterprises.Google Scholar
  18. Garfinkel, H., & Sacks, H. (1970). On formal structures of practical actions. In J. McKinney & E. Tiryakian (Eds.), Theoretical sociology: Perspectives and developments (pp. 337–366). New York: Appleton-Century-Crofts.Google Scholar
  19. Grice, P. (1989). Studies in the way of words. Harvard, MA: Harvard University Press.Google Scholar
  20. Hodge, R., & Kress, G. (1988). Social semiotics. Cambridge: Polity Press.Google Scholar
  21. Laborde, C. (1990). Language and mathematics. In P. Nesher & J. Kilpatrick (Eds.), Mathematics and cognition (pp. 53–69). Cambridge: Cambridge University Press.Google Scholar
  22. Laborde, C. (1991). Lecture de textes mathématiques par des éièves (14–15 ans): Une experimentation. Petit x, 28, 57–90.Google Scholar
  23. Lakoff, G. (1972). Hedges: A study in meaning criteria and the logic of fuzzy concepts. Chicago Linguistic Society Papers. Chicago, IL: The Society.Google Scholar
  24. Love, E., & Mason, J. (1991). Teaching mathematics: Action and awareness. Milton Keynes: Open University.Google Scholar
  25. NCTM (1989). Curriculum and evaluation standards. Reston, VA: NCTM.Google Scholar
  26. Pimm, D. (1987). Speaking mathematically. London: Routledge & Kegan Paul.Google Scholar
  27. Pimm, D. (1991). Signs of the times. Educational Studies in Mathematics, 22(4), 391–405.CrossRefGoogle Scholar
  28. Pimm, D. (1992). “Why are we doing this?” Reporting back on mathematical investiga-tions. In D. Sawada (Ed.), Communication in learning mathematics (pp. 43–56). Edmonton, Alberta: MCATA.Google Scholar
  29. Pimm, D. (1993). The silence of the body. For the learning of mathematics, 13(1), 35–38.Google Scholar
  30. Pine, S., & Schwarzenberger, R. (1988). Mathematical discussion and mathematical understanding. Educational Studies in Mathematics, 19(4), 459–70.Google Scholar
  31. Prince, E. F., Frader, T., & Bosk, T. (1982). On hedging in physician-physician discourse. In R. J. di Pietro (Ed.), Linguistics and the professions (pp. 83–98). Norwood, NJ: Ablex.Google Scholar
  32. Rowland, T. (1992). Pointing with pronouns. For the learning of mathematics, 12(2), 44–8.Google Scholar
  33. Sinclair, J., & Coulthard, M. (1975). Towards an analysis of discourse. London: Oxford University Press.Google Scholar
  34. Stubbs, M. (1975). Organizing classroom talk, Occasional paper 19, Centre for Research in the Educational Sciences, University of Edinburgh, Scotland.Google Scholar
  35. Stubbs, M. (1980). Language and literacy. London: Routledge & Kegan Paul.Google Scholar
  36. Stubbs, M. (1983). Discourse analysis. Oxford: Basil Blackwell.Google Scholar
  37. Stubbs, M (1986). A matter of prolonged fieldwork: Notes towards a modal grammar of English. Applied Linguistics, 7(1), 1–25.CrossRefGoogle Scholar
  38. Tahta, D. (1991). Understanding and desire. In D. Pimm & E. Love (Eds.), Teaching and learning school mathematics (pp. 220–246). London: Hodder & Stoughton.Google Scholar
  39. Waywood, A. (1990). Mathematics and language: Reflections on students using mathematics journals. In G. Davis & R. Hunting (Eds.), Language issues in learning and teaching mathematics. Bundoora, Australia: La Trobe University.Google Scholar
  40. Waywood, A. (1992). Journal writing and learning mathematics. For the learning of mathematics, 12(2), 35–43.Google Scholar
  41. Wyndham, J. (1970). The Kraken wakes. Harmondsworth: Penguin.Google Scholar
  42. Yates, J. (1978). Four mathematical classrooms. Technical report, available from Faculty of Mathematical Studies, University of Southampton, Southampton, England.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Rudolf Sträßer
    • 1
  1. 1.Bielefeld

Personalised recommendations