Advertisement

Differential Didactics

  • Roland W. Scholz
Chapter
  • 400 Downloads
Part of the Mathematics Education Library book series (MELI, volume 13)

Keywords

Subject Matter Preservice Teacher Content Knowledge Mathematics Teacher Pedagogical Content Knowledge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anastasi, A. (1954). Contributions to differential psychology. New York: Macmillan.Google Scholar
  2. Dubiel, H. (1985). Was ist Neokonservatismus? Frankfurt: Suhrkamp.Google Scholar
  3. Springer, S. P., & Deutsch, G. (1981). Left brain, right brain. New York: W.H. FreemanGoogle Scholar
  4. Steiner, H. G. (1986) Sonderpädagogik für testsondierte “mathematisch hochbegabte” Schüler oder offene Angebote zur integrativ-differenzierenden Förderung mathematischer Bildung?” In Beiträge zum Mathematikunterricht 1986 (pp. 280–284). Bald-Salzdethfurth: Franzbecker.Google Scholar

References

  1. Allardice, B. S., & Ginsburg, H. P. (1983). Children’s psychological difficulties in mathematics. In H. P. Ginsburg (Ed.), The development of mathematical thinking (pp. 319–350). New York: Academic Press.Google Scholar
  2. Bartkovich, K. G., & George, W. C. (1980). Teaching the gifted and talented in the mathematics classroom. Washington, DC: National Education Association.Google Scholar
  3. Benbow, C. P. (1991). Mathematically talented children: Can acceleration meet their educational needs? In N. Colangelo & G. A. Davis (Eds.), Handbook of gifted education (pp. 154–165). Boston: Allyn & Bacon.Google Scholar
  4. Benton, A. L. (1987). Mathematical disabilities and the Gerstmann syndrome. In G. Deloche & X, Seron (Eds.), Mathematical disabilities (pp. 111–120). Hillsdale, NJ: Erlbaum.Google Scholar
  5. Bhattacharya, D. N. (1982). Gifted children in mathematics: Case studies. Doctoral dissertation, State University of New York at Buffalo, New York.Google Scholar
  6. Brown, M. D. (1991). The relationship between traditional instructional methods, contract activity packages, and math achievement of fourth grade gifted students. Doctoral dissertation, University of Southern Mississippi, Mississippi.Google Scholar
  7. Brown, J. S., & Van Lehn, K. (1980). Repair theory: A generative theory of bugs in procedural skills. Cognitive Science, 4, 379–426.CrossRefGoogle Scholar
  8. Clendening, C. P., & Davies, R. A. (1983). Challenging the gifted — Curriculum enrichment and acceleration models. New York: Bowker.Google Scholar
  9. Cox., L. S. (1975). Systematic errors in the four vertical algorithms in normal and handicapped population. Journal for Research in Mathematics Education, 4, 202–220.Google Scholar
  10. Ginsburg, H. P. (1977). Children’s arithmetic: The learning process. New York: Van Nostrand.Google Scholar
  11. Ginsburg, H. P. (1983). The development of mathematical thinking. New York: Academic Press.Google Scholar
  12. Grissemann, H., & Weber, A. (1982). Spezielle Rechenstörungen — Ursachen und Therapie. Bern: Huber.Google Scholar
  13. Hartje, W. (1987). The effect of spatial disorders on arithmetical skills. In G. Deloche & X. Seron (Eds.), Mathematical disabilities (pp. 121–135). Hillsdale, NJ: Erlbaum.Google Scholar
  14. Heller, K. A., & Feldhusen, J. F. (Eds.). (1986). Identifying and nurturing the gifted: An international perspective. Stuttgart: Huber.Google Scholar
  15. House, P. A. (Ed.). (1987). Providing opportunities for the mathematically gifted, K-12. Reston: NCTM.Google Scholar
  16. Jellen, H. G., & Verduin, J. R. (1986). Handbook for differential education of the gifted. Carbondale, IL: Southern Illinois University Press.Google Scholar
  17. Johnson, D. J., & Myklebust, H. R. (1971). Lernschwächen — Ihre Formen und ihre Behandungen. Stuttgart: Hippokrates.Google Scholar
  18. Klauer, K. J. (1992). In Mathematik mehr leistungsschwache Mädchen, im Lesen und Rechtschreiben mehr leistungsschwache Jungen? Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 24(1), 48–65.Google Scholar
  19. Kosc, L. (1974). Developmental dyscalculia. Journal of Learning Disabilities, 7, 164–177.CrossRefGoogle Scholar
  20. Krutetskii, V. A. (1976). The psychology of mathematical abilities in schoolchildren. Chicago, IL: University of Chicago Press.Google Scholar
  21. Lorenz, J. H. (1982). Lernschwierigkeiten im Mathematikunterricht der Grundschule und Orientierungsstufe. In H. Bauersfeld, H.-W. Heymann, G. Krummheuer, J. H. Lorenz, & V. Reiß (Eds.), Analysen zum Unterrichtshandeln (pp. 168–209). Köln: Aulis.Google Scholar
  22. Michael, W. B. (1977). Cognitive and affective components of creativity in mathematics and the physical sciences. In J. C. Stanley, W. C. George, & C. H. Solano (Eds.), The gifted and the creative: A fifty-year perspective (pp. 141–172). Baltimore, MD: Johns Hopkins University Press.Google Scholar
  23. Niegemann, H. M. (1988). Neue Wege in der pädagogischen-Diagnostik: Fehleranalyse und Fehlerdiagnostik im Mathematikunterricht. Heilpadagogische Forschung, 14(2), 77–82.Google Scholar
  24. Radatz, H. (1980). Fehleranalysen im Mathematikunterricht. Braunschweig: Vieweg.Google Scholar
  25. Resnick, L. B. (1983). Toward a cognitive theory of instruction. In S. Paris, G. M. Olson, & H. W. Stevenson (Eds.), Learning and motivation in the classroom (pp. 5–38). Hillsdale, NJ: Erlbaum.Google Scholar
  26. Resnick, L. B. (1984). Beyond error analysis: The role of understanding in elementary school arithmetic. In H. N. Cheek (Ed.), Diagnostic and prescriptive mathematics issues, ideas, and insights (pp. 2–14). Kent, OH: Research Council for Diagnostic and Prescriptive MathematicsGoogle Scholar
  27. Resnick, L. B., & Neches, R. (1984). Factors affecting individual differences in learning ability. In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence (pp. 275–323). Hillsdale, NJ: Erlbaum.Google Scholar
  28. Resnick, L.B., & Ford, W.W. (1981). The psychology of mathematics for instruction. Hillsdale, NJ: Erlbaum.Google Scholar
  29. Snider, J. H. (1986). Designing a program for gifted mathematics students in junior high/middle schools. Doctoral dissertation, George Peabody College for Teachers of Vanderbilt University, Tennessee.Google Scholar
  30. Stanley, J. C. (1977). Rationale of the Study of Mathematically Precocious Youth (SMPY) during its first five years of promoting educational accelaration. In J. C. Stanley, W. C. George, & C. H. Solano (Eds.), The gifted and the creative: A fifty-year perspective (pp. 75–112). Baltimore, MD: Johns Hopkins University Press.Google Scholar
  31. Stanley, J. C. (1979). The study and facilitation of talent for mathematics. In NSSE (Eds.), The gifted and the talented: Their education and development (pp. 169–185). Chicago, IL: University of Chicago Press.Google Scholar
  32. Tarnopol, M., & Tarnopol, L. (1979). Brain function and arithmetic disability. Focus on Learning Problems in Mathematics, 1, 23–39.Google Scholar
  33. Teyler, T. T. (1984). Brain functioning and mathematical abilities. In H. N. Cheek (Ed.), Diagnostic and prescriptive mathematics — Issues, ideas and insights (pp. 15–20). Kent, OH: Research Council for Diagnostic and Prescritive Mathematics.Google Scholar
  34. Underhill, R. G. (1977). Teaching elementary school mathematics. Columbus, OH: Bell & Howell.Google Scholar
  35. Wilmot, B. A. (1983). The design, administration, and analysis of an instrument which identifies mathematically gifted students in grades four, five and six. Doctoral dissertation, University of Illinois at Urbana-Champaign, Illinois.Google Scholar

References

  1. Baudelot, C., & Establet, R. (1992). Allez les filles! Paris: Seuil.Google Scholar
  2. Becker, J. R. (1991). Women’s ways of knowing in mathematics. Paper presented at the invited symposium of the IOWME, Assisi, Italy.Google Scholar
  3. Belenky, M. F., Clinchy, B. M., Golderberg, N. R., & Tarule, J. M. (1986). Women’s ways of knowing: The development of self, voice and mind. New York: Basic Books.Google Scholar
  4. Brown, S. I. (1984). The logic of problem generation: From morality and solving to de-posing and rebellion. For the Learning of Mathematics, 4(1), 9–29.Google Scholar
  5. Buerk, D. (1985). The voices of women making sense of mathematics. Journal of Education, 167(3), 59–70.Google Scholar
  6. Damarin, S. K. (1990). Teaching mathematics: A feminist perspective. In T. J. Cooney & C. R. Hirsh (Eds.), Teaching and learning mathematics in the 1990s: 1990 Yearbook. Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  7. Davis, K. (1992). Toward a feminist rhetoric: The Gilligan debate revisited. Women’s Studies International Forum, 15(2), 219–231.CrossRefGoogle Scholar
  8. Feingold, A. (1988). Cognitive gender differences are disappearing. American Psychologist, 23(2), 95–103.Google Scholar
  9. Felson, R. B., & Trudeau, L. (1991). Gender differences in mathematical performance. Social Psychology Quarterly, 54(2), 113–126.Google Scholar
  10. Fennema, E., & Peterson, P. (1985). Autonomous learning behavior: A possible explanation of gender-related differences in mathematics. In L. C. Wilkinson & C. B. Marrett (Eds), Gender influences in classroom interaction. Orlando, FL: Academic Press.Google Scholar
  11. Friedman, L. (1989). Mathematics and the gender gap: A meta-analysis of recent studies on sex differences in mathematical tasks. Review of Educational Research, 59(2), 185–213.Google Scholar
  12. Gilligan, C. (1982). In a different voice. Cambridge, MA: Harvard University Press.Google Scholar
  13. Hanna, G. (1989). Mathematics achievement of girls and boys in grade eight: Results from twenty countries. Educational Studies in Mathematics, 20, 225–232.CrossRefGoogle Scholar
  14. Hyde, J. S., Fennema, E., & Lamon, S. J. (1990). Gender differences in mathematics performance: A meta-analysis. Psychological Bulletin, 107(2), 139–155.CrossRefGoogle Scholar
  15. Kimball, M. M. (1989). A new perspective on women’s math achievement. Psychological Bulletin, 105(2), 198–214.CrossRefGoogle Scholar
  16. Lapointe, A. E., Mead, N. A., & Phillips, G. W. (1989). A world of differences: An international assessment of mathematics and science. Princeton, NJ: Educational Testing Service.Google Scholar
  17. Lapointe, A. E., Mead, N. A., & Askew, J. M. (1992). Learning mathematics. Princeton, NJ: Educational Testing Service.Google Scholar
  18. Lee, L. (1989). Vers un enseignement des math’ematiques qui s’adresse aux femmes. In L. Lafortune (Ed.), Quelles diff&’erences? Montr’eal: Remue-m&’enage.Google Scholar
  19. Perry, W. (1970). Forms of intellectual development in the college years. New York: Holt, Rinehart, and Winston.Google Scholar
  20. Walden, R., & Walkerdine, V. (1982). Girls and mathematics: The early years. Bedford Way Papers 8. London: University of London Institute of Education.Google Scholar
  21. Walden, R., & Walkerdine, V. (1985). Girls and mathematics: From primary to secondary schooling. Bedford Way Papers 24. London: University of London Institute of Education.Google Scholar

References

  1. American Association for the Advancement of Science (1989). Science for all Americans. Washington: AAAS.Google Scholar
  2. College Entrance Examination Board Commission on Mathematics (1959). Program for college preparatory mathematics. New York: CEEB.Google Scholar
  3. National Advisory Committee on Mathematical Education (NACOME) (1975). Overview and analysis of school mathematics: Grades K-12. Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  4. National Council of Teachers of Mathematics (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: NCTM.Google Scholar
  5. National Council of Teachers of Mathematics (1990). Algebra for everyone (edited by Edgar Edwards, Jr.). Reston, VA: NCTM.Google Scholar
  6. Robitaille, D. F. (1989). Students’ achievements: Population A. In D. F. Robitaille & R. A. Garden (Eds.), The IEA study of mathematics II: Contexts and outcomes of school mathematics. Oxford: Pergamon.Google Scholar
  7. Swetz, F. (1987). Capitalism and school arithmetic: The New Math of the 15th Century. LaSalle, IL: Open Court Publishing Co..Google Scholar
  8. Thurow, L. (1991, October). Public Investment. Paper presented at the Economic Policy Institute Conference on Public Investment. Washington, DC.Google Scholar
  9. Travers, K. J., & Westbury, I. (1989). The IEA study of mathematics I: Analysis of mathematics curricula. Oxford: Pergamon.Google Scholar
  10. Tufte, E. (1983). The visual display of quantitative information. Cheshire, CT: Graphics Press.Google Scholar
  11. University of Chicago School Mathematics Project (1990, 1991, 1992). Transition mathematics. Algebra. Geometry. Advmnced algebra. Functions, statistics, and trigonometry. Precalculus and discrete mathematics. Glenview, IL: Scott, Foresman.Google Scholar
  12. Usiskin, Z. (1987). Resolving the continuing dilemmas in geometry. In Learning and Teaching Geometry: The 1987 Yearbook of the National Council of Teachers of Mathematics. Reston, VA: NCTM.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Roland W. Scholz
    • 1
  1. 1.Bielefeld/Zürich

Personalised recommendations