Advertisement

History and Epistemology of Mathematics and Mathematics Education

  • Rolf Biehler
Chapter
Part of the Mathematics Education Library book series (MELI, volume 13)

Keywords

Mathematics Education Teaching Practice Mathematics Teacher Mathematical Knowledge Systematic Cooperation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fischer, R. (1992). The “human factor” in pure and applied mathematics. Systems everywhere: Their impact on mathematics education. For the Learning of Mathematics, 12(3), 9–18.Google Scholar
  2. Hoyles, C. (1992). Mathematics teaching and mathematics teacher: A meta-case study. For the Learning of Mathematics, 12(3), 32–45.Google Scholar
  3. Jahnke, H.-N., Knoche, N., & Otte, M. (1991). Das Verháltnis von Geschichte und Didaktik der Mathematik. Antrag für ein Symposium, Institut für Didaktik der Mathematik, Universität Bielefeld. [Proceedings in preparation]Google Scholar
  4. NCTM (1969). Historical topics for the mathematics classroom. 31st NCTM yearbook. Wahington, DC: The National Council of Teachers of Mathematics.Google Scholar
  5. NCTM (1989). Historical topics for the mathematics classroom (2nd ed.). Reston, VA: The National Council of Teachers of Mathematics.Google Scholar
  6. Otte, M., Jahnke, H. N., Mies, T., & Schubring, G. (1974). Vorwort. In M. Otte (Ed.), Mathematiker über die Mathematik (pp. 5-23). Berlin: Springer.Google Scholar
  7. Papert, S. (1980). Mindstorms: Children, computer and powerful ideas. New York: Basic Books.Google Scholar
  8. Steiner, H.-G. (1965a). Mathematische Grundlagenstandpunkte und die Reform des Mathematikunterrichts. Mathematisch-Physikalische Semesterberichte, XII(1), 1–22.Google Scholar
  9. Steiner, H.-G. (1965b). Menge, Struktur, Abbildung als Leitbegriffe für den modernen mathematischen Unterricht. Der Mathematikunterricht, 11(1), 5–19.Google Scholar
  10. Steiner, H.-G. (1987). Philosophical and epistemological aspects of mathematics and their interaction with theory and practice in mathematics education. For the Learning of Mathematics, 7(1), 7–13.Google Scholar
  11. Steiner, H.-G. (Ed.). (1990). Mathematikdidaktik-Bildungsgeschichte-Wissenschafts-geschichte II. IDM-Reihe Untersuchungen zum Mathematikunterricht 15. Köln: Aulis.Google Scholar
  12. Steiner, H.-G., & Winter, H. (Eds.). (1985). Mathematikdidaktik-Bildungsgeschichte-Wissenschaftsgeschichte. IDM-Reihe Untersuchungen zum Mathematikunterricht 12. Köln: Aulis.Google Scholar
  13. Thom, R. (1973). Modern mathematics: Does it exist? In A. G. Howson (Ed.), Developments in mathematical education (pp. 194-209). Cambridge: Cambridge University Press.Google Scholar
  14. Vergnaud, G. (1990). Epistemology and psychology of mathematics education. In P. Nesher & J. Kilpatrick (Eds.), Mathematics and cognition: A research synthesis by the International Group for the Psychology of Mathematics Education (pp. 14-30). Cambridge: Cambridge University Press.Google Scholar

References

  1. Aspray, W., & Kitcher, P. (Eds.). (1988). History and philosophy of modern mathematics. Minneapolis, MN: University of Minnesota Press.Google Scholar
  2. Benecerraf, P., & Putnam, H. (Eds.). (1983). Philosophy of mathematics: Selected readings (rev. ed.). Cambridge: Cambridge University Press.Google Scholar
  3. Bishop, A. J. (1988). Mathematical enculturation, Dordrecht, Netherlands: Kluwer.Google Scholar
  4. Brouwer, L. E. J. (1913). Intuitionism and formalism. Bulletin of the American Mathematical Society. 20, 81–96.CrossRefGoogle Scholar
  5. Christiansen, B., Howson, A. G., & Otte, M. (Eds.). (1986). Perspectives on mathematics education. Dordrecht, Netherlands: Reidel.Google Scholar
  6. Cobb, P. (1986). Contexts, goals, beliefs, and learning mathematics. For the Learning of Mathematics, 6(2), 2–9.Google Scholar
  7. Confrey, J. (1981). Conceptual change analysis: Implications for mathematics and curriculum, Curriculum Inquiry, 11(5), 243–257.Google Scholar
  8. Davis, P. J., & Hersh, R. (1980). The mathematical experience. Boston, MA: Birkhauser.Google Scholar
  9. Davis, P. J., & Hersh, R. (1988). Descartes’ dream. London: Penguin.Google Scholar
  10. Davis, R. B. (1984). Learning mathematics. Beckenham, Kent: Croom Helm.Google Scholar
  11. Dowling, P. (1991). The contextualising of mathematics: Towards a theoretical map. In M. Harris (Ed.), Schools, mathematics and work (pp. 93–120). London: Falmer.Google Scholar
  12. Dowling, P., & Noss, R. (1991). Mathematics versus the National Curriculum. London: Falmer.Google Scholar
  13. Ernest, P. (1987). A model of the cognitive meaning of mathematical expressions. British Journal of Educational Psychology, 57, 343–370.Google Scholar
  14. Ernest, P. (1989). The impact of beliefs on the teaching of mathematics. In C. Keitel, P. Damerow, A. Bishop, & P. Gerdes (Eds.), Mathematics, education and society (pp. 99–101). Paris: UNESCO.Google Scholar
  15. Ernest, P. (1989, July). Mathematics-related belief systems. Poster presented at the 13th Psychology of Mathematics Education Conference, Paris.Google Scholar
  16. Ernest, P. (1991). The philosophy of mathematics education. London: Palmer.Google Scholar
  17. Ernest, P. (1992). The nature of mathematics: Towards a social constructivist account. Science and Education, 1(1), 89–100.CrossRefGoogle Scholar
  18. Ernest, P. (1993). Mathematical activity and rhetoric: Towards a social constructivist account. Paper submitted to the 17th International Conference on the Psychology of Mathematics Eduction, July 1993, Tokyo.Google Scholar
  19. Ernest, P. (in press) Social constructivism as a philosophy of mathematics. Albany, NY: SUNY Press.Google Scholar
  20. Glasersfeld, E. von (1983). Learning as a constructive activity. In Janvier, C. (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 3–17). Hillsdale, NJ: Erlbaum.Google Scholar
  21. Gödel, K. (1931). Über formal unentscheidbare Satze der Principia Mathematica und Verwandter Systeme I. Monatshefte für Mathematik und Physik, 38, 173–198.Google Scholar
  22. Hersh, R. (1979). Some proposals for reviving the philosophy of mathematics. Advances in Mathematics, 31, 31–50.CrossRefGoogle Scholar
  23. Hughes, M. (1986). Children and number. Oxford: Blackwell.Google Scholar
  24. Kitcher, P. (1984). The nature of mathematical knowledge. New York: Oxford University Press.Google Scholar
  25. Körner, S. (1960). The philosophy of mathematics. London: Hutchinson.Google Scholar
  26. Lakatos, I. (1976). Proofs and refutations. Cambridge: Cambridge University Press.Google Scholar
  27. Lakatos, I. (1978). Philosophical papers (Vols. 1–2). Cambridge: Cambridge University Press.Google Scholar
  28. Machover, M. (1983). Towards a new philosophy of mathematics. British Journal for the Philosophy of Science, 34, 1–11.Google Scholar
  29. Mellin-Olsen, S. (1987). The politics of mathematics education. Dordrecht, Netherlands: Reidel.Google Scholar
  30. Pimm, D. (1986). Speaking mathematically. Oxford: Blackwell.Google Scholar
  31. Popper, K. (1979). Objective knowledge. Oxford: Oxford University Press.Google Scholar
  32. Putnam, H. (1975). Mathematics, matter and method. Cambridge: Cambridge University Press.Google Scholar
  33. Quine, W. V. O. (1960). Word and object. Cambridge, MA: MIT Press.Google Scholar
  34. Rotman, B. (1988). Towards a semiotics of mathematics. Semiotica 72(1/2), 1–35.Google Scholar
  35. Skemp, R. R. (1982). Communicating mathematics: Surface structures and deep structures. Visible Language, 16(3), 281–288.Google Scholar
  36. Sneed, J. (1971). The logical structure of mathematical physics. Dordrecht, Netherlands: Reidel.Google Scholar
  37. Steiner, H. G. (1987). Philosophical and epistemological aspects of mathematics and their interaction with theory and practice in mathematics education. For the Learning of Mathematics, 7(1), 7–13.Google Scholar
  38. Thom, R. (1973). Modern mathematics: Does it exist? In A. G. Howson (Ed.), Developments in mathematical education (pp. 194-209). Cambridge: Cambridge University Press.Google Scholar
  39. Tiles, M. (1991). Mathematics and the image of reason. London: Routledge.Google Scholar
  40. Tymoczko, T. (Ed.). (1986). New directions in the philosophy of mathematics. Boston, MA: Birkhauser.Google Scholar
  41. Walkerdine, V. (1988). The mastery of reason. London: Routledge.Google Scholar
  42. Walther, G. (1984). Mathematical activity in an educational context. In R. Morris (Ed.), Studies in mathematics education 3 (pp. 69–88). Paris: UNESCO.Google Scholar
  43. Wang, H. (1974). From mathematics to philosophy. London: Routledge.Google Scholar
  44. Wittgenstein, L. (1953). Philosophical investigation. Oxford: Blackwell.Google Scholar
  45. Wittgenstein, L. (1979). Remarks on the foundations of mathematics (rev. ed.). Cambridge, MA: MIT Press.Google Scholar

References

  1. Alexander, H. G. (Ed.). (1956). The Leibniz-Clarke correspondence. Manchester: Manchester University Press.Google Scholar
  2. Bakhtin, M. M. (1981). The dialogic imagination — Four essays [Edited by M. Holquist. Austin, TX: University of Texas Press.Google Scholar
  3. Bateson, G. (1973). Steps to an ecology of mind. St. Albans, Hertfordshire: Paladin.Google Scholar
  4. Bibler, V. S. (1967). Die Genese des Begriffs der Bewegung [I. Maschke-Luschberger, Trans.]. In A. S. Arsen’ev, V. S. Bibler, & B. M. Kedrov (Eds.), Analyse des sich entwickelnden Begriffs (pp. 99–196). Moskau: Nauka.Google Scholar
  5. Brockmeier, J. (1991). The construction of time, language, and self. Quarterly Newsletter of the Laboratory of Comparative Human Cognition, 13(2), 42–52.Google Scholar
  6. Bruner, J (1960). The process of education. New York: Vintage Books.Google Scholar
  7. Bundy, A. (1983). The computer modelling of mathematical reasoning. London: Academic Press.Google Scholar
  8. Cassirer, E. (1953). Substance and function. New York: Dover.Google Scholar
  9. Churchman, C. W. (1968). Challenge to reason. New York: McGraw-Hill.Google Scholar
  10. DiSessa, A. A. (1982). Unlearning Aristotelian physics. Cognitive Science, 6, 37–76.CrossRefGoogle Scholar
  11. Gebhardt, M. (1912). Die Geschichte der Mathematik im mathematischen Unterricht. IMUK-Abhandlung IV, 6. Leipzig: Teubner.Google Scholar
  12. Glück, H. (1987). Schrift und Schriftlichkeit — Eine sprach-und kulturwissenschaftliche Studie. Stuttgart: J. B. Metzler.Google Scholar
  13. Goody, J. (1977). The domestication of the savage mind. Cambridge: Cambridge University Press.Google Scholar
  14. Grassmann, H. (1969). Die lineale Ausdehnungslehre. New York: Chelsea Publ. Co. [Original work published 1844]Google Scholar
  15. Havelock, E. A. (1986). The muse learns to write. Reflections on orality and literacy from antiquity to the present. New Haven, CT: Yale University Press.Google Scholar
  16. Jahnke N., & Otte M. (Eds). (1981). Epistemological and social problems of the sciences in the early 19th century. Dordrecht, Netherlands: Reidel.Google Scholar
  17. Kant, I. (1787). Kritik der reinen Vernunft (2nd ed.). Riga: J. F. Hartknoch.Google Scholar
  18. Martin, R. (1988). Truth, power, self: An interview with Michel Foucault, October 25, 1982. In L. H. Martin, H. Gutman, & P. H. Hutton (Eds.), Technologies of the self: A seminar with Michel Foucault (pp. 9–15). London: Tavistock.Google Scholar
  19. Minsky, M. L. (1988). The society of mind. London: Heinemann.Google Scholar
  20. Minsky, M. L., & Papert, S. (1973). Artificial intelligence. Eugene, OR: Oregon State System of Higher Education.Google Scholar
  21. Ong, W. J. (1982), Orality and literacy. The technologizing of the word. London: Methuen.Google Scholar
  22. Otte, M. (1977). Zum Verhältnis von Wissenschafts-und Bildungsprozess. Zentralblatt für Didaktik der Mathematik, 9, 205–209.Google Scholar
  23. Popp, W. (1968). Wege des exakten Denkens — Vier Jahrtausende Mathematik. München: Ehrenwirth.Google Scholar
  24. Ryle, G. (1964). Dilemmas. Cambridge: Cambridge University Press.Google Scholar
  25. Scharlau, W., & Opolka, H. (1980). Von Fermat bis Minkowski. Heidelberg: Springer.Google Scholar
  26. Taylor, Ch. (1989). Sources of the self. Cambridge, MA: Harvard University Press.Google Scholar
  27. Thom, R. (1973). Modern mathematics, does it exist? In A. G. Howson (Ed.),Developments in mathematical education. Cambridge: Cambridge University Press.Google Scholar
  28. Toeplitz, O. (1949). Die Entwicklung der Infinitesimalrechnung. Berlin: Springer.Google Scholar
  29. Vygotsky, L. S. (1981). The genesis of higher mental functions. In J. V. Wertsch (Ed.), The concept of activity in Soviet psychology (pp. 144–188). Armonk, NY: M. E. Sharpe.Google Scholar
  30. Vygotsky, L. S. (1987). Thinking and speech. In R. W. Rieber & A. S. Carton (Eds.), The collected works of L. S. Vygotsky. (Vol. 1, pp. 38–285). New York: Plenum Press.Google Scholar
  31. Weizsäcker, C. F. von (1971). Die Einheit der Natur. München: Hanser.Google Scholar
  32. Weizsäcker, C. F. von (1992). Zeit und Wissen. München: Hanser.Google Scholar
  33. Wertheimer, M. (1967). Drei Abhandlungen zur Gestalttheorie. Darmstadt: Wissenschaftliche Buchgesellschaft. [Original work published 1925]Google Scholar
  34. Wittgenstein, L.(1974) Tractatus logico-philosophicus [D. F. Pears & B. F. McGuiness, Trans.] (2nd ed.). London: Routledge & Kegan PaulGoogle Scholar

References

  1. Booss, B., & Krickeberg, K. (Eds.). (1976). Mathematisierung der Einzelwissenschaften. Interdisciplinary Systems Research 24. Basel: BirkhäauserGoogle Scholar
  2. Booss-Bavnbek, B. (1991). Against ill-founded irresponsible modelling. In M. Niss, W. Blum, & I. Huntly (Eds.), Teaching of mathematical modelling and applications (pp. 70-82). Chichester: Ellis Horwood.Google Scholar
  3. D’Ambrosio, U. (1985). Mathematics education in a cultural setting. International Journal of Mathematical Education in Science and Technology, 16(4), 469–477.Google Scholar
  4. Damerow, P., Dunkley, M. E., Nebres, B. F., & Werry, B. (Eds.). (1984). Mathematics for all. Science and Technology Document Series 20 (pp. 1–109). Paris: UNESCO.Google Scholar
  5. Department of Education and Science (Welsh Office, Committee of Inquiry into the Teaching of Mathematics in Schools) (1982). Mathematics counts (The Cockcroft Report). London: Her Majesty’s Stationary Office.Google Scholar
  6. Friedman, A. (1988–1990). Mathematics in industrial problems (Parts 1–3). The IMA volumes in mathematics and its applications 16, 24, 31. New York: Springer.Google Scholar
  7. Howson, A. G., Kahane, J.-P., Lauginie, P., & de Turckheim, E. (Eds.). (1988). Mathematics as a service subject (ICMI Study Series). Cambridge: Cambridge University Press.Google Scholar
  8. Keitel, C., Damerow, P., Bishop, A., & Gerdes, P. (Eds.). (1989). Mathematics, education, and society. Science and Technology Document Series 35. Paris: UNESCO.Google Scholar
  9. Khoury, S. J., & Parsons, T. D. (1981). Mathematical methods in finance and economics. New York: Elsevier North Holland.Google Scholar
  10. Morris, R. (Ed.). (1981) Studies in mathematics education 2. Paris: UNESCO.Google Scholar
  11. Niss, M. (1979). Om folkeskolelæreruddannelsen i det vigtige fag matematik. In P. Bollerslev (Ed.), Den ny matematik i Danmark. En essaysamling. Copenhagen: Gyldendal.Google Scholar
  12. Niss, M. (1981). Goals as a reflection of the needs of society. In R. Morris (Ed.), Studies in mathematics education 2 (pp. 1–21). Paris: UNESCO.Google Scholar
  13. Niss, M. (1985). Mathematical education for the “automatical society”. In R. Schaper (Ed.), Hochschuldidaktik der Mathematik. Alsbach-Bergstrasse: Leuchtturm-Verlag.Google Scholar
  14. Nissen, G. (1993). Der Mathematik aus ihrer Isolation heraushelfen — Bericht über das dänische Projekt ‘Mathematikunterricht und Demokratie’. In H. Schumann (Ed.), Beiträge zum Mathematikunterricht, 1992 (pp. 35–41). Hildesheim: Verlag Franzbecker.Google Scholar
  15. Rosen, R. (Ed.). (1972–1973). Foundations of mathematical biology (Vols. 1–3). New York: Academic PressGoogle Scholar
  16. Skovsmose, O. (1992). Democratic competence and reflective knowing in mathematics. For the Learning of Mathematics, 12(2), 2–11.Google Scholar
  17. Snow, C. P. (1959). The two cultures and the scientific revolution. Cambridge: Cambridge University Press. [An expanded version is (1964) The two cultures: a second look. Cambridge: Cambridge University Press].Google Scholar
  18. Steen, L. A. (Ed.). (1978). Mathematics today. Twelve informal essays. New York: Springer.Google Scholar
  19. Wan, F. Y. M. (1989). Mathematical models and their analysis. New York: Harper & Row.Google Scholar
  20. Wigner, E. P. (1960). The unreasonable effectiveness of mathematics in the natural sciences. Communications on Pure & Applied Mathematics, 13, 1–14.Google Scholar

References

  1. Bochner, S. (1966). The role of mathematics in the rise of science. Princeton, NJ: Princeton University Press.Google Scholar
  2. Cajori, F. (1929a). A history of mathematical notations. Vol. 1: Notations in elementary mathematics. La Salle, IL: The Open Court Publishing Co.Google Scholar
  3. Cajori, F. (1929b). A history of mathematical notations, Vol. 2: Notations mainly in higher mathematics. La Salle, IL: The Open Court Publishing Co.Google Scholar
  4. Confrey, J. (1992). Function Probe [Computer program]. Santa Barbara, CA: Intellimation.Google Scholar
  5. Dienes, Z. (1973). The six stages in the process of learning mathematics (P. L. Seaborne, Trans.). New York: Humanities Press. [Original work published 1970)]Google Scholar
  6. Fey, J. (1989). School algebra for the year 2000. In S. Wagner & C. Kieran (Eds.), Research issues in the learning and teaching of algebra (pp. 199–213). Hillsdale, NJ: Erlbaum; and Reston, VA: NCTM.Google Scholar
  7. Geometer’s Sketchpad (1992). [Computer program]. Berkeley, CA: Key Curriculum Press.Google Scholar
  8. Goodman, N. (1978). Ways of worldmaking. Hassocks, Sussex: Harvester Press.Google Scholar
  9. Grossberg, S. (1980) How does the brain build a cognitive code? Psychological Review, 87, 1–51.Google Scholar
  10. Hall, R. (1990). Making mathematics on paper: Constructing representations of stories about related linear functions. Unpublished doctoral dissertation. University of California at Berkeley, Berkeley, CA.Google Scholar
  11. Harel, G., & Kaput, J. (1992). The influence of notation in the development of mathematical ideas. In D. Tall & E. Dubinsky (Eds.), Advanced mathematical thinking. Amsterdam & Boston: Reidel.Google Scholar
  12. Hancock, C., & Kaput, J. (1990). Computerized tools and the process of data modeling. In G. Booker, P. Cobb, & T. de Mendicutti (Eds.), Proceedings of the 14th Meeting of the PME Vol. 3 (pp. 165–72). Mexico.Google Scholar
  13. Hancock, C., Kaput, J., & Goldsmith, L. (1992). Authentic inquiry with data: Critical barriers to classroom implementation. Educational Psychologist, 27(3), 337–364.CrossRefGoogle Scholar
  14. Hockett, C. F. (1960). The origin of speech. Scientific American, 203, 88–96.CrossRefGoogle Scholar
  15. Kaput, J. (1979). Mathematics and learning: Roots of epistemological status. In J. Clement & J. Lochhead (Eds.), Cognitive process instruction (pp. 289–303). Philadelphia, PA: Franklin Institute Press.Google Scholar
  16. Kaput, J. (1989). Linking representations in the symbol system of algebra. In C. Kieran & S. Wagner (Eds.), Research issues in the learning and teaching of algebra (pp. 167–194). Reston, VA: National Council of Teachers of Mathematics; and Hillsdale, NJ: Erlbaum.Google Scholar
  17. Kaput, J. (1991). Notations and representations as mediators of constructive processes. In E. von Glasersfeld (Ed.), Constructivism and mathematics education (pp. 53–74). Dordrecht, Netherlands: Kluwer.Google Scholar
  18. Kaput, J. (1992). Technology and mathematics education. In D. Grouws (Ed.), Handbook on research in mathematics teaching and learning (pp. 515–556). New York: Macmillan.Google Scholar
  19. Kaput, J. (1993). MathCars [Computer animation video available from the author]. Department of Mathematics, University of Massachusetts Dartmouth, No. Dartmouth, MA.Google Scholar
  20. Kaput, J. (in press a). Democratizing access to calculus: New routes using old roots. In A. Schoenfeld (Ed.), Mathematical thinking and problem solving. Hillsdale, NJ: Erlbaum.Google Scholar
  21. Kaput, J. (in press b). Overcoming physicality and the eternal present: Cybernetic manipu-latives. In R. Sutherland & J. Mason (Eds.), Visualization and technology in mathematics education [tentative title]. New York: Springer.Google Scholar
  22. Kaput, J., & West, M. M. (in press). Assessing proportion problem complexity. In G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (Research in Mathematics Education Series). Albany, NY: State University of New York Press.Google Scholar
  23. Kaput, J., Upchurch, R., & Burke, M. (in preparation). Additive structures [Computer program]. Available from the authors. University of Massachusetts at Dartmouth, No. Dartmouth, MA.Google Scholar
  24. Kosslyn, S., & Koenig, O. (1992). Wet mind: The new cognitive neuroscience. New York: The Free Press.Google Scholar
  25. Laborde, J-M. (1991). CABRI Geometry. New York: Brooks-Cole.Google Scholar
  26. Mahoney, M. (1980). The beginnings of algebraic thought in the seventeenth century. In S. Gankroger (Ed.), Descartes: Philosophy, mathematics and physics. Brighton, Sussex: Harvester Press.Google Scholar
  27. Miera, L. (1990). Developing knowledge of functions through manipulation of a physical device. In G. Booker, P. Cobb, & T. de Mendicutti (Eds.), Proceedings of the 14th Meeting of the PME, Vol. 2 (pp. 101–108). Mexico.Google Scholar
  28. Miera, L. (1991). Explorations of mathematical sense-making: An activity-oriented view of children’s use and design of material displays. Unpublished doctoral dissertation. University of California at Berkeley, Berkeley, CA.Google Scholar
  29. Miera, L. (in press). The microevolution of mathematical representation in children’s activity. Cognition & Instruction.Google Scholar
  30. Nemirovsky, R. (1993). Rethinking calculus education, Hands On!, 16(1), TERC, Cambridge, MA.Google Scholar
  31. Papert, S. (1980). Mindstorms. New York: Basic Books.Google Scholar
  32. Pimm, D. (1987). Speaking mathematically: Communication in mathematics classrooms. London: Routledge.Google Scholar
  33. Schwartz, J., & M. Yersulshamy (1990). The Function Supposer. [Computer program, part of the Visualizing Algebra series]. Pleasantville, NY: Sunburst Communications.Google Scholar
  34. Super Supposer (1993). [Computer program]. Pleasantville, NY: Sunburst Communications.Google Scholar
  35. Theorist (1991). [Computer Program]. San Francisco: Prescience, Inc.Google Scholar
  36. Thornton, R. (1993). MacMotion [Data probes and software]. Portland, OR: Vernier Software.Google Scholar
  37. Tinker, R. (1990). MBL: Hands on Science [Technical Report]. Cambridge, MA: TERC.Google Scholar
  38. Tucker, A. (1988). Calculus tomorrow, In L. Steen (Ed.), Calculus for a new century (pp. 14–17). MAA Notes # 8. Washington, DC: Mathematical Association of America.Google Scholar
  39. Yerushalmy, M. (1991). Student perceptions of aspects of algebraic function using multiple representation software. Journal of Computer Assisted Learning, 7, 42–57.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Rolf Biehler
    • 1
  1. 1.Bielefeld

Personalised recommendations