Advertisement

Cultural Framing of Teaching and Learning Mathematics

  • Rudolf Sträßer
Chapter
  • 398 Downloads
Part of the Mathematics Education Library book series (MELI, volume 13)

Keywords

Teacher Education Preservice Teacher National Council Elementary Teacher Teacher Education Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blankertz, H. (1969). Theorien und Modelle der Didaktik (2nd ed.). München: Juventa.Google Scholar
  2. Lave, J. (1988). Cognition in practice. Cambridge, MA: Cambridge University Press.Google Scholar

References

  1. Altbach, P. (1991). Trends in comparative education. Comparative Education Review, 35, 491–507.CrossRefGoogle Scholar
  2. Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18(1), 32–42.Google Scholar
  3. Eckstein, M. (1982). Comparative school achievement. In H. Mitzel (Ed.), Encyclopedia of educational research (Vol. 1). New York: Free Press.Google Scholar
  4. Fehr, H. (1959). The mathematics education of youth a comparative study. L’Enseignement Mathématique, 5, 61–78.Google Scholar
  5. Freudenthal, H. (1959). A comparative study of methods of initiation into geometry. L’Enseignement Mathématique, 5, 119–145.Google Scholar
  6. Freudenthal, H. (1975). Pupils’ achievement internationally compared. Educational Studies in Mathematics, 6, 127–186.CrossRefGoogle Scholar
  7. Garden, R. (1987). The second IEA mathematics study. Comparative Education Review, 31(1),47-68.Google Scholar
  8. Harris, P. (1989). Contexts for change in cross-cultural classrooms. In N. Ellerton & M. A. Clements (Eds.), School mathematics: The challenge to change (pp. 79–95). Geelong, Australia: Deakin University.Google Scholar
  9. Hayes, W. (1991). IEA guidebook 1991: Activities, institutions, and people. The Hague, Netherlands: International association for the evaluation of educational achievement (IEA).Google Scholar
  10. Howson, G., & Wilson, B. (Eds.). (1986). School mathematics in the 1990s. Cambridge: Cambridge University Press.Google Scholar
  11. Husén, T. (1967). International study of educational achievement in mathematics (Vols. I–II). Stockholm: Almqvist & Wiksell.Google Scholar
  12. Kilpatrick, J. (1971). Some implications of the international study of achievement in mathematics for mathematics educators. Journal for Research in Mathematics Education, 2, 164–171.Google Scholar
  13. Marklund, I. (1989). How two educational systems learned from comparative studies: The Swedish experience. In A. Purves (Ed.), International comparisons and educational reform (pp. 35–44). Alexandria, VA: Association for Supervision and Curriculum Development.Google Scholar
  14. Postlethwaite, T. (1971). International association for the evaluation of educational achievement (IEA) — The mathematics study. Journal for Research in Mathematics Education, 2, 69–103.Google Scholar
  15. Purves, A. (Ed.). (1989). International comparisons and educational reform. Alexandria, VA: Association for Supervision and Curriculum Development.Google Scholar
  16. Robitaille, D., & Garden, R. (Eds.). (1989). The IEA study of mathematics II: Contexts and outcomes of school mathematics. Oxford: Pergamon Press.Google Scholar
  17. Robitaille, D., & Travers, K. (1992). International studies of achievement in mathematics. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 687–709). New York: Macmillan.Google Scholar
  18. Saxe, G. (1988). Candy selling and math learning. Educational Researcher, 17(6), 14–21.Google Scholar
  19. Spaulding, S. (1989). Comparing educational phenomena: Promises, prospects, and problems. In A. Purves (Ed.), International comparisons and educational reform (pp. 1–16). Alexandria, VA: Association for Supervision and Curriculum Development.Google Scholar
  20. Stigler, J., & Baranes, R. (1988). Culture and mathematics learning. In E. Rothkopf (Ed.), Review of research in education (pp. 253–306). Washington, DC: American Educational Research Association.Google Scholar
  21. United States Bureau of Education (1911). Mathematics in the elementary schools of the United States. International commission on the teaching of mathematics: The American report. 12, l7–181.Google Scholar
  22. Walberg, H. (1983). Scientific literacy and economic productivity in international perspective. Daedalus, 112(2), 1–28.Google Scholar

References

  1. Bishop, A. J. (1988). Mathematical enculturation. A cultural perspective on mathematics education. Dordrecht, Netherlands: Kluwer.Google Scholar
  2. Cauchy, A. L. (1897). Cour d’analyse de l’école royale polytechnique. Ire Partie. Analyse algébrique. Oeuvres complètes d’Augustin Cauchy, publiés sous la direction scientifique de l’Académie des Sciences (IIe série, tome III). Paris: Gauthier-Villars. [Original work published in Paris: Debure frères, 1821]Google Scholar
  3. Cauchy, A. L. (1899). Résumé des leçons données à l’École Royale polytechnique sur le calcul infinitésimal. Oeuvres complètes d’Augustin Cauchy, publiés sous la direction scientifique de l’Académie des Sciences (IIe série, tome IV, pp. 5–261)). Paris: Gauthier–Villars. [Original work published in Paris: L’Imprimerie Royale, 1823]Google Scholar
  4. Crelle, A. L. (1845). Encyklopädische Darstellung der Theorie der Zahlen und einiger anderer damit in Verbindung stehender analytischer Gegenstände; zur Beförderung und allgemeineren Verbreitung des Studiums der Zahlenlehre durch den öffentlichen und Selbst-Unterricht (Vol. l). Berlin: Reimer.Google Scholar
  5. DuBois-Reymond, E. (1974). Kulturgeschichte und Naturwissenschaft. In S. Wollgast (Ed.), E. Du Bois-Reymond, Vorträge über Philosophie und Gesellschaft (pp. 105–158). Hamburg: Meiner. [Original work published 1877]Google Scholar
  6. Eccarius, W. (1974). Der Techniker und Mathematiker August Leopold Crelle (1780-1855) und sein Beitrag zur Förderung und Entwicklung der Mathematik im Deutschland des 19. Jahrhunderts. Unpublished doctoral dissertation, Eisenach.Google Scholar
  7. Euler, L. (1922). Introductio in analysin infinitorum. Tomus primus. In F. Rudio, A. Krazer, A. Speiser, & L. G. du Pasquier(Eds.), Opera Omnia (Ser. I, Vol. 8). Leipzig/Berlin: Teubner. [Original work published in Lausanne: Bousquet, 1748]Google Scholar
  8. Gillispie, C. (1977). Die Naturwissenschaft der Industrie. In E. A. Musson (Ed.), Wissenschaft, Technik und Wirtschaftswachstum (pp. 137–152). Frankfurt/Main: Suhrkamp.Google Scholar
  9. Humboldt, W. von (1964a). Der Königsberger und der Litauische Schulplan. In A. Flitner & K. Giel (Eds.), W.von Humboldt: Werke IV (2nd ed., pp. 168–195). Darmstadt: Wissenschaftliche Buchgesellschaft. [Original work published 1809]Google Scholar
  10. Humboldt, W. von (1964b). Über die innere und äußere Organisation der höheren wissenschaftlichen Anstalten in Berlin. In A. Flitner & K. Giel (Eds.), W. von Humboldt, Werke IV (2nd ed., pp. 255–266). Darmstadt: Wissenschaftliche Buchgesellschaft [Original work published 1810]Google Scholar
  11. Jahnke, H. N. (1990a). Die algebraische Analysis im Mathematikunterricht des 19. Jahrhunderts. Der Mathematikunterricht, 36(3), 61–74.Google Scholar
  12. Jahnke, H. N. (1990b). Mathematik und Bildung in der Humboldtschen Reform. Göttingen: Vandenhoeck & Ruprecht.Google Scholar
  13. Klein, F. (1907). Vorträge über den mathematischen Unterricht an den höheren Schulen Bearbeitet von R. Schimmack. Theil 1: Von der Organisation des mathematischen Unterrichts. Leipzig: Teubner.Google Scholar
  14. Koppe, C. (1866). Der mathematische Lehrplan für das Gymnasium. Schulprogramm. Soest.Google Scholar
  15. Lagrange, J. L. (1797/1881). Théorie des fonctions analytiques. In M. J.-A. Serret (Ed.), Oeuvres (Vol. IX). Paris: Gauthier-Villars. [Original work published 1797]Google Scholar
  16. Müller, D. K. (1977). Sozialstruktur und Schulsystem. Aspekte zum Strukturwandel des Schulwesens im 19. Jahrhundert. Göttingen: Vandenhoeck & Ruprecht.Google Scholar
  17. Müller, J. H. T. (1838). Lehrbuch der Mathematik, Vol. 1: Lehrbuch der allgemeinen Arithmetik für Gymnasien und Realschulen, nebst vielen Uebungsaufgaben und Excursen. Halle: Buchhandlung des Waisenhauses.Google Scholar
  18. Mushacke, E. (1858). Anweisung ueber die Einrichtung der oeffentlichen allgemeinen Schulen im preussischen Staate. Preussischer Schulkalender, 7,231–259.Google Scholar
  19. Neigebauer, J. F. (1835). Die Preuβischen Gymnasien und höheren Bürgerschulen. Eine Zusammenstellung der Verordnungen, welche den höheren Unterricht in diesen Anstalten umfasssen. Berlin/Posen/Bromberg: Mittler.Google Scholar
  20. Nizze, E. (1822). Zweck und Umfang des mathematischen Unterrichts auf Gymnasien. Schulprogramm. Gymnasium Stralsund.Google Scholar
  21. Pahl, F. (1913). Geschichte des naturwissenschaftlichen und mathematischen Unterrichts. Leipzig: Quelle & Meyer.Google Scholar
  22. Paulsen, F. (1897). Geschichte des gelehrten Unterrichts auf den deutschen Schulen und Universitäten vom Ausgang des Mittelalters bis zur Gegenwart (Vol. 2, 2nd ed.). Berlin: VeitGoogle Scholar
  23. Tellkampf, A. (1829). Vorschule der Mathematik. Berlin: A. Rücker.Google Scholar
  24. White, L. A. (1959). The evolution of culture. New York: McGraw-Hill.Google Scholar

References

  1. Adorno, T. W. (1976). Introduction to the sociology of music (E. B. Ashton, Trans.). New York: Seabury Press.Google Scholar
  2. Bassey, M. (1992). The great education conspiracy? Unpublished manuscript, Nottingham Polytechnic, England.Google Scholar
  3. Barrett, M. (1991). The politics of truth: From Marx to Foucault. Cambridge: Polity Press.Google Scholar
  4. Bowles, S., & Gintis, H (1976). Schooling in capitalist America. London: RKPGoogle Scholar
  5. Braverman, H. (1974). Labor and monopoly capital: The degradation of work in the twen?tieth century. New York: Monthly Review Press.Google Scholar
  6. Chevallard, Y. (1985). La transposition didactique. Grenoble: La Pensée Sauvage.Google Scholar
  7. Dowling, P., & Noss, R. (Eds.). (1991). Mathematics versus the National Curriculum. London: Falmer Press.Google Scholar
  8. Gintis, H., & Bowles, S. (1988). Contradiction and reproduction in educational theory. In M. Cole(Ed.), Bowles and Gintis revisited (pp. 16–32). London: Falmer.Google Scholar
  9. Giroux, M. (1983). Theory and resistance in education. London: Heinemann.Google Scholar
  10. Gramsci, A. (1957). The modern prince and other writings. London: Lawrence & Wishart.Google Scholar
  11. Green, L. (1988). Music on deaf ears: Musical meaning, ideology, education. Manchester: Manchester University Press.Google Scholar
  12. Guckenheimer, J. (1978). The catastrophe controversy. Mathematical Intelligencer, 1(1), 15–20.CrossRefGoogle Scholar
  13. Illich, I. (1973). Tools for conviviality. London: M. Boyars.Google Scholar
  14. Marx, K. (1967). Capital (Vol. 1. Moscow: Progress Publishers.Google Scholar
  15. Mellin-Olsen, S. (1987). The politics of mathematics education. Dordrecht: ReidelGoogle Scholar
  16. Noss, R. (1988a). The computer as a cultural influence in mathematical learning. Educational Studies in Mathematics, 19(2), 251–268.CrossRefGoogle Scholar
  17. Noss, R. (1988b). The politics of mathematics education (Review Article). Educational Studies in Mathematics, 19, 403–411.Google Scholar
  18. Noss, R. (1989). Just testing: A critical view of recent change in the UK Mathematics Curriculum. In K. Clements & N. Ellerton (Eds.), School mathematics: The challenge to change. Deakin: Deakin University Press.Google Scholar
  19. Noss, R. (1990). The National Curriculum and mathematics: A case of divide and rule? In P. Dowling & R. Noss (Eds.), Mathematics versus the National Curriculum (pp. 13–32). London: Falmer Press.Google Scholar
  20. Noss, R. (1991). The Social Shaping of Computing in Mathematics Education. In: D. Pimm & E. Love (Eds.) The teaching and learning of school mathematics. London: Hodder & Stoughton.Google Scholar
  21. Skovsmose, O. (1992). Democratic competence and reflective knowing in mathematics. For the Learning of Mathematics, 12(2), 2–11.Google Scholar
  22. Thom, R. (1973). Modern mathematics: Does it exist? In A. G. Howson (Ed.), Developments in mathematics education (pp. 194–209). Cambridge: Cambridge University Press.Google Scholar
  23. Vulliamy, G. (1976). What counts as school music? In G. Whitty & M. Young (Eds.), Explorations in the politics of school knowledge (pp. 19–34). Oxford: Nafferton Books.Google Scholar
  24. Whitty, G. (1985). Sociology and school knowledge. London: Methuen.Google Scholar

References

  1. D’Ambrosio, B. S., & Campos, T. M. M. (1992). Pre-service teachers’ representations of children’s understanding of mathematical conflicts and conflict resolution. Educational Studies in Mathematics, 23, 213–230.Google Scholar
  2. D’Ambrosio, U. (1991). Several dimensions of science education. A Latin American perspective. Santiago de Chile: REDUC/CIDE.Google Scholar
  3. D’Ambrosio, U. (1992). Ethnomathematics: A research program on the history and philosophy of mathematics with pedagogical implications. Notices of the American Mathematical Society, 39(10), 1183–1185.Google Scholar
  4. D’Ambrosio, U. (1992). The history of mathematics and ethnomathematics. Impact of Science on Society, no. 160, 369–377.Google Scholar
  5. Flaubert, G. (1987). Bouvard et Pecuchet with the dictionary of received ideas. London: Penguin. (Original work published 1881)Google Scholar
  6. Gerdes, P. (1986). How to recognize hidden geometrical thinking? For the Learning of Mathematics, 5(1), 15–20.Google Scholar
  7. Gore, A. (1993). Earth in the balance. New York: A Plume Book.Google Scholar
  8. Knijnik, C. (in press). An ethnomathematical approach in mathematical education: A matter of political power. For the Learning of Mathematics.Google Scholar
  9. Musil, R. (1953–1954). The man without qualities (Vols. 1–2). New York: Putnam. (Original work published 1952)Google Scholar
  10. Nietzsche, F. (1952). The birth of tragedy and the genealogy of morals. New York: Vintage. (Original work published 1872)Google Scholar
  11. Pompeu, G., Jr. (1992). Bringing ethnomathematics into the school curriculum: An investigation of teacher’s attitude and pupil’s learning. Doctoral dissertation, University of Cambridge, England.Google Scholar
  12. Reich, R. B. (1992). The work of nations, New York: Vintage.Google Scholar
  13. Saxe, G. (1991). Culture and cognitive development: Studies in mathematical understanding. Hillsdale, NJ: Erlbaum.Google Scholar
  14. Suzuki, S. (1969). Nurtured by love: A new approach to education. New York: Exposition Press.Google Scholar
  15. Thom, R. (1990). Apologie du logos. Paris: Hachette.Google Scholar
  16. Weisskopf, V. (1992). Interview in Report of the Fifth Dialogue on the Preservation of Creation. Caux, Switzerland, 16–18 August 1992.Google Scholar
  17. Wiener, N. (1948). Cybernetics. Cambridge, MA: The Technology Press.Google Scholar
  18. Wigginton, E. (1988). Sometimes a shining moment. Garden City, NY: Anchor Press/Doubleday.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Rudolf Sträßer
    • 1
  1. 1.Bielefeld

Personalised recommendations