Biogenic Silica

  • Daniel J. Conley
  • Claire L. Schelske
Part of the Developments in Paleoenvironmental Research book series (DPER, volume 3)


The measurement of the biogenic silica (BSi) content of sediments is a chemical estimate of the siliceous microfossil abundance. Briefly, sediments are leached with a weak base, usually Na2CO3, for a period of time (2–5 hours), and aliquots withdrawn over time. The aliquots are then measured for the amount of Si extracted and a least-squares regression is made on the increase in concentration with time to separate the Si extracted from amorphous Si compounds, e.g. diatoms, sponges, etc., from that of mineral silicates. Comparison of chemical estimates of BSi with diatom microfossil point counts demonstrate that the extraction techniques provide a valid proxy for the abundance of diatom microfossils in sediments. However, the exact choice of methodology will depend upon the type of siliceous components in the sediments and the ability of the digestion solution to dissolve those components. Therefore, both the strength of the digestion solution used and the time over which subsamples are taken should be adjusted for depending upon the type of sediment used. Application of these techniques as a proxy for siliceous microfossil abundance have been instrumental in unraveling the response of aquatic systems to nutrient enrichment and has provided important information on paleoproductivity in particular in studies of paleoclimate.


biogenic silica amorphous silica sediments diatoms diatom abundance dissolved silicate eutrophication climate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bavestrello, G., R. Cattaneo-Vietti, C. Cerrano, S. Cerutti & M. Sara, 1996. Contribution of sponge spicules to the composition of biogenic silica in the Ligurian Sea. P.S.Z.N. I. Mar. Ecol. 17: 41–50.Google Scholar
  2. Brandriss, M. E., J. R. O’Neil, M. B. Edlund & E. F. Stoermer, 1998. Oxygen isotope fractionation between diatomaceous silica and water. Geochim. Cosmochim. Acta 62: 1119–1125.CrossRefGoogle Scholar
  3. Chadwick, O. A., D. M. Henricks & W. D. Nettleton, 1989. Silicification of Holocene soils in Northern Monitor Valley. Nevada. Soil Soc. Amer. J. 53: 158–164.Google Scholar
  4. Colman, S. M., J. A. Peck, E. B. Karabanov, S. J. Carter, J. P. Bradbury, J. W. King & D. F. Williams, 1995. Continental climate response to orbital forcing from biogenic silica records in Lake Baikal. Nature 378: 769–771.CrossRefGoogle Scholar
  5. Conley, D. J., 1988. Biogenic silica as an estimate of siliceous microfossil abundance in Great Lakes sediments. Biogeochemistry 6: 161–179.CrossRefGoogle Scholar
  6. Conley, D. J., 1998. An interlaboratory comparison for the measurement of biogenic silica in sediments. Mar. Chem. 63: 39–48.CrossRefGoogle Scholar
  7. Conley, D. J. & C. L. Schelske, 1993. Potential role of sponge spicules in influencing the silicon biogeochemistry of Florida lakes. Can. J. Fish. Aquat. Sci. 50: 296–302.CrossRefGoogle Scholar
  8. Conley, D. J., C. L. Schelske & E. F. Stoermer, 1993. Modification of the biogeochemical cycle of silica with eutrophication. Mar. Ecol. Prog. Ser. 101: 179–192.Google Scholar
  9. Cornwell, J. C., J. C. Stevenson, D. J. Conley & M. Owens, 1996. A sediment chronology of Chesapeake Bay eutrophication. Estuaries 19: 488–499.Google Scholar
  10. De La Rocha, C. L., M. A. Brzezinski, M. J. DeNiro & A. Shemesh, 1998. Silicon isotope composition of diatoms as an indicator of past oceanic change. Nature 395: 680–683.Google Scholar
  11. DeMaster, D. J., 1979. The marine budgets of silica and 32Si. Ph.D. Dissertation, Yale University, 308 pp.Google Scholar
  12. DeMaster, D. J., 1981. The supply and accumulation of silica in the marine environment. Geochim. Cosmochim. Acta 45: 1715–1732.CrossRefGoogle Scholar
  13. DeMaster, D. J., 1991. Measuring biogenic silica in marine sediments and suspended matter. In Marine Particles: Analysis and Characterization, Hurd, D. C. & D.W. Spenser (eds.) Geophysical Monograph 63. American Geophysical Union, Washington, D.C., pp. 363–367.Google Scholar
  14. Diggerfeldt, G., 1972. The post-glacial development of Lake Trummen. Folia Limnol. Scand. 16: 1–104.Google Scholar
  15. Eggiman, D. W., F. T. Manhiem & P. R. Betzer, 1980. Dissolution and analysis of amorphous silica in marine sediments. J. Sed. Petrol. 50: 215–225.Google Scholar
  16. Flower, R. J., 1993. Diatom preservation-experiments and observations on dissolution and breakage in modern and fossil material. Hydrobiologia 269: 473–484.CrossRefGoogle Scholar
  17. Frühlich, F., 1989. Deep-sea biogenic silica: new structural and analytical data from infrared analysis—geological implications. Terra Res. 1: 267–273.Google Scholar
  18. Garnier, J., B. Leporcq, N. Sanchez & X. Philippon, 1999. Biogeochemical mass balances (C, N, P, Si) in three large reservoirs of the Seine Basin (France). Biogeochemistry 47: 119–146.Google Scholar
  19. Gehlen, M. & W. van Raaphorst, 1993. Early diagenesis of silica in sandy North Sea sediments: quantification of the solid phase. Mar. Chem. 42: 71–83.CrossRefGoogle Scholar
  20. Goldberg, E. D., 1958. Determination of opal in marine sediments. J. Mar. Res. 17: 71–83.Google Scholar
  21. Hansen, K., 1956. The profundal bottom deposits of Gribsø. In Berg, K. & I. C. Petersen (eds.) Studies on Humic, Acid Lake Gribsù. Folia Limnol. Scand. 8, Copenhagen.Google Scholar
  22. Humborg, C., V. Ittekkot, A. Cociasu & B. V. Bodungen, 1997. Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature 386: 385–388.CrossRefGoogle Scholar
  23. Humborg, C., D. J. Conley, L. Rahm, F. Wulff, A. Cociasu & V. Ittekkot, 2000. Silica retention in river basins: far-reaching effects on biogeochemistry and aquatic food webs in coastal marine environments. Ambio in press.Google Scholar
  24. Hurd, D. C., 1972. Factors affecting solution rate of biogenic opal in seawater. Earth Planet. Sci. Lett. 15: 411–417.CrossRefGoogle Scholar
  25. Juniper, S. K., P. Martineu, J. Sarrazin & Y. Gélinas, 1995. Microbial-mineral floc associated with nascent hydrothermal activity on CoAxial Segment, Juan de Fuca Ridge. Geophys. Res. Lett. 22: 179–182.CrossRefGoogle Scholar
  26. Kamatani, A. & O. Oku, 2000. Measuring biogenic silica in marine sediments. Mar. Chem. 68: 219–229.CrossRefGoogle Scholar
  27. Krausse, G. L., C. L. Schelske & C. O. Davis, 1983. Comparison of three wet-alkaline methods of digestion of biogenic silica in water. Freshwater Biol. 13: 1–9.Google Scholar
  28. Leinen, M., 1977. A normative calculation technique for determination of biogenic opal in deep sea sediments. Geochim. Cosmochim. Acta 40: 671–676.Google Scholar
  29. Mortlock, R. A. & P. N. Froelich, 1989. A simple and reliable method for the rapid determination of biogenic opal in pelagic sediments. Deep-Sea Res. 36: 1415–1426.CrossRefGoogle Scholar
  30. Müller, P. J. & R. Schneider, 1993. An automated leaching method for the determination of opal in sediments and particulate matter. Deep-Sea Res. 40: 425–444.Google Scholar
  31. Newberry, T. & C. L. Schelske, 1986. Biogenic silica record in the sediments of Little Round Lake, Ontario. Hydrobiologia 143: 293–300.CrossRefGoogle Scholar
  32. Nijampurkar, V. N., D. K. Rao, F. Oldfied & I. Renberg, 1998. The half-life of Si-32: A new estimate based on varved lake sediments. Earth Planet. Sci. Lett. 163: 191–196.CrossRefGoogle Scholar
  33. Norris, A. R. & C. T. Hackney. 1999. Silica content of a mesohaline tidal marsh in North Carolina. Estuar. Coastal Shelf Sci. 49: 597–605.Google Scholar
  34. Proft, G., 1994. Biogenic silica (BSi) in sediments of the Mecklenburgian lake district (Germany) and the calcite-silica relation as indicator for trophy and water level. Acta Hydroch. Hydrob 22: 177–184.CrossRefGoogle Scholar
  35. Pudsey, C. J., 1992. Calibration of a point-counting technique for estimation of biogenic silica in marine sediments. J. Sediment Petrol. 63: 760–762.Google Scholar
  36. Qiu, L., D. F. Williams, A. Gvorzdkov, E. Karabanov & M. Shimaraeva, 1993. Biogenic silica accumulation and paleoproductivity in the northern basin of Lake Baikal during the Holocene. Geology 21: 25–28.CrossRefGoogle Scholar
  37. Ragueneau, O., A. Leynaert, P. Tréguer, D. J. DeMaster & R. F. Anderson, 1996. Opal studied as a marker of paleoproductivity. EOS 77: 491, 493.Google Scholar
  38. Rahm, L., D. J. Conley, P. Sandén, F. Wulff & P. Stålnacke, 1996. Time series analysis of nutrient inputs to the Baltic Sea and changing DSi:DIN ratios. Mar. Ecol. Prog. Ser. 130: 221–228.Google Scholar
  39. Renberg, I. 1976, Palaeolimnological investigations in Lake Prästsjön. Early Norrland 9: 113–119.Google Scholar
  40. Rietti-Shati, M., A. Shemesh & W. Karlen, 1998. A 3000-year climatic record from biogenic silica oxygen isotopes in an equatorial high-altitude lake. Science 281: 980–982.CrossRefGoogle Scholar
  41. Rosqvist, G. C., M. Rietti-Shati & A. Shemesh, 1999. Late glacial to middle Holocene climatic record of lacustrine biogenic silica oxygen isotopes from a Southern Ocean island. Geology 27: 967–970.CrossRefGoogle Scholar
  42. Schelske, C. L., 1985. Biogeochemical silica mass balances in Lake Michigan and Lake Superior. Biogeochemistry 1: 197–218.CrossRefGoogle Scholar
  43. Schelske, C. L., 1988. Historic trends in Lake Michigan silica concentrations. Int. Revue ges. Hydrobiol. 73: 559–591.Google Scholar
  44. Schelske, C. L., 1999. Diatoms as mediators of biogeochemical silica depletion in the Laurentian Great Lakes. In Stoermer, E. F. & J. P. Smol (eds.) The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, pp. 73–84.Google Scholar
  45. Schelske, C. L. & E. F. Stoermer, 1971. Eutrophication, silica depletion, and predicted changes in algal quality in Lake Michigan. Science 173: 423–424.Google Scholar
  46. Schelske, C. L., E. F. Stoermer, D. J. Conley, J. A. Robbins & R. M. Glover, 1983. Early eutrophication in the lower Great Lakes: New evidence from biogenic silica in sediments. Science 222: 320–322.Google Scholar
  47. Schelske, C. L., E. F. Stoermer, G. L. Fahnenstiel & M. Haibach, 1986. Phosphorus enrichment, silica utilization, and biogeochemical silica depletion in the Great Lakes. Can. J. Fish. Aquat. Sci. 43: 407–415.CrossRefGoogle Scholar
  48. Schelske, C. L., H. Zullig & M. Boucherle, 1987. Limnological investigation of biogenic silica sedimentation and silica biogeochemistry in Lake St. Moritz and Lake Zurich. Schweiz Z. Hydrol 49: 42–50.Google Scholar
  49. Schwandes, L. P., 1998. Environmental durability of biogenic opal. Soil Crop Sci. Soc. Florida Proc. 57: 36–39Google Scholar
  50. Shahack Gross, R., A. Shemesh, D. Yakir & S. Weiner, 1996. Oxygen isotopic composition of opaline phytoliths: Potential for terrestrial climatic reconstruction. Geochim. Cosmochim. Acta 60:3949–3953.Google Scholar
  51. Shemesh, A., L. H. Burckle & J. D. Hays, 1995. Late Pleistocene oxygen isotope records of biogenic silica from the Atlantic sector of the Southern Ocean. Paleoceanography 10: 179–196.CrossRefGoogle Scholar
  52. Shemesh, A., C. D. Charles & R. G. Fairbanks, 1992. Oxygen isotopes in biogenic silica: Global changes in ocean temperature and isotopic composition. Science 256: 1434–1436.Google Scholar
  53. Shemesh, A. & D. Peteet, 1998. Oxygen isotopes in fresh water biogenic opal: Northeastern US Allerød-Younger Dryas temperature shift. Geophys. Res. Lett. 25: 1935–1938.CrossRefGoogle Scholar
  54. Stoermer, E. F., J. A. Wolin & C. L. Schelske, 1993. Paleolimnological comparison of the Laurentian Great Lakes based on diatoms. Limnol. Oceanogr. 38: 1311–1316.CrossRefGoogle Scholar
  55. Stoermer, E. F., C. L. Schelske & J. A. Wolin, 1990. Siliceous microfossil succession in the sediments of McLeod Bay, Great Slave Lake, Northwest Territories. Can. J. Fish. Aquat. Sci. 47:1865–1874.CrossRefGoogle Scholar
  56. Stoermer, E. F., J. P. Kociolek, C. L. Schelske & D. J. Conley, 1985a. Siliceous microfossil succession in the recent history of Lake Superior. Proc. Acad. Nat. Sci., Philadelphia 137: 106–118.Google Scholar
  57. Stoermer, E. F. & J. P. Smol (eds.), 1999. The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, 469 pp.Google Scholar
  58. Stoermer, E. F., J. A. Wolin, C. L. Schelske & D. J. Conley, 1985b. Variations in Melosira islandica valve morphology in Lake Ontariosediments related to eutrophication and silica depletion. Limnol. Oceanogr. 30: 414–418.CrossRefGoogle Scholar
  59. Tallberg, P., 1999. The magnitude of Si dissolution from diatoms at the sediment surface and its potential impact on P mobilization. Archiv. Hydrobiol. 144: 429–438.Google Scholar
  60. Tarapchak, S. J., D. R. Slavens, M. A. Quigley & J. S. Tarapchak, 1984. Silicon contamination in diatom nutrient enrichment experiments. Can. J. Fish. Aquat. Sci. 40: 657–664.Google Scholar
  61. Taylor, C. M., 1999. Recent changes in silica availability after implementation of phosphorus abatement in Lake Ontario. M. S. Thesis, University of Florida, Gainesville, FL, 60 pp.Google Scholar
  62. Turner, R. E. & N. N. Rabalais, 1991. Changes in Mississippi River water quality this century. Implications for coastal food webs. BioScience 41: 140–147.Google Scholar
  63. Turner, R. E. & N. N. Rabalais, 1994. Coastal eutrophication near the Mississippi River delta. Nature 368: 619–621.CrossRefGoogle Scholar
  64. Turner, R. E., N. Qureshi, N. N. Rabalais, Q. Dortch, D. Justic, R. F. Shaw & J. Cope, 1998. Fluctuating silicate:nitrate ratios and coastal plankton food webs. Proc. Natl. Acad. Sci. USA 95: 13048–13051.CrossRefGoogle Scholar
  65. Verschuren, D. 1999. Influence of depth, mixing regime on sedimentation in a small, fluctuating tropical soda lake. Limnol. Oceanogr. 44: 1103–1113.Google Scholar
  66. Verschuren, D., D. N. Edgington, H. J. Kling & T. C. Johnson, 1998. Silica depletion in Lake Victoria: Sedimentary signals at offshore stations. J. Great Lakes Res. 24: 118–130.CrossRefGoogle Scholar
  67. Wessels, M., K. Mohaupt, R. Kummerlin & A. Lenhard, 1999. Reconstructing past eutrophication trends from diatoms and biogenic silica in the sediment and the pelagic zone of Lake Constance. Germany. J. Paleolim. 21: 171–192.Google Scholar
  68. Wilding, L. P., N. E. Smeck & L. R. Drees. 1977. Silica in soils: quartz, cristobalite, tridymite, and opal. In Minerals in Soil Environments. Soil Sci. Soc. Amer., Madison, pp. 471–552.Google Scholar
  69. Williams, D. F, J. Peck, E. B. Karabanov, A. A. Prodopenko, V. Kravchinsky, J. King & M. I. Kuzmin, 1997. Lake Baikal record of continental climate response to orbital insolation during the past 5 million years. Science 278: 1114–1117.Google Scholar
  70. Xiao, J., Y. Inouchi, H. Kumai, S. Yoshikawa, Y. Kondo, T. Liu & Z. An, 1997. Biogenic silica record in Lake Biwa of central Japan over the past 145,000 years. Quat. Res. 47: 277–283.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Daniel J. Conley
    • 1
  • Claire L. Schelske
    • 2
  1. 1.Department of Marine EcologyNational Environmental Research InstituteRoskildeDenmark
  2. 2.Department of Geological Science Land Use and Environmental Change InstituteUniversity of FloridaGainesvilleUSA

Personalised recommendations