Advertisement

Sedimentary Pigments

  • Peter R. Leavitt
  • Dominic A. Hodgson
Chapter
Part of the Developments in Paleoenvironmental Research book series (DPER, volume 3)

Summary

Fossil pigments often preserve in lake sediments long after the morphological remains of most algae and bacteria are lost. In principle, analyses of sedimentary carotenoids, chlorophylls, their derivatives and other lipid-soluble pigments can be used to reconstruct historical changes in primary-producer community abundance and composition, so long as biomarkers are accurately isolated, identified and quantified. This chapter summarizes a series of practical techniques in order to familarize investigators with the potential and pitfalls inherent in fossil pigment analyses. First we describe the common uses of sedimentary pigments in paleolimnology and summarize knowledge of pigment biogeochemistry and taphonomy, especially as concerns water-column processes. Second we review a series of practical procedures to collect, isolate and quantify pigments, particularly by high performance liquid chromatography. We conclude with a summary of recent advances in pigment identification using various mass spectrometric techniques.

Keywords

pigment carotenoid chlorophyll HPLC chromatography mass spectrometry sediment fossil methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belcher, J. H. & G. E. Fogg, 1964. Chlorophyll derivatives in the sediments of two English lakes. In Miyaka, Y. & T. Koyama (eds.) Recent Researches in the Field of Hydrosphere, Atmosphere and Nuclear Geochemistry. Maruzen co. Tokyo: 39–48.Google Scholar
  2. Bernhard, K., 1995. Column chromatography. In Briton, G., S. Liaaen-Jensen & H. Pfander (eds.) Carotenoids. Vol. 1A. Isolation and Analyis. Birkhäuser, Boston: 117–130.Google Scholar
  3. Bernhard, K. & M. Grosjean, 1995. Infared spectroscopy. In Britton, G., S. Liaaen-Jensen & H. Pfander (eds.) Caroteniods: Volume 1B: Spectroscopy. Birkhäuser Verlag, Boston: 117–134.Google Scholar
  4. Bianchi, T. S., S. Findlay & R. Dawson, 1993. Organic-matter sources in the water column and sediments of the Hudson River estuary—the use of plant pigments as tracers. Est. Coast. Shelf Sci. 36: 359–376.Google Scholar
  5. Bjørnland, T., 1997. UV/Visible spectroscopy of carotenoids. In Jeffrey, S. W., R. F. C. Mantoura & S. W. Wright (eds.) Phytoplankton Pigments in Oceanography. UNESCO Publishing, Paris: 578–594.Google Scholar
  6. Borman, S., 1998. Chemistry crystallizes into modern science. Chemical & Engineering News, 12: 39–75.Google Scholar
  7. Britton, G., 1995. In Britton, G., S. Liaaen-Jensen & H. Pfander (eds.) Caroteniods: Volume 1B: Spectroscopy. Birkhäuser Verlag, Boston: 13–62.Google Scholar
  8. Britton, G., S. Liaaen-Jensen & H. Pfander, 1995a. Carotenoids: Volume 1 A: Isolation and Analysis. Birkhäuser Verlag, Boston, 328 pp.Google Scholar
  9. Britton, G., S. Liaaen-Jensen & H. Pfander, 1995b. Carotenoids: Volume 1B: Spectroscopy. Birkhäuser Verlag, Boston, 360 pp.Google Scholar
  10. Brown, S. R., 1968. Bacterial carotenoids from freshwater sediments. Limnol. Oceanogr. 13: 233–241.Google Scholar
  11. Brown, S. R., 1969. Paleolimnological evidence from fossil pigments. Mitt. Internat. Verein. Limnol. 17: 95–103.Google Scholar
  12. Brown, S. R. & B. Colman, 1963. Oscillaxanthin in lake sediments. Limnol. Oceanogr. 8: 352–353.Google Scholar
  13. Brown, S. R., R. J. Daley & R. N. McNeely, 1977. Composition and stratigraphy of fossil phorbin derivatives of Little Round Lake. Ontario. Limnol. Oceanogr. 22: 336–348.Google Scholar
  14. Brown, S. R., H. J. McIntosh & J. P. Smol, 1984. Recent paleolimnology of a meromictic lake: Fossil pigments of photosynthetic bacteria. Int. Ver. Theor. Angew. Limnol. Verh. 22: 1357–1360.Google Scholar
  15. Caccamese, S. & D. Garozzo, 1990. Odd-electron molecular ion and loss of toluene in fast atom bombardment mass spectra of some carotenoids. Org. Mass Spectrom. 25(3): 137–140.CrossRefGoogle Scholar
  16. Caprioli, R. M., T. Fan & J. S. Cottrel, 1986. Continuous flow sample probe for fast atom bombardment mass spectrometry. Anal. Chem. 58: 2949–2954.Google Scholar
  17. Carpenter, S. R. & P. R. Leavitt, 1991. Temporal variation in a paleolimnological record arising from a trophic cascade. Ecology 72: 277–285.Google Scholar
  18. Carpenter, S., M. Elser & J. Elser, 1986. Chlorophyll production, degradation and sedimentation: Implications for palaeolimnology. Limnol. Oceanogr. 31: 112–124.Google Scholar
  19. Carpenter, S. R., P. R. Leavitt, J. J. Elser & M. M. Elser, 1988. Chlorophyll budgets: Response to food web manipulation. Biogeochemistry 6: 79–90.CrossRefGoogle Scholar
  20. Cohen, A. S., 2002. Paleolimnology: History and Evolution of Lake Systems. Oxford University Press, Oxford, 350 pp.Google Scholar
  21. Cuddington, K. & P. R. Leavitt, 1999. An individual-based model of pigment flux in lakes: Implications for organic biogeochemistry and paleoecology. Can. J. Fish. Aquat. Sci. 56: 1964–1977.CrossRefGoogle Scholar
  22. Daley, R. J., S. R. Brown & R. N. McNeely, 1977. Chromatographic and SCDP measurements of fossil phorbins and the postglacial history of Little Round Lake. Ontario. Limnol. Oceanogr. 22: 349–360.Google Scholar
  23. Damste, J. S. S. & M. P. Koopmans, 1997. The fate of carotenoids in sediments: a Review. Pure Appl. Chem. 69: 2067–2074.Google Scholar
  24. Davies, B. H., 1976. Carotenoids. In Goodwin, T. W. (ed.) Chemistry and Biochemistry of Plant Pigments. Volume I. Academic Press, N.Y., 870 pp.Google Scholar
  25. Descy, J. P., T. M. Frost & J. P. Hurley, 1999. Assessment of grazing by the freshwater copepod Diatpomus minutus using carotenoid pigments: a Caution. J. Plankton Res. 21: 127–145.CrossRefGoogle Scholar
  26. Eckardt, C. B., B. J. Keely & J. R. Maxwell, 1991a. Identification of chlorophyll transformation products in a lake sediment by combined liquid chromatography-mass spectrometry. J. Chromatog. 557: 271–278.CrossRefGoogle Scholar
  27. Eckardt, C. B., G. E. S. Pearce, B. J. Keely, G. Kowalewska, R. Jaffe & J. R. Maxwell, 1991b. A widespread chlorophyll transformation pathway in the aquatic environment. Adv. Org. Geochem. 19: 217–227.Google Scholar
  28. Englert, G., 1995. NMR spectroscopy. In Britton, G., S. Liaaen-Jensen & H. Pfander (eds.) Caroteniods: Volume 1b, Spectroscopy. Birkhäuser Verlag, Boston: 147–260.Google Scholar
  29. Enzell, C. R. & S. Back, 1995. Mass Spectrometry. In Britton, G., S. Liaaen-Jensen & H. Pfander (eds.) Caroteniods: Volume 1b, Spectroscopy. Birkhäuser Verlag, Boston: 261–320.Google Scholar
  30. Eugster, C. H., 1995. Chemical derivatization: Microscale tests for the presence of common functional groups in carotenoids. In Briton, G., S. Liaaen-Jensen & H. Pfander (eds.) Carotenoids. Vol. 1A. Isolation and Analyis. Birkhäuser, Boston: 71–80.Google Scholar
  31. Fogg, G. E. & J. H. Belcher, 1961. Pigments from the bottom deposits of an English lake. New Phytol. 60: 129–138.Google Scholar
  32. Foppen, F. H., 1971. Tables for the identification of carotenoid pigments. Chromatog. Rev. 14: 133–298.CrossRefGoogle Scholar
  33. Fox, D. L., 1944. Biochemical fossils. Science 100: 111–113.Google Scholar
  34. Fox, D. L., D. M. Updegraff & G. D. Novelli, 1944. Carotenoid pigments in the ocean floor. Arch. Biochem. 5: 1–23.Google Scholar
  35. Goodwin, T. W., 1980a. The Biochemistry of the Carotenoids. Vol. 1. Plants. Chapman and Hall, N.Y., 377 pp.Google Scholar
  36. Goodwin, T. W., 1980b. The Biochemistry of the Carotenoids. Vol. 2. Animals. Chapman and Hall, N.Y., 224 pp.Google Scholar
  37. Gorham, E. & J. E. Sanger, 1975. Fossil pigments in Minnesota lake sediments and their bearing upon the balance between terrestrial and aquatic inputs to sedimentary organic matter. Vehr. Inernat. Verein. Limnol. 19: 2267–2273.Google Scholar
  38. Griffiths, M., 1978. Specific blue-green algal carotenoids in the sediments of Esthwaite Water. Limnol. Oceanogr. 23: 777–784.Google Scholar
  39. Griffiths, M., P. S. Perrot & W. T. Edmonson, 1969. Oscillaxanthin in the sediments of Lake Washington. Limnol. Oceanogr. 14: 317–326.Google Scholar
  40. Guilizzoni, P. & A. Lami, 1992. Historical records of changes in the chemistry and biology of Italian lakes. Mem. Ist. ital. Idrobiol. 50: 61–77.Google Scholar
  41. Guilizzoni, P., A. Lami & A. Marchetto, 1992. Plant pigment ratios from lake-sediments as indicators of recent acidification in alpine lakes. Limnol. Oceanogr. 37: 1565–1569.Google Scholar
  42. Hall, R. I., P. R. Leavitt, R. Quinlan, A. S. Dixit & J. P. Smol, 1999. Effects of agriculture, urbanization and climate on water quality in the northern Great Plains. Limnol. Oceanogr. 43: 739–756.Google Scholar
  43. Harris, P. G., J. F. Carter, M. Head, R. P. Harris, G. Eglinton & J. R. Maxwell, 1995. Identification of chlorophyll transformation products in zooplankton fecal pellets and marine sediment extracts by liquid-chromatography mass-spectrometry atmospheric-pressure chemical-ionization. Rap. Comm. Mass Spec. 9: 1177–1183.Google Scholar
  44. Hendry, G. F., J. D. Houghton & S. R. Brown, 1987. The degradation of chlorophyll—a biological enigma. New Phytol. 107: 255–302.Google Scholar
  45. Hertzberg, S., S. Liaaen-Jensen & H. W. Siegelman, 1971. The carotenoids of blue-green algae. Phytochemistry 10: 3121–3127.Google Scholar
  46. Hodgson, D. A. & P. A. Tyler, 1996. The impact of a hydro-electric dam on the stability of meromictic lakes in south west Tasmania. Australia. Arch. Hydrobiol. 137: 310–323.Google Scholar
  47. Hodgson, D. A., S. W. Wright & N. Davies, 1997. Mass spectrometry and reverse phase HPLC methods for the identification of degraded fossil pigments in lake sediments and their application in palaeolimnology. J. Paleolimnol. 18: 335–350.Google Scholar
  48. Hodgson, D. A., S. W. Wright, P. A. Tyler & N. Davies, 1998. Analysis of fossil pigments from algae and bacteria in meromictic Lake Fidler, Tasmania, and its application to lake management. J. Paleolimnol. 19: 1–22.CrossRefGoogle Scholar
  49. Hurley, J. P. & D. E. Armstrong, 1990. Fluxes and transformations of aquatic pigments in Lake Mendota, Wisconsin. Limnol. Oceanogr. 35: 384–398.Google Scholar
  50. Hurley, J. P. & P. J. Garrison, 1993. Composition and sedimentation of aquatic pigments associated with deep plankton in lakes. Can. J. Fish. Aquat. Sci. 50: 2713–2722.CrossRefGoogle Scholar
  51. Hurley, J. P. & C. J. Watras, 1991. Identification of bacteriochlorophylls in lakes via reverse-phase HPLC. Limnol. Oceanogr. 36: 307–315.Google Scholar
  52. Isler, O. (ed.), 1971. Carotenoids. Birkhauser-Basel, 932 pp.Google Scholar
  53. Jeffrey, S. W., 1967. Quantitative thin layer chromatography of chlorophylls and carotenoids from marine algae. Biochim. Biophys. Acta 162: 271–285.Google Scholar
  54. Jeffrey, S. W., 1997. Chlorophyll and carotenoid extinction coefficients. In Jeffrey, S. W., R. F. C. Mantoura & S. W. Wright (eds.) Phytoplankton Pigments in Oceanography. UNESCO Publishing, Paris: 595–596.Google Scholar
  55. Jeffrey, S. W., R. F. C. Mantoura & S. W. Wright, 1997a. Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO Publishing, Paris, 661 pp.Google Scholar
  56. Jeffrey, S. W., R. F. C. Mantoura & T. Bjørnland, 1997b. Data for the identification of 47 key phytoplankton pigments. In Jeffrey, S. W., R. F. C. Mantoura & S. W. Wright (eds.) Phytoplankton Pigments in Oceanography. UNESCO Publishing, Paris: 447–559.Google Scholar
  57. Jeffrey, S. W., S. W. Wright & M. Zapata, 1999. Recent advances in HPLC pigment analysis of phytoplankton. Mar. Freshwater Res. 50: 879–896.CrossRefGoogle Scholar
  58. Jensen, A. & S. Liaaen-Jensen, 1968. Quantitative paper chromatography of carotenoids. Acta. Chem. Scanda. 13: 1863–1868.Google Scholar
  59. Karrer, P. & E. Jucker, 1950. Carotenoids. Elsevier Publishing, NY, 384 pp.Google Scholar
  60. Keely, B. J. & J. R. Maxwell, 1990. Fast atom bombardment and tandem mass spectrometric studies of some functionalised tetrapyrroles derived from chlorophylls a and b. Energy and Fuels 4: 737–741.Google Scholar
  61. Koopmans, M. P., J. Koster, H. M. E. van Kann Peters, F. Kenig, S. Schouten, W. A. Hartgers, J. W. deLeeuw & J. S. S. Damste, 1996. Diagenetic and catagenetic products of isorenieratene: Molecular indicators for photic zone anoxia. Geochim. Cosmochim. Acta 60: 4467–4496.Google Scholar
  62. Kost, H.-P., 1988. Handbook of Chromatography. Plant pigments. Vol. I Fat-soluble pigments. CRC Press, 328 pp.Google Scholar
  63. Krinsky, N. I., 1963. A relationship between partition coefficients of carotenoids and their functional groups. Anal. Biochem. 6: 293–302.CrossRefGoogle Scholar
  64. Lami, A., F. Niessen, P. Guilizzoni, J. Masaferro & C. A. Belis, 1994. Paleolimnological studies of the eutrophication of volcanic Lake Albano (central Italy). J. Paleolimnol. 10: 181–197.CrossRefGoogle Scholar
  65. Leavitt, P. R., 1993. A review of factors that regulate carotenoid and chlorophyll deposition and fossil pigment abundance. J. Paleolimnol. 9: 109–127.CrossRefGoogle Scholar
  66. Leavitt, P. R. & S. R. Carpenter, 1989. Effects of sediment mixing and benthic algal production on fossil pigment stratigraphies. J. Paleolimnol. 2: 147–158.CrossRefGoogle Scholar
  67. Leavitt, P. R. & S. R. Carpenter, 1990a. Aphotic pigment degradation in the hypolimnion: Implications for sedimentation studies and paleolimnology. Limnol. Oceanogr. 35: 520–534.Google Scholar
  68. Leavitt, P. R. & S. R. Carpenter, 1990b. Regulation of pigment sedimentation by herbivory and photo-oxidation. Can. J. Fish. Aquat. Sci. 47: 1166–1176.CrossRefGoogle Scholar
  69. Leavitt, P. R. & D. L. Findlay, 1994. Comparison of fossil pigments with 20 years of phytoplankton data from eutrophic Lake 227, Experimental Lakes Area, Ontario. Can. J. Fish. Aquat. Sci. 51: 2286–2299.Google Scholar
  70. Leavitt, P. R., S. R. Carpenter & J. F. Kitchell, 1989. Whole-lake experiments: The annual record of fossil pigments and zooplankton. Limnol. Oceanogr. 34: 700–717.Google Scholar
  71. Leavitt, P. R., P. R. Sanford, S. R. Carpenter & J. F. Kitchell, 1994a. An annual fossil record of production, planktivory and piscivory during whole-lake experiments. J. Paleolimnol. 11: 133–149.CrossRefGoogle Scholar
  72. Leavitt, P. R., D. E. Schindler, A. J. Paul, A. K. Hardie & D. W. Schindler, 1994b. Fossil pigment records of phytoplankton in trout-stocked alpine lakes. Can. J. Fish. Aquat. Sci. 51: 2411–2423.Google Scholar
  73. Leavitt, P. R., B. J. Hann, J. P. Smol, B. A. Zeeb, C. C. Christie, B. Wolfe & H. J. Kling, 1994c. Paleolimnological analysis of whole-lake experiments: An overview of results from Experimental Lakes Area Lake 227. Can. J. Fish. Aquat. Sci. 51: 2322–2332.Google Scholar
  74. Leavitt, P. R., R. D. Vinebrooke, D. B. Donald, J. P. Smol & D. W. Schindler, 1997. Past ultraviolet radiation environments in lakes derived from fossil pigments. Nature 388: 457–459.CrossRefGoogle Scholar
  75. Leavitt, P. R., D. L. Findlay, R. I. Hall & J. P. Smol, 1999. Algal responses to dissolved organic carbon loss and pH decline during whole-lake acidification: Evidence from paleolimnology. Limnol. Oceanogr. 44: 757–773.CrossRefGoogle Scholar
  76. Liaaen-Jensen, S., 1965. Studies on allylic oxidation of carotenoids. Acta. Chem. Scanda. 19: 1166–1174.Google Scholar
  77. Liaaen-Jensen, S., 1971. Isolation, reactions. In Isler, O. (ed.) Caroteniods. Birkhauser-Verlag Bassel: 61–179.Google Scholar
  78. Liaaen-Jensen, S., 1979. Carotenoids: a Chemosystematic approach. Pure Appl. Chem. 51: 661–675.Google Scholar
  79. Liaaen-Jensen, S. & S. Hertzberg, 1966. Selective preparations of the lutein monomethyl ethers. Acta. Chem. Scanda. 20: 1703–1709.Google Scholar
  80. Liaaen-Jensen, S. & A. Jensen, 1971. Quantitative determination of carotenoids in photosynthetic tissues. In San Petro, A. (ed.) Methods in Enzymology. Vol. XXIII. Photosynthesis. Academic Press, N.Y.: 586–602.Google Scholar
  81. Louda, J. W., J. Li, L. Liu, M. N. Winfree & E. W. Baker, 1998. Chlorophyll a degradation during cellular senescence and death. Org. Geochem. 29: 1233–1251.CrossRefGoogle Scholar
  82. Mantoura, R. F. C. & C. A. Llewellyn, 1983. The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reversed-phase high-performance liquid chromatography. Anal. Chim. Acta 151: 297–314.CrossRefGoogle Scholar
  83. Mantoura, R. F. C. & D. J. Repeta, 1997. Calibration methods for HPLC. In Jeffrey, S. W., R. F. C. Mantoura & S. W. Wright (eds.) Phytoplankton Pigments in Oceanography. UNESCO Publishing, Paris: 383–406.Google Scholar
  84. Mantoura, R. F. C., S. W. Wright, S. W. Jeffrey, R. G. Barlow & D. E. Cummings, 1997a. Filtration and storage of pigments from microalgae. In Jeffrey, S. W., R. F. C. Mantoura & S. W. Wright (eds.) Phytoplankton Pigments in Oceanography. UNESCO Publishing, Paris: 283–305.Google Scholar
  85. Mantoura, R. F. C., S. W. Jeffrey, C. A. Llewelln, H. Claustre & C. E. Morales, 1997. Comparison between spectrophotometric, fluorometric and HPLC methods for chlorophyll analysis. In Jeffrey, S. W., R. F. C. Mantoura & S. W. Wright (eds.) Phytoplankton Pigments in Oceanography. UNESCO Publishing, Paris: 361–380.Google Scholar
  86. McElroy-Etheridge, S. L. & G. B. McManus, 1999. Food type and concentration affect chlorophyll and carotenoid destruction during copepod feeding. Limnol. Oceanogr. 44: 2005–2011.Google Scholar
  87. Millie, D. F., H. W. Pearl & J. P. Hurley, 1993. Microalgal pigment assessments using high-performance liquid chromatography: a Synopsis of organismal and ecological applications. Can. J. Fish. Aquat. Sci. 50: 2513–2527.CrossRefGoogle Scholar
  88. Moss, G. P. & B. C. L. Weedon, 1976. Chemistry of carotenoids. In Goodwin, T. W. (ed.) Chemistry and Biochemistry of Plant Pigments. Academic Press, N.Y.: 149–224.Google Scholar
  89. Mukaida, N. & Y. Nishikawa, 1990. Chromatographic separation of protochlorophylls and their structural analysis by fast atom bombardment mass spectrometry. Nippon Kagaku Kaishi 11: 1244–1249.Google Scholar
  90. Murphy, M. T. J., A. McCormick & G. Eglington, 1967. Perhydro-β-carotene in Green River Shale. Science 157: 1040–1042.Google Scholar
  91. Naylor, C. C. & B. J. Keely, 1998. Sedimentary purpurins: Oxidative transformation products of chlorophylls. Org. Geochem. 28: 417–422.CrossRefGoogle Scholar
  92. Ostrovsky, I. & Y. Z. Yacobi, 1999. Organic matter and pigments in surface sediments: Possible mechanisms of their horizontal distributions in a stratified lake. Can. J. Fish. Aquat. Sci. 56: 1001–1010.CrossRefGoogle Scholar
  93. Overmann, J., G. Sandmann, K. J. Hall & T. G. Northcote, 1993. Fossil carotenoids and paleolimnology of meromictic Mahoney Lake, British Columbia, Canada. Aquat. Sci. 55: 31–39.CrossRefGoogle Scholar
  94. Pfander, H. & R. Riesen, 1995. High-performance liquid chromatography. In Briton, G., S. Liaaen-Jensen & H. Pfander (eds.) Carotenoids. Vol. 1A. Isolation and Analyis. Birkhäuser, Boston: 145–190.Google Scholar
  95. Poister, D., D. E. Armstrong & J. P. Hurley, 1999. Influences of grazing on temporal patterns of algal pigments in suspended and sedimenting algae in a north temperate lake. Can. J. Fish. Aquat. Sci. 56: 60–69.CrossRefGoogle Scholar
  96. Repeta, D. J. & T. Bjørnland, 1997. Preparation of carotenoid standards. In Jeffrey, S. W., R. F. C. Mantoura & S. W. Wright (eds.) Phytoplankton Pigments in Oceanography. UNESCO Publishing, Paris: 239–260.Google Scholar
  97. Sanger, J. E., 1988. Fossil pigments in paleoecology and paleolimnology. Palaeogeog. Palaeoclim. Palaeoecol. 62: 343–359.CrossRefGoogle Scholar
  98. Sanger, J. E. & G. H. Crowl, 1979. Fossil pigments as a guide to the postglacial history of Kircchner Marsh, Minnesota. Limnol. Oceanogr. 17: 840–854.Google Scholar
  99. Sanger, J. E. & E. Gorham, 1970. The diversity of pigments in lake sediments and it’s ecological significance. Limnol. Oceanog. 15: 59–69.Google Scholar
  100. Schiedt, K., 1995. Thin layer chromatography. In Briton, G., S. Liaaen-Jensen & H. Pfander (eds.) Carotenoids. Vol. 1A. Isolation and Analyis. Birkhäuser, Boston: 131–144.Google Scholar
  101. Schiedt, K. & S. Liaaen-Jensen, 1995. Isolation and analysis. In Briton, G., S. Liaaen-Jensen & H. Pfander (eds.) Carotenoids. Vol. 1A. Isolation and Analyis. Birkhäuser, Boston: 81–108.Google Scholar
  102. Scheer, H., 1991. Chlorophylls. CRC Press, Boston, 950 pp.Google Scholar
  103. Šesták, Z., 1980. Paper chromatography of chloroplast pigments (chlorophylls and carotenoids)—Part 3. Photosynthetica 14: 239–270.Google Scholar
  104. Steenbergen, C. L. M., H. J. Korthals & E. G. Dobrynin, 1994. Algal and bacterial pigments in non-laminated lacustrine sediment: Studies of their sedimentation, degradation and stratigraphy. FEMS Microbiol. Ecol. 13: 335–352.Google Scholar
  105. Steinman, A. D., K. E. Havens, J. W. Louda, N. M. Winfree & E. W. Baker, 1998. Characterization of the photoautotrophic algal and bacterial communities in a large, shallow, subtropical lake using HPLC-PDA based pigment analysis. Can. J. Fish. Aquat. Sci. 55: 206–219.CrossRefGoogle Scholar
  106. Swain, E. B., 1985. Measurement and interpretation of sedimentary pigments. Freshwat. Biol. 15: 53–75.Google Scholar
  107. Tett, P., 1982. The Loch Eil project: Planktonic pigments in sediments from Loch Eil and the Firth of Lorne. J. Exp. Mar. Biol. Ecol. 56: 111–114.Google Scholar
  108. Vallentyne, J. R., 1954. Biochemical limnology. Science 119: 605–606.Google Scholar
  109. Vallentyne, J. R., 1956. Epiphasic carotenoids in postglacial lake sediments. Limnol. Oceanogr. 1: 252–262.CrossRefGoogle Scholar
  110. Vallentyne, J. R., 1957. Carotenoids in 20,000-year old sediment from Searles Lake. California. Arch. Biochem. Biophys. 70: 29–34.CrossRefGoogle Scholar
  111. van Breemen, R. B., F. L. Conjura & S. J. Schwartz, 1991. High performance liquid chromatography-continuous-flow fast atom bombardment mass spectrometry of chlorophyll derivatives. J. Chromatogr. 542: 373–383.Google Scholar
  112. van Breemen, R. B., H. H. Schmitz & S. J. Schwartz, 1993. Continuous flow fast atom bombardment liquid chromatography/mass spectrometry of carotenoids. Anal. Chem. 65(8): 965–969.Google Scholar
  113. van Breemen, R. B., H. H. Schmitz & S. J. Schwartz, 1995. Fast atom bombardment mass spectrometry of carotenoids. J. Agric. Food Chem. 42(2): 384–389.Google Scholar
  114. van Breemen, R. B., 1996. Innovations in carotenoid analysis. Anal. Chem. 68: 299A–304A.Google Scholar
  115. Vetter, M. & W. Meister, 1985. Fast atom bombardment mass spectrum of β-carotene. Org. Mass Spectrom. 20: 266–267.CrossRefGoogle Scholar
  116. Villanueva, J., J. O. Grimalt, R. Dewit, B. J. Keely & J. R. Maxwell, 1993. Sources and transformations of chlorophylls and carotenoids in a monomictic sulphate-rich karstic lake environment. Adv. Org. Geochem. 22: 739–757.Google Scholar
  117. Villanueva, J., J. O. Grimalt, R. Dewit, B. J. Keely & J. R. Maxwell, 1994. Chlorophyll and carotenoid-pigments in solar saltern microbial mats. Geochim. Cosmochim. Acta 58: 4703–4715.CrossRefGoogle Scholar
  118. Vogel, A., 1978. Textbook of Practical Organic Chemistry. 4th Edition. Longman, N.Y., 1368 pp.Google Scholar
  119. Watts, D. C. & J. R. Maxwell, 1977. Carotenoid diagenesis in a marine sediment. Geochim. Cosmochim. Acta 41: 493–497.Google Scholar
  120. Winfree, N. M., J. W. Louda, E. W. Baker, A. D. Steinman & K. E. Havens, 1997. Application of chlorophyll and carotenoid pigments for the chemotaxonomic assessment of seston, periphyton, and cyanobacterial mats of Lake Okeechobee. Florida. Molec. Mark. Environ. Geochem. 671: 77–91.Google Scholar
  121. Wright, S. W., S. W. Jeffrey, R. F. C. Mantoura, C. A. Llewellyn, T. Bjørnland, D. Repeta & N. A. Welschmeyer, 1991. Improved HPLC method for analysis of chlorophylls and carotenoids from marine phytoplankton. Mar. Prog. Ecol. Ser. 77: 183–196.Google Scholar
  122. Wright, S. W. & S. W. Jeffrey, 1997. High resolution HPLC system for chlorophylls and carotenoids of marine phytoplankton. In Jeffrey, S. W., R. F. C. Mantoura & S. W. Wright (eds.) Phytoplankton Pigments in Oceanography. UNESCO Publishing, Paris: 327–341.Google Scholar
  123. Wright, S. W. & R. F. C. Mantoura, 1997. Guidelines for setting up an HPLC system and laboratory. In Jeffrey, S. W., R. F. C. Mantoura & S. W. Wright (eds.) Phytoplankton Pigments in Oceanography. UNESCO Publishing, Paris: 383–406.Google Scholar
  124. Wright, S. W. & J. D. Shearer, 1984. Rapid extraction and high-performance liquid chromatography of chlorophylls and carotenoids from marine phytoplankton. J. Chromatogr. 294: 281–295.CrossRefGoogle Scholar
  125. Wright, S. W., S. W. Jeffrey & R. F. C. Mantoura, 1997. Evaluation of methods and solvents for pigment extraction. In Jeffrey, S. W., R. F. C. Mantoura & S. W. Wright (eds.) Phytoplankton Pigments in Oceanography. UNESCO Publishing, Paris: 261–282.Google Scholar
  126. Yacobi, Y. Z., W. Eckert, H. G. Trüper & T. Berman, 1990. High Performance Liquid Chromatography detection of phototrophic bacterial pigments in aquatic environments. Microb. Ecol., 19: 127–136.CrossRefGoogle Scholar
  127. Yacobi, Y. Z., R. F. C. Mantoura & C. A. Llewellyn, 1991. The distribution of chlorophylls and carotenoids and their breakdown products in Lake Kineret (Israel) sediments. Freshwat. Biol. 26: 1–10.Google Scholar
  128. Young, A. & G. Britton, 1993. Carotenoids in Photosynthesis. Chapman and Hall, London, 498 pp.Google Scholar
  129. Zechmeister, L., 1962. Cis-trans isomeric carotenoids, vitamin A and aryl polyenes. Academic Press, N.Y.Google Scholar
  130. Züllig, H., 1981. On the use of carotenoid stratigraphy in lake sediments for detecting past developments of phytoplankton. Limnol. Oceanogr. 26: 970–976.Google Scholar
  131. Züllig, H., 1982. Untersuchungen über die Stratigraphie von Carotinoiden im geschichteten Sediment von 10 Schweizer Seen zur Erkundung früherer Phytoplankton-Entfaltungen. Schweiz. Z. Hydrol. 44: 1–98.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Peter R. Leavitt
    • 1
  • Dominic A. Hodgson
    • 2
  1. 1.Limnology Laboratory Department of BiologyUniversity of ReginaReginaCanada
  2. 2.British Antarctic SurveyCambridgeUK

Personalised recommendations