Plant Macrofossils

  • Hilary H. Birks
Part of the Developments in Paleoenvironmental Research book series (DPER, volume 3)


plant and animal macrofossils method of analysis identification ecosystem reconstruction environment reconstruction multi-disciplinary studies radiocarbon dating 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, M. S., 1985. Inorganic carbon reserves of natural waters and the ecophysiological consequences of their photosynthetic depletion: (II) macrophytes. In Lucas, W. J. & J. A. Berry (eds.) Inorganic Carbon Uptake by Aquatic Photosynthetic Organisms. American Society of Plant Physiologists: 421–435.Google Scholar
  2. A group of authors, 1985. Lobsigensee — Late-glacial and Holocene environments of a lake on the Central Swiss Plateau. Dissertationes Botanicae 1985: 127–170.Google Scholar
  3. Ammann, B., 1989. Late-Quaternary palynology at Lobsigensee. Regional vegetation history and local lake development. Dissertationes Botanicae 137: 1–157.Google Scholar
  4. Andree, M., H. Oeschger, U. Siegenthaler, T. Riesen, M. Moell, B. Ammann & K. Tobolski, 1986. 14C dating of plant macrofossils in lake sediment. Radiocarbon 28: 411–416.Google Scholar
  5. Baines, J. T. & M. C. F. Proctor, 1980. The requirement of aquatic bryophytes for free CO2 as an inorganic carbon source: some experimental evidence. New Phytol. 86: 393–400.Google Scholar
  6. Baker, R. G., 1965. Late-glacial pollen and plant macrofossils from Spider Creek, southern St. Louis County, Minnesota. Geol. Soc. Amer. Bull. 756: 601–610.Google Scholar
  7. Baker, R. G. & P. Drake, 1994. Holocene history of prairie in midwestern United States: pollen versus plant macrofossils. Ecoscience 1: 333–339.Google Scholar
  8. Baker, R. G., E. A. Bettis, D. P. Schwert, D. G. Horton, C. A. Chumbley, L. A. Gonzalez & M. K. Reagan, 1996. Holocene paleoenvironments of northeast Iowa. Ecological Monographs 66: 203–234.Google Scholar
  9. Barnekow, L., 1999. Holocene tree dynamics in the Abisko area, northern Sweden, based on pollen and macrofossil records, and the inferred climatic changes. The Holocene 9: 253–265.CrossRefGoogle Scholar
  10. Barnekow, L., G. Possnert & P. Sandgren, 1998. AMS 14C chronologies of Holocene lake sediments in the Abisko area, northern Sweden—a comparison between dated bulk sediment and macrofossil samples. Geologiska Föreningar i Stockholm Förhandlingar 120: 59–67.Google Scholar
  11. Beerling, D. J., H. H. Birks & F. I. Woodward, 1995. Rapid late-glacial atmospheric CO2 changes reconstructed from the stomatal density of fossil leaves. J. Quat. Sci. 10: 379–384.Google Scholar
  12. Bennike, O., S. Björck, J. Böcher, L. Hansen, J. Heinemeier & B. Wohlfarth, 1999. Early Holocene plant and animal remains from north-east Greenland. J. Biogeogr. 26: 667–677.CrossRefGoogle Scholar
  13. Birks, H. H., 1973. Modern macrofossil assemblages in lake sediments in Minnesota. In Birks, H. J. B. & R. G. West (eds.) Quaternary Plant Ecology. Blackwells, Oxford: 173–189.Google Scholar
  14. Birks, H. H., 1980. Plant macrofossils in Quaternary lake sediments. Arch. Hydrobiol. 15: 1–60.Google Scholar
  15. Birks, H. H., 1984. Late-Quaternary pollen and plant macrofossil stratigraphy at Lochan an Druim, north-west Scotland. In Haworth, E. Y. & J. W. G. Lund (eds.) Lake Sediments and Environmental History. University of Leicester Press: 377–405.Google Scholar
  16. Birks, H. H., 1991. Holocene vegetational history and climatic change in west Spitsbergen-plant macrofossils from Skardtjørna, an arctic lake. The Holocene 1: 209–218.Google Scholar
  17. Birks, H. H., 1993. The importance of plant macrofossils in late-glacial climatic reconstructions: an example from western Norway. Quat. Sci. Rev. 12: 719–726.CrossRefGoogle Scholar
  18. Birks, H. H., 1994a. Late-glacial vegetational ecotones and climatic patterns in western Norway. Veg. Hist. Archaeobot. 3: 107–119.Google Scholar
  19. Birks, H. H., 1994b. Plant macrofossils and the Nunatak Theory of per-glacial survival. Dissertationes Botanicae 234: 129–143.Google Scholar
  20. Birks, H. H., 2000. Aquatic macrophyte vegetation development in Kråkenes Lake, western Norway, during the late-glacial and early Holocene. J. Paleolim. 23: 7–19.Google Scholar
  21. Birks, H. H. & B. Ammann, 2000. Two terrestrial records of rapid climate change during the glacial-Holocene transition (14,000–9,000 calendar years B.P.) from Europe. Proc. nat. Acad. Sci. 97: 1390–1394.CrossRefGoogle Scholar
  22. Birks, H. H., R. W. Battarbee & H. J. B. Birks, 2000. The development of the aquatic ecosystem in Kråkenes Lake, western Norway, during the late glacial and early Holocene—a synthesis. J. Paleolim. 23: 91–114.Google Scholar
  23. Birks, H. H. & H. J. B. Birks, 2000. Future uses of pollen analysis must include plant macrofossils. J. Biogeogr. 27: 31–35.CrossRefGoogle Scholar
  24. Birks, H. H., W. Eide & H. J. B. Birks, 1999. Early Holocene atmospheric CO2 concentrations. Science 286: 1815–1815a.Google Scholar
  25. Birks, H. H., S. Gulliksen, H. Haflidason, J. Mangerud & G. Possnert, 1996b. New radiocarbon dates for the Vedde Ash and the Saksunarvatn Ash from western Norway. Quat. Res. 45: 119–127.CrossRefGoogle Scholar
  26. Birks, H. H. & R. W. Mathewes, 1978. Studies in the vegetational history of Scotland V. Late Devensian and early Flandrian pollen and macrofossil stratigraphy at Abernethy Forest, Inverness-shire. New Phytol. 80: 455–484.Google Scholar
  27. Birks, H. H., M. C. Whiteside, D. Stark & R. C. Bright, 1976. Recent paleolimnology of three lakes in northwestern Minnesota. Quat. Res. 6: 249–272.CrossRefGoogle Scholar
  28. Birks, H. H. & M. van Dinter, 1997. Betula species in the west Norwegian late-glacial interstadial and early Holocene, and the reconstruction of climate gradients. Geonytt 24: 102.Google Scholar
  29. Birks, H. H. & H. E. Wright, 2000. Introduction to the reconstruction of the late-glacial and early-Holocene aquatic ecosystems at Kråkenes Lake, Norway. J. Paleolim. 23: 1–5.Google Scholar
  30. Birks, H. H. + 23 others, 1996a. The Kråkenes late-glacial palaeoenvironmental project. J. Paleolim. 15: 281–286.CrossRefGoogle Scholar
  31. Birks, H. J. B., 1981. Late Wisconsin vegetational and climatic history at Kylen Lake, northeastern Minnesota. Quat. Res. 16: 322–355.Google Scholar
  32. Birks, H. J. B. & H. H. Birks, 1980. Chapter 5 in Quaternary Palaeoecology, 66–84. Edward Arnold, London.Google Scholar
  33. Bondevik, S., H. H. Birks, S. Gulliksen & J. Mangerud, 1999. Late Weichselian marine 14C reservoir ages at the western coast of Norway. Quat. Res. 52: 104–114.CrossRefGoogle Scholar
  34. Brooks, S. J. & H. J. B. Birks, 2000. Chironomid-inferred late-glacial and early Holocene mean July air temperatures for Kråkenes Lake, western Norway. J. Paleolim. 23: 77–89.CrossRefGoogle Scholar
  35. Brooks, S. J. & H. J. B. Birks, 2001. Chironomid-inferred air temperatures from Lateglacial and Holocene sites in north-west Europe: progress and problems. Quat. Sci. Rev. (in press).Google Scholar
  36. Chaney, R. W., 1924. Quantitative studies of the Bridge Creek Flora. Am. J. Sci. 8: 127–144.CrossRefGoogle Scholar
  37. Collinson, M. E., 1983. Accumulations of fruits and seeds in three small sedimentary environments in southern England and their palaeoecological implications. Ann. Bot. 52: 583–592.Google Scholar
  38. Cushing, E. J. & H. E. Wright, 1965. Hand-operated piston corers for lake sediments. Ecology 46: 380–384.Google Scholar
  39. Dickson, C. A., 1970. The study of plant macrofossils in British Quaternary deposits. In Walker, D. & R. G. West (eds.) Studies in the Vegetational History of the British Isles. Cambridge University Press, Cambridge: 233–254.Google Scholar
  40. Dickson, J. H., 1973. Bryophytes of the Pleistocene. Cambridge University Press, Cambridge, 256 pp.Google Scholar
  41. Dickson, J. H., 1986. Bryophyte analysis. In Berglund, B. E. (ed.) Handbook of Palaeoecology and Palaeohydrology. J. Wiley & Sons Ltd. Chichester: 627–643.Google Scholar
  42. Digerfeldt, G., 1971. The post-glacial development of the ancient lake at Torreberga, Scania, south Sweden. Geologiska Föreningar i Stockholm Förhandlingar 93: 601–624.Google Scholar
  43. Digerfeldt, G., 1986. Studies on past lake-level fluctuations. In Berglund, B. E. (ed.) Handbook of Holocene Palaeoecology and Palaeohydrology. J. Wiley & Sons Ltd. Chichester: 127–143.Google Scholar
  44. Drake, H. & C. J. Burrows, 1980. The influx of potential macrofossils into Lady Lake, north Westland, New Zealand. New Zealand J. Bot. 18: 257–274.Google Scholar
  45. Dunwiddie, P. W., 1987. Macrofossil and pollen representation of coniferous trees in modern sediments from Washington. Ecology 68: 1–11.Google Scholar
  46. Elias, S. A., S. K. Short & H. H. Birks, 1997. Late Wisconsin environments of the Bering Land Bridge. Palaeogeogr. Palaeoclim. Palaeoecol. 136: 293–308.Google Scholar
  47. Eronen, M., H. Hyvärinen & P. Zetterberg, 1999. Holocene humidity changes in northern Finnish lapland inferred from lake sediments and submerged Scots pine dated by tree-rings. The Holocene 9:569–580.CrossRefGoogle Scholar
  48. Eronen, M. & P. Zetterberg, 1996. Expanding megafossil-data on Holocene changes at the polar/alpine pine limit in northern Fennoscandia. Paläoklimaforschung 20: 127–134.Google Scholar
  49. Figge, R. A. & J. W. C. White, 1995. High-resolution Holocene and late glacial atmospheric CO2 record: variability tied to changes in thermohaline circulation. Global Biogeochemical Cycles 9: 391–403.CrossRefGoogle Scholar
  50. Fredskild, B., 1992. The Greenland limnophytes—their present distribution and Holocene history. Acta Bot. Fenn. 144: 93–113.Google Scholar
  51. Glaser, P. H., 1981. Transport and deposition of leaves and seeds on tundra: a late-glacial analog. Arct. Alp. Res. 13: 173–182.Google Scholar
  52. Godłowśka, M., J. K. Kozłowsi, L. Starkel & K. Wasylikowa, 1987. Neolithic settlement at Pleszów and changes in the natural environment in the Vistula valley. Przegląd Archeologiczny 34: 133–159.Google Scholar
  53. Godwin, H., 1975. The History of the British Flora. Cambridge University Press, Cambridge, 541 pp, 2nd edition.Google Scholar
  54. Goetcheus, V. G. & H. H. Birks, 2000. Full-glacial upland tundra vegetation preserved under tephra in the Beringia National Park, Seward Peninsula, Alaska. Quat. Sci. Rev. 20: 135–147.Google Scholar
  55. GreatRex, P. A., 1983. Interpretation of macrofossil assemblages from surface sampling of macroscopic plant remains in mire communities. J. Ecol. 71: 773–791.Google Scholar
  56. Grimm, E. C., 1990. TILIA and TILIA.GRAPH, PC spreadsheet and graphics software for pollen data. INQUA Working Group on Data Handling Methods Newsletter 4: 5–7.Google Scholar
  57. Gulliksen, S., H. H. Birks, G. Possnert & J. Mangerud, 1998. A calendar age estimate of the Younger Dryas-Holocene boundary at Kråkenes, western Norway. The Holocene 8: 249–259.CrossRefGoogle Scholar
  58. Hannon, G. E. & M.-J. Gaillard, 1997. The plant-macrofossil record of past lake-level changes. J. Paleolim. 18: 15–28.CrossRefGoogle Scholar
  59. Haworth, E. Y., 1972. Diatom succession in a core from Pickerel Lake, Northeastern South Dakota. Geol. Soc. Am. Bull. 83: 157–172.Google Scholar
  60. Holyoak, D. T., 1984. Taphonomy of prospective plant macrofossils in a river catchment on Spitsbergen. New Phytol. 98: 405–423.Google Scholar
  61. Hughen, K. A., J. T. Overpeck, S. J. Lehman, M. Kashgarian, J. Southon, L. C. Peterson, R. Alley & D. M. Sigman, 1998. Deglacial changes in ocean circulation from an extended radiocarbon calibration. Nature 391: 65–68.CrossRefGoogle Scholar
  62. Jackson, S. T., 1989. Postglacial vegetational changes along an elevational gradient in the Adirondack Mountains (New York). New York State Mus. Bull. 465: 29 pp.Google Scholar
  63. Janssens, J. A., 1983. A quantitative method for stratigraphic analysis of bryophytes in Holocene peat. J. Ecol. 71: 189–196.Google Scholar
  64. Janssens, J. A., 1988. Fossil bryophytes and paleoenvironmental reconstruction of peatlands. In Glime, J. M. (ed.) Methods in Bryology. Proc. Bryol. Meth. Workshop, Mainz: 299–306. Hattori Bot. Lab. Nichinan.Google Scholar
  65. Janssens, J. A. Methods in Quaternary Ecology 11. Bryophytes. Geosci. Canada 17: 13–23.Google Scholar
  66. Jessen, K., 1949. Studies in late Quaternary deposits and flora-history of Ireland. Proc. r. Irish Acad. 52: B 6, 85–290.Google Scholar
  67. Jessen, K., S. T. Andersen & A. Farrington, 1959. The interglacial deposit near Gort, Co. Galway, Ireland. Proc. r. Irish Acad. 60: B 1, 1–77.Google Scholar
  68. Jessen, K. & A. Farrington, 1938. The bogs at Ballybetagh, near Dublin, with remarks on late-glacial conditions in Ireland. Proc. r. Irish Acad. 44: B 10, 205–260.Google Scholar
  69. Jessen, K. & V. Milthers, 1928. Stratigraphical and palaeontological studies of interglacial fresh-water deposits in Jutland and northwest Germany. Danm. geol. Unders. Række 2, 28: 1–378.Google Scholar
  70. Jones, V. J., D. A. Hodgson & A. Chepstow-Lusty, 2000. Palaeolimnological evidence for marked Holocene environmental changes on Signy Island, Antarctica. The Holocene 10: 43–60.Google Scholar
  71. Jonsgard, B. & H. H. Birks, 1995. Late-glacial mosses and environmental reconstructions at Kråkenes, western Norway. Lindbergia 20: 64–82.Google Scholar
  72. Keeley, J. E. & D. R. Sandquist, 1992. Carbon: freshwater plants. Plant, Cell, Environment 15: 1021–1035.Google Scholar
  73. Kelly, M. & P. J. Osborne, 1965. Two faunas and floras from the alluvium at Shustoke, Warwickshire. Proc. linn. Soc. Lond. 176: 37–65.Google Scholar
  74. Kitagawa, H. & J. van der Plicht, 1998. Atmospheric radiocarbon calibration to 45,000 yr B.P.: Late Glacial fluctuations and cosmogenic isotope production. Science 279: 1187–1190.CrossRefGoogle Scholar
  75. Kremenetski, C. V., L. D. Sulerzhitsky & R. Hantemirov, 1998. Holocene history of the northern range limits of some trees and shrubs in Russia. Arct. Alp. Res. 30: 317–333.Google Scholar
  76. Lang, G., 1992. Some aspects of European late-and post-glacial flora history. Acta Bot. Fenn. 144: 1–17.Google Scholar
  77. Lemdahl, G., 2000. Late-glacial and early-Holocene Coleoptera assemblages as indicators of local environment and climate at Kråkenes Lake, western Norway. J. Paleolim. 23: 57–66.CrossRefGoogle Scholar
  78. Levesque, A., L. Cwynar & I. R. Walker, 1994. A multiproxy investigation of late-glacial climate and vegetation changes at Pine Ridge Pond, southwest New Brunswick, Canada. Quat. Res. 42: 316–327.CrossRefGoogle Scholar
  79. Lotter, A. F., 1991. Absolute dating of the late-glacial period in Switzerland using annually laminated sediments. Quat. Res. 35: 321–330.Google Scholar
  80. Lotter, A. F., 1999. Late-glacial and Holocene vegetational history and dynamics as shown by pollen and plant macrofossil analyses in annually laminated sediments from Soppensee, central Switzerland. Veg. Hist. Archaeobot. 8: 165–184.Google Scholar
  81. MacDonald, G. M., R. P. Beukens & W. E. Kieser, 1991. Radiocarbon dating of limnic sediments: a comparative analysis and discussion. Ecology 72: 1150–1155.Google Scholar
  82. MacDonald, G. M., R. P. Beukens, W. E. Kieser & D. H. Vitt, 1987. Comparative radiocarbon dating of terrestrial plant macrofossils and aquatic moss from the “ice-free corridor” of western Canada. Geology 15: 837–840.Google Scholar
  83. MacDonald, G. M., B. R. Gervais, J. A. Snyder, G. A. Tarasov & O. K. Borisova, 2000. Radiocarbon dated Pinus sylvestris L. wood from beyond tree-line on the Kola Peninsula, Russia. The Holocene 10: 134–147.CrossRefGoogle Scholar
  84. McQueen, D. R., 1969. Macroscopic plant remains in recent lake sediments. Tuatara 17: 13–19.Google Scholar
  85. Nesje, A., 1992. A piston corer for lacustrine and marine sediments, Arct. Alp. Res. 24: 257–259.Google Scholar
  86. Odgaard, B. V., 1994. The Holocene vegetation history of northern West Jutland, Denmark. Opera Botanica 123: 171 pp.Google Scholar
  87. Odgaard, B., P. Rasmussen & N. J. Anderson, 1997. The macrofossil record of 20th century submerged vegetation dynamics in shallow Danish lakes. Würtzburger Geographische Manuskripte 41: 153–154.Google Scholar
  88. Oldfield, F., P. R. J. Crooks, D. D. Harkness & G. Petterson, 1997. AMS radiocarbon dating of organic fractions from varved lake sediments: an empirical test of reliability. J. Paleolim. 18: 87–91.CrossRefGoogle Scholar
  89. Pedersen, P. M. & O. Bennike, 1992. Quaternary marine macroalgae from Greenland. Norw. J. Bot. 13: 221–225.Google Scholar
  90. Reid, C., 1899. The origin of the British Flora. Dulau & Co., London, 191 pp.Google Scholar
  91. Reid, E. M., 1949. The Late-glacial flora of the Lea Valley. New Phytol. 48: 245–252.Google Scholar
  92. Ritchie, J. C., 1995. Tansley Review No. 83. Current trends in studies of long-term plant community dynamics. New Phytol. 130: 469–494.Google Scholar
  93. Rundgren, M. & D. Beerling, 1999. A Holocene CO2 record from the stomatal index of subfossil Salix herbacea L. leaves from northern Sweden. The Holocene 9: 509–513.CrossRefGoogle Scholar
  94. Rundgren, M., N. J. Loader & D. J. Beerling, 2000. Variations in the carbon isotope composition of late-Holocene plant macrofossils: a comparison of whole-leaf and cellulose trends. The Holocene 10: 149–154.CrossRefGoogle Scholar
  95. Ryvarden, L., 1971. Studies in seed dispersal I. Trapping of diaspores in the alpine zone at Finse, Norway. Norw. J. Bot. 18: 215–226.Google Scholar
  96. Schneider, R. & K. Tobolski, 1985. Lago di Ganna — Late-glacial and Holocene environments of a lake in the Southern Alps. Dissertationes Botanicae 1985: 229–271.Google Scholar
  97. Schwalb, A. & W. E. Dean, 1998. Stable isotopes and sediments from Pickerel Lake, South Dakota, USA: a 12ky record of environmental changes. J. Paleolim. 20: 15–30.CrossRefGoogle Scholar
  98. Sernander, R., 1918. Subfossile Flechten. Flora, Jena 112: 703–724.Google Scholar
  99. Smith, F. A., 1985. Historical perspective on HCO3 assimilation. In Lucas, W. J. & J. A. Berry (eds.) Inorganic Carbon Uptake by Aquatic Photosynthetic Organisms. American Society of Plant Physiologists: 1–15.Google Scholar
  100. Smits, A. J. M., M. J. H. De Lyon, G. van der Velde, P. L. M. Steentjes & J. G. M. Roelofs, 1988. Distribution of three Nymphaeid macrophytes (Nymphaea alba L., Nuphar lutea (L.) Sm. and Nymphoides peltata ((Gmel.) O. Kuntze) in relation to alkalinity and uptake of inorganic carbon. Aquat. Bot. 32: 45–62.CrossRefGoogle Scholar
  101. Solem, J. O. & H. H. Birks, 2000. Late-glacial and early-Holocene Trichoptera (Insecta) from Kråkenes Lake, western Norway. J. Paleolim. 23: 49–56.CrossRefGoogle Scholar
  102. Solhøy, I. W. & T. Solhøy, 2000. The fossil oribatid mite fauna (Acari: Oribatida) in late-glacial and early-Holocene sediments in Kråkenes Lake, western Norway. J. Paleolim. 23: 35–47.Google Scholar
  103. Spence, D. H. N. & S. C. Maberly, 1985. Occurrence and ecological importance of HCO3 use among aquatic higher plants. In Lucas, W. J. & J. A. Berry (eds.) Inorganic Carbon Uptake by Aquatic Photosynthetic Organisms. American Society of Plant Physiologists: 125–143.Google Scholar
  104. Spicer, R. A., 1981. The sorting and deposition of allochthonous plant material in a modern environment at Silwood Lake, Silwood Park, Berkshire, England. U.S. Geological Survey Professional Paper 1143: 77 pp.Google Scholar
  105. Spicer, R. A., 1989. The formation and interpretation of plant fossil assemblages. Adv. Botan. Res. 16: 95–191.Google Scholar
  106. Spicer, R. A. & J. A. Wolfe, 1987. Plant taphonomy of late Holocene deposits in Trinity (Clair Engle) Lake, northern California. Paleobiology 13: 227–245.Google Scholar
  107. Stuiver, M., P. J. Reimer, E. Bard, J. W. Beck, G. S. Burr, K. A. Hughen, B. Kromer, G. McCormac, J. van der Plicht & M. Spurk, 1998. INTCAL98 radiocarbon age calibration, 24,000-0 cal B.P. Radiocarbon 40: 1041–1083.Google Scholar
  108. Törnqvist, T. E., A. F. M. de Jong, W. A. Oosterbaan & K. van der Borg, 1992. Accurate dating of organic deposits by AMS 14C measurement of macrofossils. Radiocarbon 34: 566–577.Google Scholar
  109. Tralau, H., 1959. Extinct aquatic plants of Europe. Bot. Notiser 112: 385–406.Google Scholar
  110. Tralau, H., 1963. The recent and fossil distribution of some boreal and arctic montane plants in Europe. Ark. Bot. Ser.2, 5: 533–582.Google Scholar
  111. Turney, C. S. M., D. J. Beerling, D. D. Harkness, J. J. Lowe & E. M. Scott, 1997. Stable carbon isotope variations in northwest Europe during the last glacial-interglacial transition. J. Quat. Sci. 12: 339–344.Google Scholar
  112. van der Hammen, T., T. A. Wijmstra & W. H. Zagwijn, 1971. The floral record of the Late Cenozoic of Europe. In Turekian, K. K. (ed.) Late Cenozoic Glacial Ages. Yale University Press, New Haven and London: 391–424.Google Scholar
  113. van der Knaap, W. O., 1987. Long-distance transported pollen and spores on Spitsbergen and Jan Mayen. Pollen Spores 24: 449–453.Google Scholar
  114. van Dinter, M. & H. H. Birks, 1996. Distinguishing fossil Betula nana and B. pubescens using their wingless fruits: implications for the late-glacial vegetational history of western Norway. Veg. Hist. Archaeobot. 5: 229–240.Google Scholar
  115. van Geel, B., G. R. Coope & T. van der Hammen, 1989. Palaeoecology and stratigraphy of the lateglacial type section at Usselo (The Netherlands). Rev. Palaeobot. Palynol. 60: 25–129.Google Scholar
  116. van Zant, K., 1979. Late glacial and postglacial pollen and plant macrofossils from Lake West Okoboji, Northwestern Iowa. Quat. Res. 12: 358–380.Google Scholar
  117. Verschuren, D., J. Tibby, K. Sabbe & N. Roberts, 2000. Effects of depth, salinity, and substrate on the invertebrate community of a fluctuating tropical lake. Ecology 81: 164–182.Google Scholar
  118. Wagner, F., S. J. P. Bohncke, D. L. Dilcher, W. M. Kürschner, B. van Geel & H. Visscher, 1999. Century-scale shifts in early Holocene atmospheric CO2 concentration. Science 284: 1971–1973.CrossRefGoogle Scholar
  119. Wainman, N. & R. W. Mathewes, 1990. Distribution of plant macroremains in surface sediments of Marion Lake, southwestern British Columbia. Can. J. Bot. 68: 364–373.CrossRefGoogle Scholar
  120. Warner, B. G., 1988. Methods in Quaternary Ecology #3. Plant macrofossils. Geosci. Canada 15: 121–129.Google Scholar
  121. Wasylikowa, K., 1986. Analysis of fossil fruits and seeds. In Berglund, B. E. (ed.) Handbook of Palaeoecology and Palaeohydrology. J. Wiley & Sons Ltd. Chichester: 571–590.Google Scholar
  122. Wasylikowa, K., 1989. Paleoecological characteristics of the settlement periods of the Linear Pottery and Lengyel Cultures at Cracow-Nowa Huta (on the basis of plant material). Przeglad Archeologiczny 36: 57–87.Google Scholar
  123. Watts, W. A., 1959. Interglacial deposits at Kilbeg and Newtown, Co. Waterford. Proc. Roy. Irish Acad. 60: B 79–134.Google Scholar
  124. Watts, W. A., 1978. Plant Macrofossils and Quaternary Paleoecology. In Walker, D. & J. C. Guppy (eds.) Biology and Quaternary Environments. Australian Academy of Science, Canberra: 53–67.Google Scholar
  125. Watts, W. A., 1979. Late Quaternary vegetation of central Appalachia and the New Jersey coastal plain. Ecol. Monographs 49: 427–469.Google Scholar
  126. Watts, W. A. & R. C. Bright, 1968. Pollen, seed, and mollusk analysis of a sediment core from Pickerel Lake, Northeastern South Dakota. Geol. Soc. am. Bull. 79: 855–876.Google Scholar
  127. Watts, W. A. & T. C. Winter, 1966. Plant macrofossils from Kirchner Marsh, Minnesota — a paleoecological study. Geol. Soc. am. Bull. 77: 1339–1360.Google Scholar
  128. West, R. G., 1957. Interglacial deposits at Bobbitshole, Ipswich. Phil. Trans. r. Soc., Lond. B, 241: 1–31.Google Scholar
  129. West, R. G., R. Andrew & M. Pettit, 1993. Taphonomy of plant remains on floodplains of tundra rivers, present and Pleistocene. New Phytol. 123: 203–231.Google Scholar
  130. Wick, L. & W. Tinner, 1997. Vegetation changes and timberline fluctuations in the Central Alps as indicators of Holocene climatic oscillations. Arct. Alp. Res. 29: 445–458.Google Scholar
  131. Wohlfarth, B., G. Skog, G. Possnert & B. Holmqvist, 1998. Pitfalls in the AMS radiocarbon dating of terrestrial macrofossils. J. Quat. Sci. 13: 137–145.Google Scholar
  132. Wright, H. E. & W. A. Watts, 1969. Glacial and vegetational history of northeastern Minnesota. Minnesota Geological Survey, University of Minnesota, SP-11. 59 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Hilary H. Birks
    • 1
    • 2
  1. 1.Botanical InstituteUniversity of BergenBergenNorway
  2. 2.Environmental Change Research CentreUniversity College LondonLondonUK

Personalised recommendations