• Richard W. Battarbee
  • Vivienne J. Jones
  • Roger J. Flower
  • Nigel G. Cameron
  • Helen Bennion
  • Laurence Carvalho
  • Stephen Juggins
Part of the Developments in Paleoenvironmental Research book series (DPER, volume 3)


The basic requirements for diatom analysis have changed little over the last few decades in terms of sampling, slide preparation, microscopy and taxonomy but, on the other hand, there have been major improvements in our knowledge of diatom distribution and ecology and a revolution in our ability to analyse diatom data. These changes have been driven by the increasing recognition of the practical uses of diatoms as indicators of environmental change and by the development of novel numerical and computing techniques that allow diatom-environment relationships to be quantified. However, in the future and despite the application of new techniques (e.g., Vasko et al., 2000), it is unlikely that there will be significant improvements in transfer function statistics or in the range of environmental variables for which diatoms can be confidently used. Nevertheless, there is real scope for making transfer functions much more widely applicable around the world principally through web-based information systems such as EDDI (Battarbee et al., 2000), and in using the databases generated through merged training sets to explore unresolved and vastly under-researched questions of diatom biogeography. In addition, as multi-proxy approaches in palaeolimnology become common, diatomists should be able to focus more on questions of ecological response to environmental change rather than on reconstructing environmental change per se. Such a move would be especially welcome as it would herald a change from purely empirical mechanistic approaches inherent in the transfer function method to approaches that require a deeper understanding of diatom habitats, life-cycles and competitive strategies and a wider consideration of the role of diatoms in the overall functioning of aquatic ecosystems


Diatoms lakes lake sediments environmental reconstruction surface water acidification eutrophication climate change transfer functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alhonen, P., 1971. The Stages of the Baltic Sea as indicated by the diatom stratigraphy. Acta Bot. Fenn. 92: 1–18.Google Scholar
  2. Anderson, N. J., 1989. A whole-basin diatom accumulation rate for a small eutrophic lake in Northern Ireland and its palaeoecological implications. J. Ecol. 75: 926–946.Google Scholar
  3. Anderson, N. J., 2000. Diatoms, temperature and climate change. Eur. J. Phycol. 35(4): 307–314.Google Scholar
  4. Anderson, N. J. & B. Rippey, 1994. Monitoring lake recovery from point-source eutrophication: the use of diatom-inferred epilimnetic total phosphorus and sediment chemistry. Freshwat. Biol. 32: 625–639.Google Scholar
  5. Anderson, N. J., B. Rippey & C. E. Gibson, 1993. A comparison of sedimentary and diatom-inferred phosphorus profiles: implications for defining pre-disturbance nutrient conditions. Hydrobiologia 253: 357–366.CrossRefGoogle Scholar
  6. Anonymous, 1975. Proposals for a standardization of diatom terminology and diagnoses. Nova Hedwigia, Beih. 53: 323–354.Google Scholar
  7. Appleby P. G., P. J. Nolan, D. W. Gifford, M. J. Godfrey, F. Oldfield, N. J. Anderson & R. W. Battarbee, 1986. 210Pb dating by low background gamma counting. Hydrobiologia 143: 21–27.CrossRefGoogle Scholar
  8. Appleby, P. G. & F. Oldfield, 1988. Radioisotope studies of recent lake and reservoir sedimentation. In Crickmore, M. J. et al. (eds.) The Use of Nuclear Techniques in Sediment Transport and Sedimentation Problems, UNESCO.Google Scholar
  9. Barber, H. G. & E. Y. Haworth, 1981. A guide to the morphology of the diatom frustule, with a key to the British Freshwater genera. Freshwater Biological Association Scientific Publication No. 44., 112 pp.Google Scholar
  10. Barker, P., 1992. Differential diatom dissolution in late Quaternary sediments from Lake Manyara, Tanzania: an experimental approach. J. Paleolim. 7: 235–251.CrossRefGoogle Scholar
  11. Barker, P., J. C. Fontes, F. Gasse & J. C. Druart, 1994. Experimental dissolution of diatom silica in concentrated salt solutions and implications for paleoenvironmental reconstruction. Limnol. Oceanogr. 39: 99–110.Google Scholar
  12. Battarbee, R. W., 1973. A new method for estimating absolute microfossil numbers, with special reference to diatoms. Limnol. Oceanogr. 18: 647–653.Google Scholar
  13. Battarbee, R. W., 1978a. Observations on the recent history of Lough Neagh and its drainage basin. Phil. Trans. r. Soc., Lond. 281: 303–345.Google Scholar
  14. Battarbee, R. W., 1978b. Relative composition, concentration and calculated influx of diatoms from a sediment core from Lough Erne, Northern Ireland. Pol. Arch. Hydrobiol. 25: 9–16.Google Scholar
  15. Battarbee, R. W., 1978c. Biostratigraphical evidence for variations in the recent pattern of sediment accumulation in Lough Neagh, N. Ireland. Verh. int. Ver. Limnol. 20: 624–629.Google Scholar
  16. Battarbee, R. W., 1979. Early algological records—help or hindrance to palaeolimnology? Nova Hedwigia 4: 379–394.Google Scholar
  17. Battarbee, R. W., 1981. Changes in the diatom microflora of a eutrophic lake since 1900 from a comparison of old algal samples and the sedimentary record. Holarct. Ecol. 4: 73–81.Google Scholar
  18. Battarbee, R. W., 1986a. Diatom analysis. In Berglund, B. E. (ed.) Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley, Chichester: 527–570.Google Scholar
  19. Battarbee, R. W., 1986b. The eutrophication of Lough Erne inferred from changes in the diatom assemblages of 210Pb and 137Cs-dated sediment cores. Proc. R. Ir. Acad. B 86: 141–168.Google Scholar
  20. Battarbee, R. W., 1991. Recent palaeolimnology and diatom-based environmental reconstruction. In Shane L. C. K. & E. J. Cushing (eds.) Quaternary Landscapes. University of Minnesota Press, Minneapolis: 129–174.Google Scholar
  21. Battarbee, R. W., 2000. Palaeolimnological approaches to climate change, with special regard to the biological record. Quat. Sci. Rev. 19: 197–124CrossRefGoogle Scholar
  22. Battarbee, R. W. & R. J. Flower, 1984. The inwash of catchment diatoms as a source of error in the sediment-based reconstruction of pH in an acid lake. Limnol. Oceanogr. 29: 1325–1329.Google Scholar
  23. Battarbee, R. W. & M. Kneen, 1982. The use of electronically counted microspheres in absolute diatom analysis. Limnol. Oceanogr. 27: 184–188.Google Scholar
  24. Battarbee, R. W., J. P. Smol & J. Meriläinen, 1986. Diatoms as indicators of pH: a historical review. In Smol, J. P., R. W. Battarbee, R. B. Davis & J. Merilainen (eds.) Diatoms and Lake Acidity: the Use of Siliceous Algal Microfossils in Reconstructing pH. Junk, The Hague: 5–14.Google Scholar
  25. Battarbee, R. W., D. F. Charles, S. Dixit & I. Renberg, 1999. Diatoms as indicators of surface water acidity. In: The Diatoms: Applications for the Environmental and Earth sciences. In Stoermer, E. F. & J. P. Smol (eds.) Cambridge University Press, Cambridge: 85–127.Google Scholar
  26. Battarbee, R. W., J. Mason, I. Renberg & J. F. Tailing (eds.) 1990. Palaeolimnology and Lake Acidification. The Royal Society, London, 219 pp.Google Scholar
  27. Battarbee, R. W., S. Juggins, F. Gasse, N. J. Anderson, H. Bennion & N. G. Cameron, 2000. European Diatom Database (EDDI): an information system for palaeoenvironmental reconstruction. European Climate Science Conference, Vienna City Hall, Vienna, Austria, 19–23 October 1998, pp. 1–10.Google Scholar
  28. Bennion, H., 1994. A diatom-phosphorus transfer function for shallow, eutrophic ponds in southeast England. Hydrobiologia 275/276: 391–110.CrossRefGoogle Scholar
  29. Bennion, H., S. Juggins & N. J. Anderson, 1996. Predicting epilimnetic phosphorus concentrations using an improved diatom-based transfer function, and its application to lake eutrophication management. Environ. Sci. Tech. 30: 2004–2007.Google Scholar
  30. Berglund, B. E., 1986. Handbook of Holocene palaeoecology and palaeohydrology. John Wiley, Chichester, 896 pp.Google Scholar
  31. Beyens, L. & L. Denys, 1982. Problems in diatom analysis of deposits: allochthonous valves and fragmentation. Geologie Mijnb. 61: 159–162.Google Scholar
  32. Birks, H. J. B., 1995. Quantitative palaeoenvironmental reconstructions. In Maddy, D. & J. S. Brew (eds.) Statistical Modelling of Quaternary Science Data Quaternary Research Association Technical Guide 5, Cambridge: 161–254.Google Scholar
  33. Birks, H. J. B., 1998. Numerical tools in palaeolimnology—progress, potentialities, and problems. J. Palaeolim. 20: 307–332.Google Scholar
  34. Birks, H. J. B., J. M. Line, S. Juggins, A. C. Stevenson & C. J. F. ter Braak, 1990a. Diatoms and pH reconstruction. Phil. Trans. r. Soc., London B 327: 263–278.Google Scholar
  35. Birks, H. J. B., S. Juggins & J. M. Line, 1990b. Lake surface-water chemistry reconstructions from palaeolimnological data. In Mason, B. J. (ed.) The Surface Waters Acidification Programme. Cambridge University Press, Cambridge: 301–313.Google Scholar
  36. Bloesch, J. & N. M. Burns, 1980. A critical review of sedimentation trap techniques. Schweiz. Z. Hydrobiol. 42: 15–54.Google Scholar
  37. Bodén, P., 1991. Reproducibility in the random settling method for quantitative diatom analysis. Micropaleontology 37: 313–319.Google Scholar
  38. Bradbury, J. P., 1975. Diatom stratigraphy and human settlement in Minnesota. Geological Society of America, Special Paper 171, 74 pp.Google Scholar
  39. Bradbury, J. P. & K. V. Dieterich-Rurup, 1993. Holocene diatom palaeolimnology of Elk Lake, Minnesota. In Bradbury, J. P. & W. E. Dean (eds.) Elk Lake, Minnesota: Evidence for Rapid Climate Change in the North-Central United States. Geological Society of America Special Paper, 276. Boulder, Colorado: 215–237.Google Scholar
  40. Bradbury, J. P. & J. C. B. Waddington, 1973. The impact of European settlement on Shagawa Lake, Northeastern Minnesota, U. S. A. In H. Birks, J. B. & R. G. West (eds.) Quaternary Plant Ecology. Blackwell Scientific Publications, Oxford: 289–307.Google Scholar
  41. Bradbury, J. P. & T. C. Winter, 1976. Areal distribution and stratigraphy of diatoms in the sediments of Lake Sallie, Minnesota. Ecology 57: 1005–1014.Google Scholar
  42. Brander, G., 1936. Über das Einsammeln von Erdproben und ihre Praparation für die qualitative und quantitative Diatomeen analyse. Bull. Comm. géol. Finl. 115: 131–144.Google Scholar
  43. Brockmann, C., 1954. Die Diatomeen in den Ablagerungen der östpreussischen Haffe. Meyniana 3: 1–95Google Scholar
  44. Brugam, R. B., 1979. A re-evolution of the Araphidineae/Centrales index as an indicator of lake trophic status. Freshwat. Biol. 9: 451–460.Google Scholar
  45. Brugam, R. B. & C. Patterson, 1983. The A/C (Araphidineae/Centrales) ratio in high and low alkalinity lakes in eastern Minnesota. Freshw. Biol. 13: 47–55.Google Scholar
  46. Brugam, R. B., K. McKeever & L. Kolesa, 1998. A diatom-inferred water depth reconstruction for an Upper Peninsula, Michigan, lake. J. Paleolim. 20: 267–276.CrossRefGoogle Scholar
  47. Camburn, K. E. & D. F. Charles, 2000. Diatoms of low-alkalinity lakes in the Northeastern United States. The Academy of Natural Sciences of Philadelphia Special Publication 18, 152 pp.Google Scholar
  48. Camburn, K. E. & J. C. Kingston, 1986. The genus Melosira from soft-water lakes with special reference to northern Michigan, Wisconsin and Minnesota. In Smol, J. P., R. W. Battarbee, R. B. Davis & J. Meriläinen (Eds.) Diatoms and Lake Acidity. Dr. W. Junk, Dordrecht, The Netherlands: 17–34.Google Scholar
  49. Camburn, K. E., J. C. Kingston & D. F. Charles, 1986. PIRLA Diatom Iconograph. PIRLA Unpublished Report Number 3. Indiana University, Bloomington.Google Scholar
  50. Cameron, N. G., 1995. The representation of diatom communities by fossil assemblages in a small acid lake. J. Paleolim. 14: 185–223.CrossRefGoogle Scholar
  51. Cameron, N. G., H. J. B. Birks, V. J. Jones, F. Berge, J. Catalan, R. J. Flower, J. Garcia, B. Kawecka, K. A. Koinig, A. Marchetto, P. Sánchez-Castillo, R. Schmidt, M. Šiško, N. Solovieva, E. Štefková & M. Toro., 1999. Surface-sediment and epilithic diatom pH calibration sets for remote European mountain lakes (AL:PE Project) and their comparison with the Surface Waters Acidification Programme (SWAP) calibration set. J. Paleolim. 22: 291–317.CrossRefGoogle Scholar
  52. Campeau, S., R. Pienitz & A. Héquette, 1999. Diatoms from the Beaufort Sea coast, southern Arctic Ocean (Canada). Bibliotheca Diatomologica, Band 42. J. Cramer, Stuttgart, 244 pp.Google Scholar
  53. Canter, H. M., 1979. Fungal and protozoan parasites and their importance in the ecology of the phytoplankton. Rep. Freshwat. biol. Ass. 47: 43–50.Google Scholar
  54. Catalan, J. & L. Camarero, 1991. Ergoclines and biological processes in high-mountain lakes: similarities between the summer stratification and the ice-forming period in lake Redó (Pyrenees). Verh. int. Ver. Limnol. 24: 1011–1015.Google Scholar
  55. Catalan, J. & L. Camarero, 1993. Seasonal changes in pH and alkalinity in two Pyrenean high-mountain lakes. Verh. int. Ver. Limnol. 25: 749–753.Google Scholar
  56. Cattaneo, A. & J. Kalff, 1979. Primary production of algae growing on natural and artificial aquatic plants: a study of interactions between epiphytes and their substrate. Limnol. Oceanogr. 24: 1031–1037.Google Scholar
  57. Charles, D. F., 1985. Relationships between surface sediment diatom assemblages and lakewater characteristics in Adirondack lakes. Ecology 66: 994–1011.Google Scholar
  58. Charles, D. F., 1990. A checklist for describing and documenting diatom and chrysophyte calibration data sets and equations for inferring water chemistry. J. Paleolim. 3: 175–178.Google Scholar
  59. Charles, D. F. & D. R. Whitehead, 1986. The PIRLA project: Paleoecological Investigation of Recent Lake Acidification. Hydrobiologia 143: 13–20.CrossRefGoogle Scholar
  60. Cholnoky, B. J., 1968. Die ökologie der Diatomeen in Binnengewässern. Cramer, 699 pp.Google Scholar
  61. Cleve, P. T 1894–95. Synopsis of the naviculoid diatoms. Kgl. Sven. Vet. Akad. Handl., 26: 1–194, 27: 1–219.Google Scholar
  62. Cleve, P. T., 1899. Postglaciala bildninggarnas klassifikation págrund av deras fossila diatomacéer. Sver. geol. Unders. 180: 59–61.Google Scholar
  63. Cleve-Euler, A., 1922. Om diatomacevegetationen och dess förandringar I Sabysjön, Uppland, samt några dämda sjöar i Salatrakten. Sver. geol. Unders. C309: 1–76.Google Scholar
  64. Cleve-Euler, A., 1951–1955. Die Diatomeen von Schweden und Finnland. I-V. Kongl. svenska Vetenskapsakad. Handl. Ser. 4. 2(1): 1–163 (1951); Ser. 4, 3(3): 1-153 (1952); Ser. 4. 4(2): 1–158 (1953); Ser. 4. 4(5): 1–255 (1953); Ser. 4, 5(4): 1–232 (1955).Google Scholar
  65. Cox, E. J., 1996. Identification of Freshwater Diatoms from Live Material, Chapman & Hall, New York, 158 pp.Google Scholar
  66. Crawford, R. M., 1979. Filament Formation in the Diatom Genera Melosira C. A. Agardh and Paralia Hyberg. Nova Hegwigia 64: 121–133.Google Scholar
  67. Cumming, B. F., K. A. Davey, J. P. Smol & H. J. B. Birks, 1994. When did acid-sensitive Adirondack lakes (New York, USA) begin to acidify and are they still acidifying? Can. J. Fish. aquat. Sci. S. 51: 1550–1568.Google Scholar
  68. Cumming, B. F., S. E. Wilson, R. I. Hall & J. P. Smol, 1995. Diatoms from British Columbia (Canada) lakes and their relationship to salinity, nutrients and other limnological variables. Bibliotheca Diatomologica 31. J. Cramer, Stuttgart, 207 pp.Google Scholar
  69. Dalton, C. P., 2000. Impact of catchment afforestation on lakes in the west of Ireland. Unpublished PhD Thesis, University College London, 293 pp.Google Scholar
  70. Davis, R. B. & D. S. Anderson, 1985. Methods of pH calibration of sedimentary diatom remains for reconstructing history of pH in lakes. Hydrobiologia 120: 69–87.Google Scholar
  71. DeNicola, D. M., 1986. The representation of living diatom communities in deep-water sedimentary diatom assemblages in two Maine (U.S.A.) lakes. In Smol, J. P., R. W. Battarbee, R. B. Davis & J. Meriläinen (eds.) Diatoms and Lake Acidity. Dr. W. Junk, Dordrecht, The Netherlands: 73–85.Google Scholar
  72. Denys, L. & H. de Wolf, 1999. Diatoms as indicators of coastal paleoenvironments and relative sea-level change. In Stoermer, E. F. & J. P. Smol (eds.) The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge: 277–297.Google Scholar
  73. Digerfeldt, G., 1972. The post-glacial development of Lake Trummen: regional vegetation history, water level changes and palaeolimnology. Folia limnol. scand. 16: 1–104.Google Scholar
  74. Dixit, S. S., A. S. Dixit & J. P. Smol, 1991. Multivariate environmental inferences based on diatom assemblages from Sudbury (Canada) lakes. Freshwat. Biol. 26: 251–266.Google Scholar
  75. Dixit, S. S., B. F. Cumming, H. J. B. Birks, J. P. Smol, J. C. Kingston, A. J. Uutala, D. F. Charles & K. E. Camburn, 1993. Diatom assemblages from Adirondack lakes (New York, USA) and the development of inference models for retrospective environmental assessment. J. Paleolim. 8: 27–47.CrossRefGoogle Scholar
  76. Douglas, M. S. V. & J. P. Smol, 1999. Freshwater diatoms as indicators of environmental change in the High Arctic. In Stoermer, E. F. & J. P. Smol (eds.) The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge: 227–244.Google Scholar
  77. Douglas, M. S. V., J. P. Smol & W. Blake, 1994. Marked post-18th century environmental change in high Arctic ecosystems. Science 266: 416–419.Google Scholar
  78. Droop, S. J. M., 1993. The “striatometer”—a new device for measuring striation densities. Diatom Research 8: 195–198.Google Scholar
  79. Eaton, J. W. & B. Moss, 1966. The estimation of numbers and pigment content in epipelic populations. Limnol. Oceanogr. 11: 584–595.Google Scholar
  80. Eronen, M., 1974. The history of the Litorina Sea and associated Holocene events. Commentat. Physico-math. 44: 79–195.Google Scholar
  81. Florin, M-B., 1944. En sensubarktisk transgression i trakten av Södra Kilsbergen enligtdiatomacé-succession i ormrådets hågre belögna fornsjölagerföljder. Geol. Fören. Förh. 66: 417–488.Google Scholar
  82. Florin, M-B., 1946. Clypeusfloran i postglaciala fornsjölagerföljder i östra Mellansverige, Geol. Fören. Förh. 68: 429–458.Google Scholar
  83. Flower, R. J., 1986. The relationship between surface sediment diatom assemblages and pH in 33 Galloway lakes: some regression models for reconstructing pH and their application to sediment cores. Hydrobiologia 143: 93–103.CrossRefGoogle Scholar
  84. Flower, R. J., 1993. Diatom preservation: experiments and observations on dissolution and breakage in modern and fossil material. Hydrobiologia 269/270: 473–484.CrossRefGoogle Scholar
  85. Flower, R. J. & R. W. Battarbee, 1983. Diatom evidence for recent acidification of two Scottish lochs. Nature 20:130–133.Google Scholar
  86. Flower, R. J. & R. W. Battarbee, 1985. The morphology and biostratigraphy of Tabellaria quadriseptata Knudson (Bacillariophyta) in acid waters and lake sediments in Galloway, south-west Scotland. Br. Phycol. J. 20: 69–79.Google Scholar
  87. Flower, R. J. & Y. Likhoshway, 1993. An investigation of diatom preservation in Lake Baikal. Fifth workshop on diatom algae, March 16–20, Irkutsk, Russia, pp. 77–78.Google Scholar
  88. Flower, R., S. Juggins & R. W. Battarbee, 1997. Matching diatom assemblages in lake sediment cores and modern surface sediment samples: the implications for lake conservation and restoration with special reference to acidified systems. Hydrobiologia 344: 27–40.CrossRefGoogle Scholar
  89. Fritz, S. C., S. Juggins, R. W. Battarbee & D. R. Engstrom, 1991. Reconstruction of past changes in salinity and climate using a diatom-based transfer function. Nature 352: 706–708.CrossRefGoogle Scholar
  90. Fritz, S. C., S. Juggins & R. W. Battarbee, 1993. Diatom assemblages and ionic characterization of freshwater and saline lakes of the Northern Great Plains, North America: a tool for reconstructing past salinity and climate fluctuations. Can. J. Fish, aquat. Sci. S 50: 1844–1856.Google Scholar
  91. Fritz, S. C., B. F. Cumming, F. Gasse & K. Laird, 1999. Diatoms as indicators of hydrologic and climatic change in saline lakes. In: The Diatoms: Applications for the Environmental and Earth sciences. In Stoermer, E. F. & J. P. Smol (eds.) Cambridge University Press, Cambridge: 41–72.Google Scholar
  92. Fryxell, G. A., 1974. Diatom collections. Nova Hedwigia 53: 355–365.Google Scholar
  93. Gasse, F., 1986. East African diatoms: taxonomy, ecological distribution. Cramer, Stuttgart, 201 pp.Google Scholar
  94. Gasse, F., 1987. Diatoms for reconstructing palaeoenvironments and palaeohydrology in tropical semi-arid zones. Example of some lakes from Niger since 12,000 BP. Hydrobiologia 154: 127–163.CrossRefGoogle Scholar
  95. Gasse, F., S. Juggins & L. Ben Khelifa, 1995. Diatom-based transfer functions for inferring past hydrochemical characteristics of African lakes. Palaeogeogr. Palaeoclim. Palaeoecol. 117: 31–54.Google Scholar
  96. Gasse, F., J. F. Talling & P. Kilham, 1983. Diatom assemblages in East Africa: classification, distribution and ecology. Revue Hydrobiol. trop. 16: 3–34.Google Scholar
  97. Gasse, F., P. Barker, P. A. Gell, S. C. Fritz & F. Chalie, 1997. Diatom-inferred salinity in palaeolakes: An indirect tracer of climate change. Quat. Sci. Rev. 16: 547–563.CrossRefGoogle Scholar
  98. Germain, H., 1981. Flore des Diatomées Paris: Soc. Nouv. Edit. Boubée, 444 pp.Google Scholar
  99. Glew, J. R., 1991. Miniature gravity corer for recovering short sediment cores. J. Paleolim. 5: 285–287.CrossRefGoogle Scholar
  100. Glew, J. R., J. P. Smol & W. M. Last, 2001. Sediment core collection and extrusion. In Last, W. M. & J. P. Smol (eds.) Tracking Environmental Change in Lake Sediments. Vol 1, Basin Analysis, Coring and Chronological Techniques. Kluwer Academic Publishers, Dordrecht: in pres.Google Scholar
  101. Halden, B., 1929. Kvartärgeologiska diatomacéestudier belysande den postglaciala transgression a Svenska Västkusten, Geol. Fören. Förh. 51: 311–366.Google Scholar
  102. Hall, R. I. & J. P. Smol, 1992. A weighted-averaging regression and calibration model for inferring total phosphorus concentration from diatoms in Biritsh Columbia (Canada) lakes. Freshwat. Biol. 27: 417–434.Google Scholar
  103. Hall, R. I. & J. P. Smol, 1993. The influence of catchment size on lake trophic status during the hemlock decline and recovery (4800 to 3500 BP) in southern Ontario lakes. Hydrobiologia 269/270: 371–390.CrossRefGoogle Scholar
  104. Hall, R. I. & J. P. Smol, 1999. Diatoms as indicators of lake eutrophication. In: The Diatoms: Applications for the Environmental and Earth Sciences. In Stoermer, E. F. & J. P. Smol (eds.) Cambridge University Press, Cambridge: 128–168.Google Scholar
  105. Harwood, D. M. & R. Gersonde, 1990. Lower Cretaceous diatoms from ODP leg 113 site 693 (Weddell Sea). Part 2: resting spores, chrysophycean cysts, an endoskeletal dinoflagellate, and notes on the origin of diatoms. In Barker, P. F., J. P. Kennett et al. Proc. ODP Sci. Results, 113: College Station, TX (Ocean Drilling Program): 403–125.Google Scholar
  106. Hasle, G. R., 1977. The use of electron microscopy in morphological and taxonomical diatom studies. In Werner, D. (ed.) The Biology of Diatoms. Blackwell, Oxford: 18–23.Google Scholar
  107. Haworth, E. Y., 1969. The diatoms of a sediment core from Blea Tarn, Langdale. J. Ecol. 57: 429–441.Google Scholar
  108. Haworth, E. Y., 1980. Comparison of continuous phytoplankton records with the diatom stratigraphy in the recent sediments of Blelham Tarn. Limnol. Oceanogr. 25: 1093–1103.Google Scholar
  109. Hurd, D. C., 1972. Factors affecting the solution rate of biogenic opal in seawater. Earth Planet. Sci. Letters 15: 411–417.CrossRefGoogle Scholar
  110. Hurd, D. C. & S. Birdwhistell, 1983. On producing a more general model for biogenic silica dissolution. Am. J. Sci. 283: 1–28.CrossRefGoogle Scholar
  111. Hustedt, F., 1927–66. Die Kieselalgen Deutschlands, Österreichs und der Schweiz. In Dr L. Rabenhorst’s Kryptogamen-Flora von Deutschland, Österreich und der Schweiz. 7. Leipzig: Akademische Verlagsgesellschaft.Google Scholar
  112. Hustedt, F., 1930. Bacillariophyta (Diatomaceae). In Pascher, A. Die Süsswasser-flora Mitteleuropas Heft 10. Jena: Gustav Fischer Verlag. 466 pp.Google Scholar
  113. Hustedt, F., 1937–39. Systematische und ökologische Untersuchungen über den Diatomeen-Flora von Java, Bali, Sumatra. Arch. Hydrobiol. 15 & 16.Google Scholar
  114. Hustedt, F., 1956. Kieselalgen (Diatomeen). Kosmos-Verlag Franckh, Stuttgart.Google Scholar
  115. Hustedt, F., 1957. Die Diatomeenflora des Fluss-systems der Weser im Gebiet der Hansestadt Bremen. Abh. Naturw. Ver. Bremen. 34: 181–440.Google Scholar
  116. Jewson, D. H., 1992a. Size reduction, reproductive strategy and the life-cycle of a centric diatom Phil. Trans. r. Soc., Lon. B 336: 191–213.Google Scholar
  117. Jewson, D. H., 1992b. Life cycle of Stephanodiscus sp. (Bacillariophyta). J. Phycol. 28: 856–866.CrossRefGoogle Scholar
  118. Jewson, D. H. & S. Lowry, 1993. Cymbellonitzschia diluviana Hustedt (Bacillariophyceae): habitat and auxosporulation. Hydrobiologia 269–70: 87–96.Google Scholar
  119. Jones, J. I., B. Moss, J. W. Eaton & J. O. Young, 2000. Do submerged aquatic plants influence periphyton community composition for the benefit of invertebrate mutualists. Freshwat. Biol. 43: 591–604.Google Scholar
  120. Jones, V. J. & R. J. Flower, 1986. Spatial and temporal variability in periphytic diatom communities: palaeoecological significance in an acidified lake. In Smol, J. P., R. W. Battarbee, R. B. Davis & J. Meriläinen (eds.) Diatoms and Lake Acidity. Dr. W. Junk, Dordrecht, The Netherlands: 87–94.Google Scholar
  121. Jones, V. & S. Juggins, 1995. The construction of a diatom-based chlorophyll a transfer function and its application at three lakes on Signy Island (maritime Antarctic) subject to differing degrees of nutrient enrichment. Freshwat. Biol. 34: 433–445.Google Scholar
  122. Jones, V. J., A. C. Stevenson & R. W. Battarbee, 1989. Acidification of lakes in Galloway, south west Scotland: a diatom and pollen study of the post-glacial history of the Round Loch of Glenhead. J. Ecol. 77: 1–23.Google Scholar
  123. Jousé, A., 1966. Diatomeen in Seesedimenten. Arch. Hydrobiol. 4: 1–32.Google Scholar
  124. Juggins, S., 1992. Diatoms in the Thames Estuary, England: Ecology, Palaeoecology, and Salinity Transfer Function. Bibliotheca Diatomologica, Volume 25, 216 pp.Google Scholar
  125. Juggins, S. & C. J. F. ter Braak, 1999. CALIBRATE Version 1.0—a program for species-environment calibration by [weighted averaging] partial least squares regression. Unpublished computer program, Department of Geography, University of Newcastle, 25 pp.Google Scholar
  126. Juggins, S., R. W. Battarbee & S. C. Fritz, 1994. Diatom/salinity transfer functions and climate change: an assessment of methods and application to two Holocene sequences from the northern Great Plains. In Funnell, B. M. & R. L. F. Kay (eds.) Palaeoclimate of the Last Glacial/Interglacial Cycle. NERC Earth Sciences Directorate, Swindon: 37–41.Google Scholar
  127. Jørgensen, E. G., 1955. Solubility of the silica in diatoms. Physiol. Pl. 8: 846–851.Google Scholar
  128. Kairesalo, T. & I. Koskimies, 1987. Grazing by oligochaetes and snails on epiphytes. Freshwat. Biol. 17: 317–324.Google Scholar
  129. Kilham, P., S. S. Kilham & R. E. Hecky, 1986. Hypothesized resource relationships among African planktonic diatoms. Limnol. Oceanogr. 31: 1169–1181.Google Scholar
  130. Kilham, S. S., 1984. Silicon and phosphorus growth kinetics and competitive interactions between Stephanodiscus minutus and Synedra sp. Verh. int. Ver. Limnol. 22: 435–439.Google Scholar
  131. Kilham, S. S., E. C. Theriot & S. C. Fritz, 1996. Linking planktonic diatoms and climate change in the large lakes of the Yellowstone ecosystem using resource theory. Limnol. Oceanogr. 41: 1052–1062.Google Scholar
  132. Kingston, J. C. & H. J. B. Birks, 1990. Dissolved organic carbon reconstructions from diatom assemblages in PIRLA project lakes, North America. Phil. Trans. r. Soc., London, B 327: 279–288.Google Scholar
  133. Kingston, J. C., B. F. Cumming, A. J. Uutala, J. P. Smol, K. E. Camburn, D. F. Charles, S. S. Dixit, & R. G. Kreis, 1992. Biological quality control and quality assurance: a case study in paleolimnological biomonitoring. In McKenzie, D. H., D. E. Hyatt & V. J. McDonald (eds.) Ecological Indicators. Elsevier Applied Science, London & New York: 1542–1543.Google Scholar
  134. Knox, A. S., 1942. The use of bromoform in the separation of non-calcareous microfossils. Science 95: 307.Google Scholar
  135. Kolkwitz, R. & M. Marsson, 1908. Ökologie der pflanzlichen Saprobien. Ber. dt. bot. Ges. 26a: 505–519.Google Scholar
  136. Korhola, A., J. Weckström, L. Holmström, & P. Erästö, 2000. A quantitative climatic record from diatoms in Northern Fennoscandia. Quat. Res. 54, 284–294.CrossRefGoogle Scholar
  137. Korsman, T. & H. J. B. Birks, 1996. Diatom-based water chemistry reconstructions from northern Sweden: a comparison of reconstruction techniques. J. Paleolim. 15: 65–77.CrossRefGoogle Scholar
  138. Krammer, K. & H. Lange-Bertalot, 1986. Bacillariophyceae. I. Teil. Naviculaceae. In Süsswasserflora von Mitteleuropa, Band 2/1. 876 pp.Google Scholar
  139. Krammer, K. & H. Lange-Bertalot, 1988. Bacillariophyceae. 2. Teil. Bacillariaceae, Epithemiaceae, Surirellaceae. In Süsswasserflora von Mitteleuropa, Band 2/2Google Scholar
  140. Krammer, K. & H. Lange-Bertalot, 1991. Bacillariophyceae. 3. Teil. Zentrische Diatomeen, Diatoma, Meridion, Asterionella, Tabellaria, Fragilaria, Eunotia und Verwandte, Peronia und Actinella. In Süsswasserflora von Mitteleuropa, Band 2/4 230 pp.Google Scholar
  141. Krammer, K. & H. Lange-Bertalot, 1991. Bacillariophyceae. 4. Teil. Achnanthes, Navicula, Gomphonema, Kritische Nachtraege, Literatur. In Süsswasserflora von Mitteleuropa.Google Scholar
  142. Kreiser, A. M. & R. W. Battarbee, 1988. Analytical Quality Control (AQC) in diatom analysis. Proceedings of Nordic Diatomist Meeting, University of Stockholm, Department of Quaternary Geology Research Report 12, pp 41–44.Google Scholar
  143. Laird, K. R., S. C. Fritz, K. A. Maasch & B. F. Cumming, B. F., 1996. Greater drought intensity and frequency before AD 1200 in the Northern Great Plains. Nature 384: 552–554.CrossRefGoogle Scholar
  144. Laird, K. R., S. C. Fritz & B. F. Cumming, 1998a. A diatom-based reconstruction of drought intensity, duration, and frequency from Moon Lake, North Dakota: a sub-decadal record of the last 2300 years. J. Paleolim. 19: 161–179.CrossRefGoogle Scholar
  145. Laird, K. R., S. C. Fritz, B. F. Cumming & E. C. Grimm, 1998b. Early-Holocene limnology and climatic variability in the Northern Great Plains. The Holocene 8: 275–285.CrossRefGoogle Scholar
  146. Lauterborn, R. 1896. Untersuchungen über Bau, Kernteilung und Bewegung der Diatomeen. Leipzig: W. Engelmann, 165 pp.Google Scholar
  147. Lewin, J., 1961. The dissolution of silica from diatom walls. Geoch. Cosmoch. Acta. 21: 182–198.Google Scholar
  148. Line, J. M., C. J. F. ter Braak & H. J. B. Birks, 1994. WACALIB version 3.3—a computer program to reconstruct environmental variables from fossil assemblages by weighted averaging and to derive sample-specific errors of prediction. J. Paleolim. 10: 147–152.CrossRefGoogle Scholar
  149. Lohmann, K. E. & G. W. Andrews, 1968. Late Eocene non-marine diatoms from the Beaver Divide area, Fremont County, Wyoming. U.S. Geological Survey Professional Paper, 593-E, 26 pp.Google Scholar
  150. Lotter, A. F, H. J. B. Birks, W. Hofmann & A. Marchetto, 1997. Modern diatom, cladocera, chironomid and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J. Paleolim. 18: 395–420.Google Scholar
  151. Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1998. Modern diatom, cladocera, chironomid and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. J. Paleolim. 19: 443–463.CrossRefGoogle Scholar
  152. Lotter, A. F, P. G. Appleby, J. A. Dearing, J-A. Grytnes, W. Hofmann, C. Kamenik, A. Lami, D. M. Livingstone, C. Ohlendorf, N. L. Rose, M. Sturm & R. Thompson, in press. The record of the last 200 years in the sediments of Hagelseewli (2339 m asl), a high-elevation lake in the Swiss Alps. J. Paleolim.Google Scholar
  153. Lund, J. W. G., 1954. The seasonal cycle of the plankton diatom Melosira italica (Ehr.) Kütz. subarctica O. Müll. J. Ecol. 42: 151–179.Google Scholar
  154. Lund, J. W. G., 1955. Further observations on the seasonal cycle of Melosira italica (Ehr.) Kütz. subarctica O. Müll. J. Ecol. 43: 90–102.Google Scholar
  155. Lund, J. W. G., 1959a. Buoyancy in relation to the ecology of the freshwater phytoplankton. Br. phycol. Bull. 7: 1–17.Google Scholar
  156. Lund, J. W. G., 1959b. A simple counting chamber for nannoplankton. Limnol. Oceanogr. 4: 57–65.Google Scholar
  157. Lund, J. W. G. & J. F. Tailing, 1957. Botanical limnological methods with special reference to the algae. Bot. Rev. 23: 489–583.Google Scholar
  158. Lund, J. W. G., C. Kipling & E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.CrossRefGoogle Scholar
  159. Maberly, SC., M. A. Hurley, C. Butterwick, J. E. Corry, S. I. Heaney, A. E. Irish, G. H. M. Jaworski, J. W. G. Lund, C. S. Reynolds & J. V. Roscoe, 1994. The rise and fall of Asterionella formosa in the South Basin of Windermere: analysis of a 45-year series of data. Freshwat. Biol. 31: 19–34.Google Scholar
  160. MacDonald, J. D., 1869. On the structure of the diatomaceous frustule, and its genetic cycle. Ann. Mag. nat. Hist. series 4, 3: 1–8.Google Scholar
  161. Mackay, A. W., R. J. Flower, A. E. Kuzmina, L. Z. Granina, N. L. Rose, P. G. Appleby, J. F. Boyle & R. W. Battarbee, 1998. Diatom succession trends in recent sediments from Lake Baikal and relationship to atmospheric pollution and to climate change. Phil. Trans. r. Soc., London B 353: 1011–1055.Google Scholar
  162. Mackereth, F. J. H., 1969. A short core sampler for subaqeous deposits. Limnol. Oceanogr. 14: 145–151.Google Scholar
  163. Mann, D. G., 1993. Patterns of sexual reproduction in diatoms. Hydrobiologia 269/270: 11–20CrossRefGoogle Scholar
  164. Mann, D. G., 1994. The origins of shape and form in diatoms: the interplay between morphogenetic studies and systematics. In: The Linnean Society, Shape and Form in Plants and Fungi of London, pp. 17–38.Google Scholar
  165. Mann, D. G. & H. J. Marchant, 1989. The origins of the diatom and its life cycle. In Leadbeater, B. S. C. & J. C. Green (eds.) The Chromophyte Algae: Problems and Perspectives. Oxford University Press, OxfordGoogle Scholar
  166. Medlin L. K., D. M. Williams & P. A. Sims, 1993. The evolution of the diatoms (Bacillariophyta). I. Origin of the group and assessment of the monophyly of its major divisions. European J. Phycol. 28: 261–275.Google Scholar
  167. Meriläinen, J., 1967. The diatom flora and the hydrogen ion concentration of the water. Ann. bot. fenn. 4: 51–58.Google Scholar
  168. Molder, K. & R. Tynni, 1967–80. Uber Finnlands rezente und subfossile Diatomeen I–XI, Comptes Rendus de la Societé Géologique de Finlande.Google Scholar
  169. Miller, U., 1964. Diatom floras in the Quaternary of the Göta River Valley. Sver. geol. Unders. 44: 1–67.Google Scholar
  170. Munro, M. A. R., A. M. Kreiser, R. W. Battarbee, S. Juggins, A. C. Stevenson, D. S. Anderson, N. J. Anderson, F. Berge, H. J. B. Birks, R. B. Davis, R. J. Flower, S. C. Fritz, E. Y. Haworth, V. J. Jones, J. C. Kingston & I. Renberg, 1990. Diatom quality control and data handling. Phil. Trans. r. Soc., London B 327: 257–261.Google Scholar
  171. Nipkow, E, 1920. Vorlaufige Mitteilung über Untersuchungen des Sclammabsatzes im Zurichsee. Schweiz. Z. Hydrobiol. 1: 100–122.Google Scholar
  172. Nygaard, G., 1956. Ancient and recent flora of diatoms and chrysophyceae in Lake Gribsø, Studies on the humic acid lake Gribsø. Folia limnol. scand. 8: 32–94.Google Scholar
  173. Oldfield, F., R. W. Battarbee & J. A. Dearing, 1983. New approaches to recent environmental change. Geog. J. 149: 167–181.CrossRefGoogle Scholar
  174. Overpeck, J. T, T. Webb, & I. C. Prentice, 1985. Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogs. Quat. Res. 23: 87–108.CrossRefGoogle Scholar
  175. Paasche, E., 1960. On the relationship between primary production and standing stock of phytoplankton. J. Cons. Int. Explor. Mer. 26.Google Scholar
  176. Patrick, R., 1977. Ecology of freshwater diatoms—diatom communities. In Werner, D. (ed.) The Biology of Diatoms. Blackwell, Oxford: 284–332.Google Scholar
  177. Patrick, R. & C. W. Reimer, 1966. The diatoms of the United States I. Acad. Nat. Sci. Philad., Monogr. 13, 688 pp.Google Scholar
  178. Patrick, R. & C. W. Reimer, 1975. The diatoms of the United States II, part 1. Acad. Nat. Sci. Philad., Monogr. 13, 213 pp.Google Scholar
  179. Pennington, W., 1943. Lake sediments: the bottom deposits of the N. Basin of Windermere with special reference to the diatom succession, New Phytol. 43: 1–27.Google Scholar
  180. Pennington, W., R. S. Cambray & E. M. Fisher, 1973. Observations on lake sediments using fallout 137Cs as a tracer. Nature 242: 324–326.CrossRefGoogle Scholar
  181. Pfitzer, E., 1968. Über den Bau und die Zellteilung der Diatomeen. Bot. Ztg. 27: 774–776.Google Scholar
  182. Pienitz, R. & J. P. Smol, 1993. Diatom assemblages and their relationship to environmental variables in lakes from the boreal forest-tundra ecotone near Yellowknife, Northwest Territories, Canada. Hydrobiologia 269/270: 391–404.CrossRefGoogle Scholar
  183. Pienitz, R. & W. F. Vincent, 2000. Effect of climate change relative to ozone depletion on UV exposure in subarctic lakes. Nature 404: 484–487.CrossRefGoogle Scholar
  184. Pienitz, R., J. P. Smol & H. J. B. Birks, 1995. Assessment of freshwater diatoms as quantitative indicators of past climate change in the Yukon and Northwest Territories, Canada. J. Paleolim. 13: 21–49.CrossRefGoogle Scholar
  185. Pienitz, R., J. P. Smol & G. M. MacDonald, 1999. Paleolimnological reconstruction of Holocene climatic trends from two boreal treeline lakes, Northwest Territories, Canada. Arct. Alp. Res. 31: 82–93.Google Scholar
  186. Psenner, R., 1988. Alkalinity generation in a soft-water lake: watershed and in-lake processes. Limnol. Oceanogr. 33: 1463–1475.Google Scholar
  187. Psenner, R. & R. Schmidt, 1992. Climate-driven pH control of remote alpine lakes and effects of acid deposition. Nature 356: 781–783.CrossRefGoogle Scholar
  188. Reed, J. M., 1998. Diatom preservation in the recent sediment record of Spanish lakes: implications for palaeoclimate study. J. Paleolim. 19: 129–137.Google Scholar
  189. Renberg, I., 1976. Palaeolimnological investigations in Lake Prästsjön. Early Norrland 9: 113–160.Google Scholar
  190. Renberg, I., 1981. Improved methods for sampling, photographing and varve-counting of varved lake sediments. Boreas 10: 255–258.Google Scholar
  191. Renberg, I., 1990a. A 12,600 year perspective of the acidification of Lilla Öresjön, southwest Sweden. Phil. Trans. r. Soc., London B, 327: 357–361.Google Scholar
  192. Renberg, I., 1990b. A procedure for preparing large sets of diatom slides from sediment cores. J. Paleolim. 4: 87–90.CrossRefGoogle Scholar
  193. Renberg, I. & T. Hellberg, 1982. The pH history of lakes in southwestern Sweden, as calculated from the subfossil diatom flora of the sediments. Ambio 11: 30–33.Google Scholar
  194. Reynolds, C. S., 1973. The seasonal periodicity of planktonic diatoms in a shallow eutrophic lake. Freshwat. Biol. 3: 89–110.Google Scholar
  195. Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge, 384 pp.Google Scholar
  196. Richardson, T. L., C. E. Gibson & S. I. Heaney, 2000. Temperature, growth and seasonal succession of phytoplankton in Lake Baikal, Siberia. Freshwat. Biol. 44: 431–440.Google Scholar
  197. Rioual, P., 2000. Diatom assemblages and water chemistry of lakes in the French Massif Central: A methodology for reconstruction of past limnological and climate fluctuations during the Eemian period. Unpublished PhD Thesis, University College London. 509 pp.Google Scholar
  198. Rippey, B., 1977. The behaviour of phosphorus and silicon in undisturbed cores of Lough Neagh sediments. In Golterman, H. L. (ed.) Interactions between Sediments and Freshwater. Dr. W. Junk, Dordrecht, The Netherlands: 348–353.Google Scholar
  199. Rippey, B., 1983. A laboratory study of the silicon release process from a lake sediment (Lough Neagh, Northern Ireland). Arch. Hydrobiol. 96: 417–433.Google Scholar
  200. Ross, R. & P. A. Sims, 1972. The fine structure of the frustule in centric diatoms: a suggested terminology. Br. Phycol. J. 7: 139–163.Google Scholar
  201. Ross, R., E. J. Cox, N. I. Karayeva, R. Simonsen & P. A. Sims, 1979. An amended terminology for the siliceous components of the diatom cell. Nova Hedwigia, Beih. 64: 513–533.Google Scholar
  202. Rothpletz, A., 1896. Über die Flywsch-Fucoiden und einige andere fossile Algen, sowie über Liasische, Diatomeen führende Hornschwämme Z. Deutsch. Geol. Ges., 48: 854–914.Google Scholar
  203. Rothpletz, A., 1900. Über einen neuen jurassichen Hornschwamm und die darin eingeschlossenen Diatomeen. Z. Deutsch. Geol. Ges. 52: 154–160.Google Scholar
  204. Round, F. E., 1957. The late-glacial and post-glacial diatom succession in the Kentmere Valley deposit. I Introduction, methods and flora. New Phytol. 56: 98–126.Google Scholar
  205. Round, F. E., 1981a. Morphology and phyletic relationships of the silicified algae and the archetypal diatom—monophyly or polyphyly? In Simpson, T.L. & B.E. Volcani (eds.) Silicon and Siliceous Structures in Biological Systems. Springer-Verlag, New York: 97–128.Google Scholar
  206. Round, F. E., 1981b. Some aspects of the origin of diatoms and their subsequent evolution. Biosystems 14: 483–486.CrossRefGoogle Scholar
  207. Round, F. E., 1981c. The Ecology of Algae. Cambridge University Press, Cambridge, 653 pp.Google Scholar
  208. Round, F. E. & R. M. Crawford, 1981. The lines of evolution of the Bacillariophyhta I. Origin. Proc. r. Soc., London. B 211: 237–260.Google Scholar
  209. Round, F. E., R. M. Crawford & D. G. Mann, 1990. The diatoms. Biology and morphology of the genera. Cambridge University Press, Cambridge, 747 pp.Google Scholar
  210. Ryves, D. B., 1994. Diatom dissolution in saline lake sediments: an experimental study in the Great Plains of North America. Unpublished PhD Thesis, University College London. 306 pp.Google Scholar
  211. Scherer, R. P., 1994. A new method for the determination of absolute abundance of diatoms and other silt-sized sedimentary particles. J. Paleolim. 12: 171–179.CrossRefGoogle Scholar
  212. Schindler, D. W., S. E. Bayley, B. R. Parker, K. G. Beaty, D. R. Cruikshank, E. J. Fee, E. U. Schindler & M. P. Stainton, 1996. The effects of climate warming on the properties of boreal lakes and streams at the Experimental Lakes Area, northwestern Ontario. Limnol. Oceanogr. 41: 1004–1017.Google Scholar
  213. Schmid, A-M. M., 1995. Salt-tolerance of diatoms of the Neusiedlersee (Austria): a model study for palaeolimnological interpretations. In Robertsson, A-M., S. Hicks, A. Åkerlund, J. Risberg & T. Hackens (eds.) Landscapes and Life. PACT 50, Council of Europe: 463–470.Google Scholar
  214. Schmidt, A., 1874–1959. Atlas der Diatomaceenkunde 472 plates. Leipzig: R. Reisland, Ascherleben.Google Scholar
  215. Schoeman, F. R. & R. E. M. Archibald, 1980. The diatom flora of Southern Africa 6, 1–35 C. S.I.R. Special Rep. Wat. 50.Google Scholar
  216. Shennan, I., M. J. Tooley, M. J. Davis & B. A. Haggart, 1983. Analysis and interpretation of Holocene sea-level data. Nature 302: 404–406.CrossRefGoogle Scholar
  217. Simonsen, R., 1962. Untersuchungen zur Systematik und Ökologie der Bodendiatomeen der westlichen Ostsee. Int. Rev. ges. Hydrobiol. Syst. Beih. 1, 144 pp.Google Scholar
  218. Simonsen, R., 1979. The Diatom System: Ideas on Phylogeny. Bacillaria 2: 9–71.Google Scholar
  219. Smol, J. P., 1988. Paleoclimate proxy data from freshwater arctic diatoms. Verh. int. Ver. Limnol. 23: 837–844.Google Scholar
  220. Smol, J. P. & B. F. Cumming, 2000. Tracking long-term changes in climate using algal indicators in lake sediments. J. Phycol. 36: 986–1011.CrossRefGoogle Scholar
  221. Stevenson, A. C., S. Juggins, H. J. B. Birks, D. S. Anderson, N. J. Anderson, R.W. Battarbee, F. Berge, R. B. Davis, R. J. Flower, E. Y. Haworth, V. J. Jones, J. C. Kingston, A. M. Kreiser, J. M. Line, M. A. R. Munro & I. Renberg, 1991. The Surface Waters Acidification Project Palaeolimnology Programme: Modern Diatom/Lake-Water Chemistry Data-Set. London: Ensis Ltd, 86 pp.Google Scholar
  222. Stockner, J. G. & W. W. Benson, 1967. The succession of diatom assemblages in the recent sediments of Lake Washington. Limnol. Oceanogr. 12: 513–532.Google Scholar
  223. Stoermer, E. F. & J. P. Smol (eds.) 1999. The Diatoms: Applications for the Environmental and Earth sciences. Cambridge University Press, Cambridge, 469 pp.Google Scholar
  224. Suzuki, Y. & M. Takahashi, 1995. Growth responses of several diatom species isolated form various environments to temperature. J. Phycol. 31: 880–888.CrossRefGoogle Scholar
  225. Talling, J. F., 1957. Photosynthetic characteristics of some freshwater plankton diatoms in relation to underwater radiation. New Phytol. 56: 29–50.Google Scholar
  226. ter Braak, C. J. F., 1986. Canonical correspondance analysis: A new eigenvector method for multivariate direct gradient analysis. Ecology 67: 1167–1179.Google Scholar
  227. ter Braak, C. J. F., 1987a. CANOCO—a FORTRAN program for canonical community ordination by [partial] [detrended] [canonical] correspondence analysis, principal components analysis and redundancy analysis (version 2.1) ITI-TNO, Wageningen, 95 pp.Google Scholar
  228. ter Braak, C. J. F., 1987b. Unimodal models to relate species to environment. Unpublished PhD thesis, University of Wageningen.Google Scholar
  229. ter Braak, C. J. P. & S. Juggins, 1993. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269/270: 485–502.CrossRefGoogle Scholar
  230. ter Braak, C. J. F. & H. van Dam, 1989. Inferring pH from diatoms: a comparison of old and new calibration methods. Hydrobiologia 178: 209–223.CrossRefGoogle Scholar
  231. Tessenow, U., 1964. Experimentaluntersuchungen zur Kieselsaureruckfuhrung aus dem Schlamm der Seen durch Chironomidenlarven (Plumosus-Gruppe). Arch. Hydrobiol. 60: 497–504.Google Scholar
  232. Tessenow, U., 1966. Untersuchungen über den Kieselsaureaushalt der Binnengewasser. Arch. Hydrobiol. Suppl. 32: 1–136.Google Scholar
  233. Tilman, D., S. S. Kilham & P. Kilham, 1982. Phytoplankton community ecology: the role of limiting nutrients. Annu. Rev. Ecol. Syst. 13: 349–372.CrossRefGoogle Scholar
  234. Underwood, G. J. C. & J. D. Thomas, 1990. Grazing interaction between pulmonate snails and epiphytic algae and bacteria. Freshwat. Biol. 23: 505–521.Google Scholar
  235. Van den Hoek, C., D. G. Mann & H. M. Jahns, 1995. Algae: an Introduction to Phycology. Cambridge University Press, Cambridge, 627 pp.Google Scholar
  236. van der Werff, A., 1955. A new method of concentrating and cleaning diatoms and other organisms. Verh. int. Ver. Limnol. 12: 276–277.Google Scholar
  237. van der Werff, A. & H. Huls, 1957–74. Diatomenflora van Netherland. Reprint 1976. Otto Koeltz Science Publishers, Koenigstein.Google Scholar
  238. van Landingham, S. L., 1969–1979. Catalogue of the fossil and recent genera and species of diatoms and their synonyms Volumes 1–8, J. Cramer, Vaduz, 4654 pp.Google Scholar
  239. Vasko, K., H. T. T. Toivonen & A. Korhola, 2000. A Bayesian multinomial Gaussian response model for organism-based environmental reconstruction. J. Paleolim. 24: 243–250.CrossRefGoogle Scholar
  240. Vinebrooke, R. D. & P. R. Leavitt, 1996. Effects of ultraviolet radiation in an alpine lake. Limnol. Oceanogr. 41: 1035–1040.CrossRefGoogle Scholar
  241. Vos, P. C. & H. de Wolf, 1988. Methodological aspects of paleo-ecological diatom research in coastal areas of the Netherlands. Geologie Mijnb. 67: 31–40.Google Scholar
  242. Vos, P. C. & H. de Wolf, 1993a. Diatoms as a tool for reconstructing sedimentary environments in coastal wetlands; methodological aspects. Hydrobiologia 269/270: 285–296.Google Scholar
  243. Vos, P. C. & H. de Wolf, 1993b. Reconstruction of sedimentary environments in Holocene coastal deposits of the southwest Netherlands; the Poortvliet boring, a case study of palaeoenvironmental diatom research. Hydrobiologia 269/270: 297–306.Google Scholar
  244. Vyverman, W. & K. Sabbe, 1995. Diatom-temperature transfer functions based on the altitudinal zonation of diatom assemblages in Papua New Guinea: a possible tool in the reconstruction of regional palaeoclimatic changes. J. Paleolim. 13: 65–77.CrossRefGoogle Scholar
  245. Weckström, J. A., A. Korhola & T. Blom, 1997. The relationship between diatoms and water temperature in 30 subarctic Fennoscandian lakes. Arc. Alp. Res. 29: 75–92.Google Scholar
  246. Wetzel, R. G. & G. E. Likens, 1991. Limnological analyses. Springer-Verlag, New York, 391 pp.Google Scholar
  247. Whitehead, D. R., D. F. Charles, S. T. Jackson, J. P. Smol & D. R. Engstrom, 1989. The developmental history of Adirondack (N.Y.) lakes. J. Paleolim. 2: 185–206.CrossRefGoogle Scholar
  248. Whitmore, T. J., 1989. Florida diatom assemblages as indicators of trophic status and pH. Limnol. Oceanogr. 34: 882–895.CrossRefGoogle Scholar
  249. Williams, D. M., 1989. Publication of new and revised taxa: a guide to the International Code of Botanical Nomenclature for diatomists. J. Paleolim. 2: 55–60.CrossRefGoogle Scholar
  250. Williams, D. M. & F. E. Round, 1986. Revision of the genus Synedra Ehrenb. Diatom Research, 1: 313–339.Google Scholar
  251. Williams, D. M. & F. E. Round, 1987. Revision of the genus Fragiliaria. Diatom Research, 2: 267–288.Google Scholar
  252. Williams, D. M., B. Hartley, R. Ross, M. A. R. Munro, S. Juggins & R. W. Battarbee, 1988. A coded checklist of British diatoms. Ensis Ltd Publishing, London.Google Scholar
  253. Wilson, S. E., B. F. Cumming & J. P. Smol, 1996. Assessing the reliability of salinity inference models from diatom assemblages: an examination of a 219 lake data set from Western North America. Can. J. Fish. aquat. Sci. S 53: 1580–1594.Google Scholar
  254. Wolfe, A. P., 1997. On diatom concentrations in lake sediments: results from an inter-laboratory comparison and other tests performed on a uniform sample. J. Paleolim 18: 261–268.Google Scholar
  255. Wright, H. E., 1980. Cores of soft lake sediment. Boreas 9: 107–114.Google Scholar
  256. Wunsam, S. & R. Schmidt, 1995. A diatom-phosphorus transfer function for alpine and pre-alpine lakes. Memoire Istit. ital. Idrobiol. 53: 85–99.Google Scholar
  257. Yang, J-R. & H.C. Duthie, 1995. Regression and weighted-averaging models relating surficial sediment diatom assemblages to water depth in Lake Ontario. J. Great Lakes Res. 21: 84–94.CrossRefGoogle Scholar
  258. Zong, Y. & B. P. Horton, 1999. Diatom-based tidal-level transfer functions as an aid in reconstructing Quaternary history of sea-level movements in the UK. J. Quat. Sci. 14: 153–167.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Richard W. Battarbee
    • 1
  • Vivienne J. Jones
    • 1
  • Roger J. Flower
    • 1
  • Nigel G. Cameron
    • 1
  • Helen Bennion
    • 1
  • Laurence Carvalho
    • 2
  • Stephen Juggins
    • 3
  1. 1.Environmental Change Research CentreUniversity College LondonLondonUK
  2. 2.CEH EdinburghPenicuikUK
  3. 3.Department of GeographyUniversity of NewcastleNewcastle upon TyneUK

Personalised recommendations