Chrysophyte Scales and Cysts

  • Barbara A. Zeeb
  • John P. Smol
Part of the Developments in Paleoenvironmental Research book series (DPER, volume 3)


chrysophytes scales cysts stomatocysts statospores bristles Chrysophyceae Synurophyceae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asmund, B. & J. Kristiansen, 1986. The genus Mallomonas (Chrysophyceae). Opera Botanica 85: 1–128.Google Scholar
  2. Battarbee, R. W., 1981. Diatom and Chrysophyceae microstratigraphy of the annually laminated sediments of a small meromictic lake. Striae 14: 105–109.Google Scholar
  3. Battarbee, R. W., J. Mason, I. Renberg & J. F. Talling, 1990. Palaeolimnology and lake acidification. The Royal Society, London, 219 pp.Google Scholar
  4. Betts-Piper, A., 2000. Chrysophyte stomatocyst-based paleolimnological investigations of environmental changes in arctic and alpine environments. M.Sc. Thesis, Queens Univ., Dept. Biology, 196 pp.Google Scholar
  5. Bold, H. C. & M. J. Wynne, 1978. Introduction to the algae. Prentice-Hall, Englewood Cliffs, New Jersey, 720 pp.Google Scholar
  6. Brown, K.M., M.S.V. Douglas & J. P. Smol, 1994. Siliceous microfossils in a Holocene, High Arctic peat deposit (Nordvestø, northwestern Greenland). Can. J. Bot. 72: 208–216.Google Scholar
  7. Brown, K., Zeeb, B., Smol, J. P. & R. Pienitz, 1997. Taxonomy and ecological characterization of Chrysophyte stomatocysts from northwestern Canada. Can. J. Bot. 75: 842–863.Google Scholar
  8. Cambra, J., 1989, Sphaeridiothrix compressa and Phaeothamnion articulatum, two new records for Spanish Chrysophyte flora. Beiheft zur Nova Hedwigia 95: 259–267.Google Scholar
  9. Carney, H. J. & C. D. Sandgren, 1983. Chrysophycean cysts: indicators of eutrophication in the recent sediments of Frains Lake, Michigan, U.S.A. Hydrobiologia 101: 195–202.Google Scholar
  10. Carney, H. J., M. C. Whiting, K. E. Duff & D. R. Whitehead, 1992. Chrysophycean cysts in Sierra Nevada (California) lake sediments: paleoecological potential. J. Paleolim. 7: 73–94.CrossRefGoogle Scholar
  11. Cronberg, G., 1986a. Chrysophycean cysts and scales in lake sediments: a review. In Kristiansen, J. & R. A. Andersen (eds.) Chrysophytes: Aspects and Problems. Cambridge University Press, Cambridge: 281–315.Google Scholar
  12. Cronberg, G., 1986b. Blue-green algae, green algae and Chrysophyceae in sediments. In Berglund, B. (ed.) Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley and Sons, Chichester (UK): 507–526.Google Scholar
  13. Cronberg, G., 1990. Recent acidification and changes in the subfossil chrysophyte flora of lakes in Sweden, Norway and Scotland. Phil. Trans. r. Soc. Lond. B. 327: 289–293.Google Scholar
  14. Cronberg, G. & C. D. Sandgren, 1986. A proposal for the development of standardized nomenclature and termiology for Chrysophycean statospores. In Kristiansen, J. & R. A. Andersen (eds.) Chrysophytes: Aspects and Problems. Cambridge University Press, Cambridge: 317–328.Google Scholar
  15. Cumming, B. F., J. P. Smol, J. C. Kingston, D. F. Charles, H. J. B. Birks, K. E. Camburn, S. S. Dixit, A. J. Uutala & A. R. Selle, 1992. How much acidification has occurred in Adirondack region lakes (New York, U.S.A.) since preindustrial times? Can. J. Fish aquat. Sci. 49: 128–141.CrossRefGoogle Scholar
  16. Cumming, B. F. & J. P. Smol, 1993. Scaled Chrysophytes and pH interference models: the effects of converting scale counts to cell counts and other species data transformations. J. Paleolim. 9: 147–153.CrossRefGoogle Scholar
  17. Cumming, B. F., S. E. Wilson & J. P. Smol, 1993. Paleolimnological potential of chrysophyte cysts and scales and of sponge spicules as indicators of lake salinity. Int. J. Salt Lake Res. 2: 87–92.Google Scholar
  18. Cumming, B. F., K. A. Davey, J. P. Smol & H. J. B. Birks, 1994. When did acid-sensitive Adirondack lakes (New York, U.S.A.) begin to acidify and are they still acidifying? Can. J. Fish aquat. Sci. 51: 1550–1568.Google Scholar
  19. Deflandre, G., 1932. Archaeomonadaceae, une famille nouvelle de Protistes fossiles marins á loge siliceuse. C.R. Acad. Sci., Paris 194: 1859–1861.Google Scholar
  20. Deflandre, G., 1936. Les Flagellés fossiles. Apercu biologique et paleontologique. Role geologique. Actual. Sc. And Indust. Expos. Geol., Paris 355: 8–97.Google Scholar
  21. Dixit, S. S., A. S. Dixit & J. P. Smol, 1992a. Assessment of pre-industrial changes in lakewater chemistry in Sudbury area lakes. Can. J. Fish. aquat. Sci. 49 (Supplement 1): 8–16.Google Scholar
  22. Dixit, A. S., Dixit, S. S. & J. P. Smol, 1992b. Long-term trends in lake water pH and metal concentrations inferred from diatoms and Chrysophytes in three lakes near Sudbury, Ontario. Can. J. Fish. aquat. Sci. 49 (Supplement. 1): 17–24.Google Scholar
  23. Dop, A. J., 1980. Benthic Chrysophyceae from The Netherlands. Unpublished Ph.D. dissertation, Vrije University, Amsterdam, 141 pp.Google Scholar
  24. Douglas, M. S. V. & J. P. Smol, 1995. Paleolimnological significance of observed distribution patterns of chrysophyte cysts in Arctic pond environments. J. Paleolim. 13: 1–5.CrossRefGoogle Scholar
  25. Duff, K. E. & J. P. Smol, 1994. Chrysophycean cyst flora from British Columbia (Canada) lakes. Nova Hedwigia 58: 353–389.Google Scholar
  26. Duff, K. E. & B. A. Zeeb, 1995. Siliceous Chrysophycean microfossils: recent advances and applications to paleoenvironmental investigations. In Babcock, L. & W. Ausich (eds.) Siliceous Microfossils. Short Courses in Paleontology, No. 8, The Paleontological Society, Knoxville, Tennessee: 139–158.Google Scholar
  27. Duff, K. E., B. A. Zeeb & J. P. Smol, 1995. Atlas of Chrysophycean Cysts. Kluwer Academic Press, Dordrecht, 189 pp.Google Scholar
  28. Duff, K. E., B. A. Zeeb & J. P. Smol, 1997. Chrysophyte cyst biogeographical and ecological distributions: a synthesis. J. Biogeogr. 24: 791–812.CrossRefGoogle Scholar
  29. Elner, J. K. & C. M. Happey-Wood, 1978. Diatom and chrysophycean cyst profiles in sediment cores from two linked but contrasting Welsh lakes. Br. Phycol. J. 13: 341–360.Google Scholar
  30. Facher, E. & R. Schmidt, 1996. A siliceous chrysophycean cyst-based pH transfer function for Central European lakes. J. Paleolim. 16: 275–321.CrossRefGoogle Scholar
  31. Gayral, P. & C. Billard, 1986. A survey of the marine Chrysophyceae with special reference to the Sarcinochrysidales. In Kristiansen, J. & R. A. Andersen (eds.) Chrysophytes: Aspects and Problems. Cambridge University Press, Cambridge: 37–48.Google Scholar
  32. Gilbert, S., B. A. Zeeb & J. P. Smol, 1997. Chrysophyte stomatocyst flora from a forest peat core in the Lena River Region, northeastern Siberia. Nova Hedwigia 64: 311–352.Google Scholar
  33. Grönlund, E., H. Simola & P. Huttunen, 1986. Paleolimnological reflections of fiber-plant retting in the sediments of a small clearwater lake. Hydrobiologia 143: 425–531.Google Scholar
  34. Hajós, M., 1973. Diatomées du Pannonien Inférieur provenant du bassin Néogene de Csákvár. Ile partie. Acta Botanica Academiae Scientiarum Hungaricae 18: 95–118.Google Scholar
  35. Hajós, M., 1974. A pulai Put-3. Sz. fúrás felsöpannóniai képzödményeinek Diatoma flórája. Magyar Állami Földtani Intézet Évi Jelentése: 263–285.Google Scholar
  36. Hajós, M. & Radócz.,, 1969. Diatomás rétegek a bükkalji alsópannonból. Magyar Állami Földtani Intézet Évi Jelentése: 271–297.Google Scholar
  37. Harwood, D. M., 1986. Do diatoms beneath the Greenland Ice Sheet indicate interglacials warmer than present? Arctic 39: 304–308.Google Scholar
  38. Hilliard, D. K. & B. Asmund, 1963. Studies on Chrysophyceae from some ponds and lakes in Alaska. II. Notes on the genera Dinobryon, Hylobryon and Epipyxis with descriptions of new species. Hydrobiologia 22: 331–397.Google Scholar
  39. Kristiansen, J., 1990. Phylum Chrysophyta. In Margulis, L. et al. (eds.) Handbook of Protoctista. Jones and Bartlett Publishers, Boston: 438–453.Google Scholar
  40. Kristiansen, J. 1986. Silica-scale bearing chrysophytes as environmental indicators. Br. Phycol. J. 21: 425–436.Google Scholar
  41. Kristiansen, J., 1979. Problems in classification and identification of Synuraceae (Chrysophyceae). Schweiz. Z. Hydrobiol. 40: 310–319.Google Scholar
  42. Kristiansen, J. & R. Andersen (eds.) 1986. Chrysophytes: Aspects and Problems. Cambridge University Press, Cambridge, 337 pp.Google Scholar
  43. Kristiansen, J. & G. Cronberg (eds.) 1996. Chrysophytes: Progress and Horizons. Nova Hedwigia 114: 1–266.Google Scholar
  44. Lotter, A., H. J. B. Birks, W. Hofmann & A. Marchetto, 1997. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J. Paleolim. 18: 395–420.Google Scholar
  45. Lotter, A., H. J. B. Birks, W. Hofmann & A. Marchetto, 1998. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. J. Paleolim. 19: 443–463.CrossRefGoogle Scholar
  46. Marsicano, L. J. & P. A. Siver, 1993. A paleolimnological assessment of lake acidification in five Connecticult lakes. J. Paleolim. 9: 209–221.CrossRefGoogle Scholar
  47. Munch, C. S., 1980. Fossil diatoms and scales of Chrysophyceae in the recent history of Hall Lake, Washington. Freshwat. Biol. 10: 61–66.Google Scholar
  48. Nygaard, G., 1956. Ancient and recent flora of diatoms and Chrysophyceae in Lake Gribsø. Folia Limnol. Scand. 8: 32–262.Google Scholar
  49. Peglar, S. M., S. C. Fritz, T. Alapieti, M. Saarnisto & H. J. B. Birks, 1984. Compostition and formation of laminated sediments in Diss Mere, Norfolk, England. Boreas 13: 13–28.Google Scholar
  50. Peters, M. C. & R. A. Andersen, 1993. The fine structure and scale formation of Chrysolepidomonas dendrolepidota gen. et sp. nov. (Chrysolepidomonadaceae fam. nov., Chrsyophyceae). J. Phycol. 29: 469–475.Google Scholar
  51. Pienaar, R. N., 1980. Chrysophytes. In Cox, E. R. (ed.) Phytoflagellates. Elsevier, New York: 213–242Google Scholar
  52. Pla, S., 1999. The chrysophycean cysts from the Pyrenees and their applicability as paleoenvironmental indicators. Ph.D. thesis, Univ. Barcelona, Dep. D’Ecologia, 277 pp.Google Scholar
  53. Preisig, H. R., 1995. A modern concept of chrysophyte classification. In Sandgren, C. D. et al. (eds.) Chrysophyte Algae: Ecology, Phylogeny and Development. Cambridge University Press, Cambridge: 46–74Google Scholar
  54. Reavie, E. D., M. S. V. Douglas & N. E. Williams, 2001. Paleoecology of a groundwater outflow using siliceous microfossils. Ecoscience 8: 239–246.Google Scholar
  55. Rull, V., 1986. Diatomeas y crisoficeas en los sedimentos acuáticos de una depresión cárstica del Pirineo catalán. Oecologia aquatica 8: 11–24.Google Scholar
  56. Rull, V. & T. Vegas-Vilarrubia, 2000. Chrysophycean stomatocysts in a Caribbean mangrove. Hydrobiologia 428: 145–150.CrossRefGoogle Scholar
  57. Rybak, M., 1986. The chrysophycean paleocyst flora of the bottom sediments of Kortowskie Lake (Poland) and its ecological significance. Hydrobiologia 140: 67–84.CrossRefGoogle Scholar
  58. Rybak, M., I. Rybak & M. Dickman, 1987. Fossil chrysophycean cyst flora in a small meromictic lake in southern Ontario, and its paleoecological interpretation. Can. J. Bot. 65: 2425–2440.Google Scholar
  59. Sandgren, C. D., 1980. Resting cyst formation in selected chrysophyte flagellates: an ultrastructural survey including a proposal for the phylogenetic significance of interspecific variations in the encystment process. Protistologica 16: 289–303.Google Scholar
  60. Sandgren, C. D., 1983. Morphological variability in populations of chrysophycean resting cysts. I. Genetic (interclonal) and encystment temperature effects on morphology. J. Phycol. 19: 64–70.CrossRefGoogle Scholar
  61. Sandgren, C. D., 1988. The ecology of chrysophyte flagellates: their growth and perennation strategies as freshwater phytoplankton. In Sandgren, C. D. (ed.) Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 9–104.Google Scholar
  62. Sandgren, C. D., 1991. Chrysophyte reproduction and resting cysts: a paleolimnologist’s primer. J. Paleolim. 5: 1–9.CrossRefGoogle Scholar
  63. Sandgren, C. D., J. P. Smol & J. Kristiansen, 1995. Chrysophyte Algae: Ecology, phylogeny and development. Cambridge University Press, Cambridge, 399 pp.Google Scholar
  64. Siver, P. A., 1991a. The Biology of Mallomonas: Morphology, Taxonomy and Ecology. Kluwer Academic Publishers, Dordrecht, The Netherlands, 230 pp.Google Scholar
  65. Siver, P. A., 1991b. Implications for improving paleolimnological inference models utilizing scale-bearing siliceous algae: transforming scale counts to cell counts. J. Paleolim. 5: 219–225.Google Scholar
  66. Siver, P. A., 1993. Inferring specific conductivity of lake water using scaled chrysophytes. Limnol. Oceanogr. 30: 1480–1492.Google Scholar
  67. Siver, P. A., 1995. The distribution of chrysophytes along environmental gradients: their use as biological indicators. In Sandgren, C. D. et al. (eds.) Chrysophyte Algae: Ecology, Phylogeny and Development. Cambridge University Press, Cambridge: 232–268.Google Scholar
  68. Siver, P. A., J. S. Hamer & H. Kling, 1990. The separation of Mallomonas duerrschmidtiae sp. nov. from M. crassisquama and M. pseudocoronata: implications for paleolimnological research. J. Phycology 26: 728–740.CrossRefGoogle Scholar
  69. Siver, P. A., A. M. Lott, E. Cash, J. Moss & L. J. Mariscano, 1999. Century changes in Connecticut, U.S.A., lakes as inferred from siliceous algal remains and their relationships to land-use changes. Limnol. Oceanogr. 44: 1928–1935.CrossRefGoogle Scholar
  70. Smol, J. P., 1980. Fossil synuracean (Chrysophyceae) scales in lake sediments: a new group of paleoindicators. Can. J. Bot. 58: 458–465.Google Scholar
  71. Smol, J. P., 1983. Paleophycology of a high arctic lake near Cape Herschel, Ellesmere Island. Can. J. Bot. 61: 2195–2204.Google Scholar
  72. Smol, J. P., 1985. The ratio of diatom frustules to chrysophycean statospores: a useful paleolimnological index. Hydrobiologia 123: 199–208.CrossRefGoogle Scholar
  73. Smol, J. P., 1986. Chrysophycean microfossils as indicators of lakewater pH. In Smol, J. P. et al. (eds.) Diatoms and Lake Acidity. Dr. W. Junk Publ., Dordrecht: 275–287.Google Scholar
  74. Smol, J. P., 1988, Chrysophycean microfossils in paleolimnological studies. Palaeogeog. Palaeoclim. Palaeoecol. 62: 287–297.CrossRefGoogle Scholar
  75. Smol, J. P., 1990. Diatoms and chrysophytes—a useful combination in paleolimnological studies. In Simola, H. (ed.) Proceedings of the 10th International Diatom Symposium. Koeltz Scientific Books, Koenigstein: 585–592.Google Scholar
  76. Smol, J. P., 1995. Application of chrysophytes to problems in paleoecology. In Sandgren, C. et al. (eds.) Chrysophyte Algae: Ecology, Phylogeny and Development, Cambridge University Press, Cambridge: 303–329.Google Scholar
  77. Smol, J. P., D. F. Charles & D. R. Whitehead, 1984a. Mallomonadacean microfossils provide evidence of recent lake acidification. Nature 307: 628–630.CrossRefGoogle Scholar
  78. Smol, J. P., D. F. Charles & D. R. Whitehead, 1984b. Mallomonadacean (Chrysophyceae) assemblages and their relationships with limnological characteristics in 38 Adirondack (N.Y.) lakes. Can. J. Bot. 62: 911–923.CrossRefGoogle Scholar
  79. Srivastava, S. K. & P. L. Binda, 1984. Siliceous and silicified microfossils from the Maastrichtian Battle Formation of southern Alberta, Canada. Paleobiologie Continentale 14: 1–24.Google Scholar
  80. Steinberg C., H. Hartmann & D. Krause-De llin, D., 1988. Paleoindicators of acidification in Kleiner Abersee (Federal Republic of Germany, Bavarian Forest) by chydorids, chrysophytes, and diatoms. J. Paleolim. 6: 123–140.Google Scholar
  81. Stoermer, E. F., J. A. Wolin, C. L. Schelske & D. J. Conley, 1985. An assessment of ecological changes during the recent history of Lake Ontario based on siliceous algal microfossils preserved in the sediments. J. Phycol. 21: 257–276.Google Scholar
  82. Takahashi, E., 1978. Electron Microscopical Studies of the Synuraceae (Chrysophyceae) in Japan. Taxonomy and Ecology. Tokai University Press, Tokyo, 194 pp.Google Scholar
  83. Taylor, S. J., 1997. Taxonomy and ecological characterization of chrysophycean stomatocysts from lakes extending from the boreal forest to the arctic tundra, Canada. M.Sc. Thesis, Queen’s University, Dept, Biology, 181 pp.Google Scholar
  84. Van de Vijver, B. & L. Beyens, 1997. The chrysophyte stomatocyst flora of the moss vegetation from Strømness Bay Area, South Georgia. Arch. Protistenkd. 148: 505–520.Google Scholar
  85. Wee, J. L., 1982. Studies on the Synuraceae (Chrysophyceae) of Iowa. Bibliotheca Phycologia 62: 1–183.Google Scholar
  86. Wilkinson, A. N., B. A. Zeeb, J. P. Smol & M. S. V. Douglas, 1996. Chrysophyte stomatocyst assemblages associated with periphytic, high arctic pond environments. Nord. J. Bot. 16: 95–112.Google Scholar
  87. Wilkinson, A. N., B. A. Zeeb & J. P. Smol, 2001. Atlas of chrysophycean cysts. Vol 2. Kluwer Academic Publishers, Dordrecht, 169 pp.Google Scholar
  88. Zeeb, B. A., K. E. Duff & J. P. Smol, 1990. Morphological descriptions and stratigraphic profiles of chrysophycean stomatocysts from the recent sediments of Little Round Lake, Ontario. Nova Hedwigia 51: 361–380.Google Scholar
  89. Zeeb, B. A. & J. P. Smol, 1993. Postglacial chrysophycean cyst record from Elk Lake, Minnesota. Geol. Soc. Amer. Special Paper 276: 239–249.Google Scholar
  90. Zeeb, B. A. & J. P. Smol, 1995. A weighted-averaging regression and calibration model for inferring lakewater salinity using chrysophycean stomatocysts from lakes in western Canada. Int. J. Salt Lake Res. 4: 1–23.Google Scholar
  91. Zeeb, B. A., C. E. Christie, J. P. Smol, D. L. Findlay, H. Kling & H. J. B. Birks, 1994. Responses of diatom and chrysophyte assemblages in Lake 227 to experimental eutrophication. Can. J. Fish. aquat. Sci. 51: 2300–2311.Google Scholar
  92. Zeeb, B. A., K. E. Duff & J. P. Smol, 1996a. Recent advances in the use of chrysophyte stomatocysts in paleoecological studies. Beiheft zur Nova Hedwigia 114: 247–252.Google Scholar
  93. Zeeb, B. A., J. P. Smol & S. L. Vanlandingham, 1996b. Pliocene chrysophycean stomatocysts from the Sonoma Volcanics, Napa County, California. Micropaleontology 42: 79–91.Google Scholar
  94. Zeeb, B. A., J. P. Smol & S. P. Horn, 1996c. Chrysophycean stomatocysts from Costa Rican tropical lake sediments. Nova Hedwigia 63: 279–299.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Barbara A. Zeeb
    • 1
  • John P. Smol
    • 1
  1. 1.Paleoecological Environmental Assessment and Research Lab (PEARL) Department BiologyQueen’s UniversityKingstonCanada

Personalised recommendations