DNA Sequencing Using Fluorescence Detection

  • Steven A. Soper
  • Clyde Owens
  • Suzanne Lassiter
  • Yichuan Xu
  • Emanuel Waddell
Part of the Topics in Fluorescence Spectroscopy book series (TIFS, volume 7)


Fluorescence Detection Fluorescence Lifetime Nucleotide Base Detection Channel Sheath Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Watson, J. D., and Crick, F. H. C. Molecular structure of nucleic acid. A structure of deoxyribo-nucleic acid. Nature 171, 737, 1953.Google Scholar
  2. 2.
    Chen, E. Y., Schlessinger, D., and Kere, J. Ordered shotgun sequencing, a strategy for integrated mapping and sequencing of YAC clones. Genomics 17, 651–656, 1993.CrossRefGoogle Scholar
  3. 3.
    Sanger, F, Nicklen, S., and Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463, 1977.Google Scholar
  4. 4.
    Maxam, A. M., and Gilbert, W. A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 74, 560, 1977.Google Scholar
  5. 5.
    Fung, E. N., and Yeung, E. S. High-speed DNA sequencing by using mixed poly(ethylene oxide) solutions in uncoated capillary columns. Anal. Chem. 67, 1913, 1995.Google Scholar
  6. 6.
    Smith, L. M., Saunders, J. Z., Kaiser, R. J., Hughes, P., Dodd, C. R., Connell, C. R., Heiner, C. Kent, S. B. H., and Hood, L. E. Fluorescence detection in automated DNA sequence analysis, Nature 321, 674, 1986.Google Scholar
  7. 7.
    Prober, J. M., Trainor, G. L., Dam, R. J., Hobbs, F. G., Robertson, C. W., Zagursky, R. J., Cocuzza, A. J., Jensen, M. A., and Baumeister, K. A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides. Science 238, 336, 1987.Google Scholar
  8. 8.
    Ansorge, W., Sproat, B., Stegeman, J., Schwager, C., Zenke, M. Automated DNA sequencing: Ultrasensitive detection of bands during electrophoresis. Nucleic Acids Res. 15, 4593, 1987.Google Scholar
  9. 9.
    Metzker, M. L., Lu, J., and Gibbs, R. A. Electrophoretically uniform fluorescent dyes for automated DNA sequencing. Science 271, 1420, 1996.Google Scholar
  10. 10.
    Lee, L. G., Connell, C., Woo, S., Cheng, R., McArdle, B., Fuller, C., Halloran, N., and Wilson, R. DNA sequencing with dye-labeled terminators and T7 DNA polymerase: effects of dyes and dNTPs on incorporation of dye-terminators and probability analysis of termination fragments. Nucleic Acids Res. 20, 2471, 1992.Google Scholar
  11. 11.
    Tabor, S., and Richardson, C. C. A single residue in DNA polymerase from E. coli DNA polymerase I family is critical for distinguishing between deoxy-and dideoxynucleotides. Proc. Natl. Acad. Sci. USA 92, 6339, 1995.Google Scholar
  12. 12.
    Rosenblum, B. B., Lee, L. G., Spurgeon, S. L., Khan, S. H., Menchen, S. M., Heiner, C. R., and Chen, S. M. New dye-labeled terminators for improved DNA sequencing patterns. Nucleic Acids Res. 25, 4500, 1997.Google Scholar
  13. 13.
    Ju, J., Ruan, C., Fuller, C. W., Glazer, A. N., and Mathies, R. A. Fluorescence energy transfer dyelabeled primers for DNA sequencing and analysis. Proc. Natl. Acad. Sci. USA 92, 4347, 1995.Google Scholar
  14. 14.
    Ju, J. Y., Kheterpal, I., Scherer, J. R., Ruan, C. C., Fuller, C. W., Glazer, A. N., and Mathies, R. A. Design and synthesis of fluorescence energy-transfer dye-labeled primers and their application for DNA sequencing and analysis. Anal. Biochem. 231, 131–140, 1995.CrossRefGoogle Scholar
  15. 15.
    Ju, J. Y., Glazer, A. N., and Mathies, R. A. Cassette labeling for facile construction of energy transfer fluorescent primers. Nucleic Acids Res. 24, 1144–1148, 1996.CrossRefGoogle Scholar
  16. 16.
    Hung, S.-C., Mathies, R. A., and Glazer, A. N. Optimization of spectroscopic and electrophoretic properties of energy transfer primers. Anal. Biochem. 252, 78, 1997.CrossRefGoogle Scholar
  17. 17.
    Lee, L. G., Spurgeon, S. L., Heiner, C. R., Benson, S. C., Rosenblum, B. B., Menchen, S. M., Graham, R. J., Constantinescu, A., Upadhya, K. G., and Cassel, J. M. New energy transfer dyes for DNA sequencing. Nucleic Acids Res. 25, 2816, 1997.Google Scholar
  18. 18.
    Hung, S.-C., Mathies, R. A., and Glazer, A. N. Comparison of fluorescence energy transfer primers with different donor-acceptor dye combinations. Anal. Biochem. 255, 32, 1998.CrossRefGoogle Scholar
  19. 19.
    Williams, D. C., and Soper, S. A. 1995. Ultrasensitive near-IR fluorescence detection for capillary gel electrophoresis and DNA sequencing applications. Anal. Chem. 67, 3427–3432.Google Scholar
  20. 20.
    Middendorf, L. R., Bruce, J. C., Bruce, R. C., Eckles, R. D., Grone, D. L., Roemer, S. C., Sloiker, G. D., Steffens, D. L., Sutter, S. L., Brumbaugh, J. A., and Patonay, G. Continuous, on-line DNA sequencing using a versatile infrared laser scanner/electrophoresis apparatus. Electrophoresis 13, 487, 1992.CrossRefGoogle Scholar
  21. 21.
    Shealy, D. B., Lipowska, M., Lipwoski, J., Narayanan, N., Sutter, S., Strekowski, L., and Patonay, G. Synthesis, chromalographic separation and characterizalion of near-infrared-labeled DNA oligomers for use in DNA sequencing. Anal. Chem. 67, 247, 1995.CrossRefGoogle Scholar
  22. 22.
    Soper, S. A., and Mattingly, Q. Steady-state and picosecond laser fluorescence studies of nonradiative pathways in tricarbocyanine dyes: Implications to the design of near-IR fluorochromes with high fluorescence efficiencies. J. Am. Chem. Soc. 116, 3447, 1994.CrossRefGoogle Scholar
  23. 23.
    Huang, X. C., Quesada, M. A., and Mathies, R. A. Capillary array electrophoresis using laser-excited confocal fluorescence detection. Anal. Chem. 64, 967, 1992.Google Scholar
  24. 24.
    Huang, X. C., Quesada, M. A., and Mathies, R. A. DNA sequencing using capillary array electrophoresis. Anal Chem. 64, 2149, 1992.Google Scholar
  25. 25.
    Soper, S. A., Shera, E., Davis, L., Nutter, H., and Keller, R. The photophysical constants of several visible fluorescent dyes and their effects on ultrasensitive fluorescence detection. Photochem. Photobiol 57, 972, 1993.Google Scholar
  26. 26.
    Takahashi, S., Murakami, K., Anazawa, T, and Kambara, H. Multiple sheath-flow gel capillary-array electrophoresis for multicolor fluorescent DNA detection. Anal. Chem. 66, 1021, 1994.Google Scholar
  27. 27.
    Kambara, H., and Takahashi, S. Multiple-sheathflow capillary array DNA analyzer. Nature 361, 565, 1993.CrossRefGoogle Scholar
  28. 28.
    Swerdlow, H., Wu, S., Harke, H., and Dovichi, N. Capillary gel electrophoresis for DNA sequencing: Laser-induced fluorescence detection with the sheath flow cuvette. J. Chromatogr. 516, 61, 1990.CrossRefGoogle Scholar
  29. 29.
    Swerdlow, H., Zhang, J. Z., Chen, D. Y., Harke, H. R., Grey, R., Wu, S., and Dovichi, N. J. Three DNA sequencing methods using capillary gel electrophoresis and laser-induced fluorescence. Anal. Chem. 63, 2835, 1991.CrossRefGoogle Scholar
  30. 30.
    Ewing, B., Hillier, L., Wendl, M., Green, P. Base-calling of automated sequencer traces using Phred. I. Accuracy assesssment. Genomics 8, 175, 1998.Google Scholar
  31. 31.
    Tu, 0., Knott, T., Marsh, M., Bechtol, K., Harris, D., Barker, D., and Bashkin, J. The influence of fluorescent dye structure on the electrophoretic mobility of end-labeled DNA. Nucleic Acids Res. 26, 2797, 1998.CrossRefGoogle Scholar
  32. 32.
    Middendorf, L. R., Bruce, J. C., Bruce, R. C., Eckles, R. D., Grone, D. L., Roemer, S. C., Sloniker, G. D., Steffens, D. L., Sutter, S. L., Brumbaugh, J. A., Patonay, G. Continuous, on-line DNA sequencing using a versatile infrared laser scanner/electrophoresis apparatus. Electrophoresis 13, 487–494, 1992.CrossRefGoogle Scholar
  33. 33.
    Ansorge, W., Zimmermann, C., Schwager, C., Stegemann, J., Erfle, H., and Voss, H. One label, one tube, Sanger DNA sequencing in one and two lanes on a gel. Nucleic Acids Res. 18, 3419, 1990.Google Scholar
  34. 34.
    Chen, D., Swerdlow, H. P., Harke, H. R., Zhang, J. Z., and Dovichi, N. J. Single-color laser-induced fluorescence detection and capillary gel electrophoresis for DNA sequencing. Proc. Int. Soc. Opt. Eng. 1435, 161, 1991.Google Scholar
  35. 35.
    Tabor, S., and Richardson, C. C. DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc. Natl. Acad. Sci. USA 84, 4767, 1987.Google Scholar
  36. 36.
    Tabor, S., and Richardson, C. C. DNA Sequence Analysis with a Modified Bacteriophage T7 DNA Polymerase. J. Biol. Chem. 14, 8322, 1990.Google Scholar
  37. 37.
    Chen, D. Y., Harke, H. R., and Dovichi, N. J. Two-label peak-height encoded DNA sequencing by capillary gel electrophoresis: Three examples. Nucleic Acids Res. 20, 4873, 1992.Google Scholar
  38. 38.
    Li, Q., and Yeung, E. Simple two-color base-calling schemes for DNA sequencing based on standard four-label Sanger chemistry. Appl. Spectrosc. 49, 1528, 1995.Google Scholar
  39. 39.
    Starke, H. R., Yan, J., Zhang, Z., Muhlegger, K., Effgen, K., and Dovichi, N. Internal fluorescence labeling with fluorescent deoxoynucleotides in two-label peak-height encoded DNA sequencing by capillary electrophoresis. Nucleic Acids Res. 22, 3997, 1994.Google Scholar
  40. 40.
    Soper, S. A., Legendre, B. L., and Williams, D. C. On-line fluorescence lifetime determinations in capillary electrophoresis. Anal. Chem. 67, 4358, 1995.CrossRefGoogle Scholar
  41. 41.
    Soper, S. A., and Legendre, B. L. Error analysis of simple algorithms for determining fluorescence lifetimes in ultradilute dye solutions. Appl. Spectrosc. 48, 400, 1994.CrossRefGoogle Scholar
  42. 42.
    Köllner, M., Fischer, A., Arden-Jacob, J., Drexhage, K.-H., Müller, R., Seeger, S., and Wolfrum, J. Fluorescence pattern recognition for ultrasensitive molecule identification: comparison of experimental data and theoretical approximations. Chem. Phys. Lett. 250, 355, 1996.Google Scholar
  43. 43.
    Legendre, B. L., Williams, D. C., Soper, S. A., Erdmann, R., Ortmann, U., and Enderlein, J. An all solid-state near-infrared time-correlated single photon counting instrument for dynamic lifetime measurements in DNA sequencing applications. Rev. Sci. Iustrum. 67, 3984, 1996.Google Scholar
  44. 44.
    Sauer, M., Zander, C., Müller, R., Ullrich, D., Drexhage, K. H., Kaul, S., Wolfrum, J. Detection and identification of individual antigen molecules in human serum with pulsed semiconductor lasers. Appl. Phys. B B65, 427–431, 1997.Google Scholar
  45. 45.
    Sauer, M., Arden-Jacob, J., Drexhage, K. H., Marx, N. J., Karger, A. E., Lieberwirth, U., Muller, R., Neumann, M., Nord, S., Schulz, A., Seeger, S., Zander, C., and Wolfrum, J. On-line diode laser based time-resolved fluorescence detection of labeled oligonucleotides in capillary gel electrophoresis. Biomed. Chromatogr, 11, 81, 1997.CrossRefGoogle Scholar
  46. 46.
    Lieberwirth, U., Arden-Jacob, J., Drexhage, K. H., Herten, D. P., Muller, R., Neumann, M., Schulz, A., Siebert, A., Siebert, S., Sagner, G., Klingel, S., Sauer, M., and Wolfrum, J. Multiplexed dye DNA sequencing in capillary gel electrophoresis by diode laser-based time-resolved fluorescence detection. Anal. Chem. 70, 4771, 1998.CrossRefGoogle Scholar
  47. 47.
    Waddell, E., Stryjewski, W., and Soper, S. A. A fiber-optic-based multichannel time-correlated single photon-counting device with subnanosecond time resolution. Rev. Sci. Instrum. 70, 32, 1999.CrossRefGoogle Scholar
  48. 48.
    Li, L. C., and McGowen, L. B. On-the-fly frequency-domain fluorescence lifetime detection in capillary electrophoresis. Anal. Chem. 68, 2737, 1996.Google Scholar
  49. 49.
    Li, L. C., He, H., Nunnally, B. K., and McGowen, L. B. On-the-fly fluorescence lifetime detection of labeled DNA primers. J. Chromatogr. 695, 85, 1997.Google Scholar
  50. 50.
    Nunnally, B. K., He, H., Li, L. C., Tucker, S. A., and McGowen, L. B. Characterization of visible dyes for four-decay fluorescence detection. Anal. Chem. 69, 2392, 1997.CrossRefGoogle Scholar
  51. 51.
    He, H., Nunnally, B. K., Li, L. C., and McGowen, L. B. On-the-fly fluorescence lifetime detection of dye-labeled primers for multiplexed analysis. Anal. Chem. 70, 3413, 1998.Google Scholar
  52. 52.
    Li, L., and McGowen, L. B. Effects of gel material on fluorescence lifetime detection of dyes and dye-labeled DNA primers in capillary electrophoresis. J. Chromatogr. 841, 95, 1999.CrossRefGoogle Scholar
  53. 53.
    Hall, P.; Sellinger, B. 1981. Better estimates of exponential decay parameters. J. Phys. Chem. 85, 2941, 1981.Google Scholar
  54. 54.
    Ballew, R. M., and Demas, J. N. 1989. An error analysis of the rapid lifetime determination method for the evaluation of single exponential decays. Anal. Chem. 61, 30, 1989.Google Scholar
  55. 55.
    Flanagan, J. H., Owens, C. V., Romero, S. E., Waddell, E., Kahn, S. H., Hammer, R. P., and Soper, S. A. 1998. Near-infrared heavy-atom-modified fluorescent dyes for base-calling in DNA-sequencing applications using temporal discrimination. Anal. Chem. 70, 2676, 1998.CrossRefGoogle Scholar
  56. 56.
    Fairfield, E. R., Jett, J., Keller, R., Hahn, J., Krakowski, L., Marrone, B., Martin, J., Ratliff, R., Shera, E., and Soper, S. Rapid DNA sequencing based upon single molecule detection. Gen. Anal. 8, 1, 1991.Google Scholar
  57. 57.
    Shera, E. B., Seitzinger, N., Davis, L., Keller, R., and Soper, S. Detection of single fluorescent molecules. Chem. Phys. Lett. 174, 553, 1990.Google Scholar
  58. 58.
    Soper, S. A., Hahn, J., Nutter, H., Shera, E., Martin, J., Jett, J., and Keller, R. Single molecule detection of R-6G in ethanolic solutions utilizing CW excitation. Anal. Chem. 63, 432, 1991.CrossRefGoogle Scholar
  59. 59.
    Soper, S. A., Mattingly, Q. L., and Vegunta, P. Photon burst detection of single near infrared fluorescent dye molecules. Anal. Chem. 65, 740, 1993.CrossRefGoogle Scholar
  60. 60.
    Soper, S. A., Davis, L., and Shear, E. B. Detection and identification of single molecules in solution. J. Opt. Soc. Am. B 9, 1761, 1992.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Steven A. Soper
    • 1
  • Clyde Owens
    • 1
  • Suzanne Lassiter
    • 1
  • Yichuan Xu
    • 1
  • Emanuel Waddell
    • 1
  1. 1.Department of ChemistryLouisiana State UniversityBaton Rouge

Personalised recommendations