Technicolor Genome Analysis

  • Michael J. Difilippantonio
  • Thomas Ried
Part of the Topics in Fluorescence Spectroscopy book series (TIFS, volume 7)


Chromosome Aberration Chromosome Painting Nick Translation Hybrid Cell Line High Resolution Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gall, J. G., and Pardue, M. L. Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc. Natl. Acad. Sci. USA 63, 378–383, 1969.Google Scholar
  2. 2.
    John, H. A., Birnstiel, M. L., and Jones, K. W. RNA-DNA hybrids at the cytological level. Nature 223, 582–587, 1969.Google Scholar
  3. 3.
    Manning, J. E., Hershey, N. D., Broker, T. R., Pellegrini, M., Mitchell, H. K., and Davidson, N. A new method of in situ hybridization. Chromosoma 53, 107–117, 1975.CrossRefGoogle Scholar
  4. 4.
    Broker, T. R., Angerer, L. M., Yen, P. H., Hershey, N. D., and Davidson, N. Electron microscopic visualization of tRNA genes with ferritin-avidin:biotin labels. Nucleic Acids Res. 5, 363–384, 1978.Google Scholar
  5. 5.
    Langer, P. R., Waldrop, A. A., and Ward, D. C. Enzymatic synthesis of biotin-labeled poly-nucleotides: Novel nucleic acid affinity probes. Proc. Natl. Acad. Sci. USA 78, 6633–6637, 1981.Google Scholar
  6. 6.
    Langer-Safer, P. R., Levine, M., and Ward, D. C. Immunological method for mapping genes on Drosophila polytene chromosomes. Proc. Natl. Acad. Sci. USA 79, 4381–4385, 1982.Google Scholar
  7. 7.
    Manuelidis, L., Langer-Safer, P. R., and Ward, D. C. High-resolution mapping of satellite DNA using biotin-labeled DNA probes. J. Cell Biol. 95, 619–625, 1982.CrossRefGoogle Scholar
  8. 8.
    Cremer, T., Landegent, J., Bruckner, A., Scholl, H. P., Schardin, M., Hager, H. D., Devilee, P., Pearson, P., van der Ploeg, M. Detection of chromosome aberrations in the human interphase nucleus by visualization of specific target DNAs with radioactive and non-radioactive in situ hybridization techniques: Diagnosis of trisomy 18 with probe L1.84. Hum. Genet. 74, 346–352, 1986.CrossRefGoogle Scholar
  9. 9.
    Monier, K., Michalet, X., Lamartine, J., Schurra, C., Heitzmann, F., Yin, L., Cinti, R., Sylla, B. S., Creaven, M., Porta, G., Vourc’h, C., Robert-Nicoud, M., Bensimon, A., and Romeo, G. Highresolution mapping of the X-linked lymphoproliferative syndrome region by FISH on combed DNA. Cytogenet. Cell Genet. 81, 259–264, 1998.CrossRefGoogle Scholar
  10. 10.
    Ried, T., Speicher, M. R., Schröck, E., Dietzel, S., Jauch, A., Nagaraja, R., Schlessinger, D., and Cremer, T. (1995). Functional high resolution mapping of DNA-clones on Halo-DNA preparations and in interphase nuclei by multicolor fluorescence in situ hybridization. Am. J. Hum. Genet. 53 (Suppl.), 1348–1340, 1995.Google Scholar
  11. 11.
    Schwartz, D. C., and Samad, A. Optical mapping approaches to molecular genomics. Curr. Opin. Biotechnol. 8, 70–74. 1997.CrossRefGoogle Scholar
  12. 12.
    Tocharoentanaphol, C., Cremer, M., Schröck, E., Kilian, K., Blonden, L., Cremer, T., and Ried, T. Multicolor fluorescence in situ hybridization on metaphase chromosomes and interphase Halo-preparations using cosmid and YAC clones for the simultaneous high resolution mapping of deletions in the dystrophin gene. Hum. Genet. 93, 229–235, 1994.CrossRefGoogle Scholar
  13. 13.
    Wiegant, J., Kalle, W., Mullenders, L., Brookes, S., Hoovers, J. M. N., Dauwerse, J. G., van Ommen, G. J. B., and Raap, A. K. High-resolution in situ hybridization using D19NA halo preparations. Hum. Molec. Genet. 1, 587–591, 1992.Google Scholar
  14. 14.
    Spurbeck, J. L., Zinsmeister, A. R., Meyer, K. J., and Jalal, S. M. Dynamics of chromosome spreading. Am. J. Med. Genet. 61, 387–393, 1996.CrossRefGoogle Scholar
  15. 15.
    Samad, A., Huff, E. F., Cai, W., and Schwartz, D. C. Optical mapping: a novel, single-molecule approach to genomic analysis. Genome Res. 5, 1–4, 1995.Google Scholar
  16. 16.
    Carter, N. P., Ferguson-Smith, M. E., Affara, N. A., Briggs, H., and Ferguson-Smith, M. A. Study of X chromosome abnormality in XX males using bivariate flow karyotype analysis and flow sorted dot blots. Cytometry 11, 202–270, 1990.CrossRefGoogle Scholar
  17. 17.
    Gray, J. W., Langlois, G., Carrano, A. V., Burkhart-Schultz, K., and Van Dilla, M. A. High resolution chromosome analysis: One and two parameter flow cytometry. Chromosoma 73, 9–27, 1979.CrossRefGoogle Scholar
  18. 18.
    Telenius, H., Carter, N. P., Bebb, C. E., Norednskjöld, M., Ponder, B. A. J., and Tunnacliffe, A. Degenerate oligonucleotide-primed PCR (DOP-PCR): General amplification of target DNA by a single degenerate primer. Genomics 13, 718–725, 1992.CrossRefGoogle Scholar
  19. 19.
    Telenius, H., Pelear, A. H., Tunnacliffe, A., Carter, N. P., Behmel, A., Ferguson-Smith, M. A., Nordenskjöld, M., Pfragner, R., and Ponder, B. A. J. Cytogenetic analysis by chromosome paintingusingDOP-PCR amplified flow sorted chromosomes. Genes Chromosom. Cancer 4, 257–263, 1992.Google Scholar
  20. 20.
    Feinberg, A. P., and Vogelstein, B. A technique for radiolabeling DNA restriction fragments to high specific activity. Anal. Biochem. 132, 6–13, 1983.CrossRefGoogle Scholar
  21. 21.
    Landegent, J. E., Jansen in de Wal, N., Dirks, R. W., Baas, F., and van der Ploeg, M. Use of the whole cosmid cloned genomic sequences for chromosomal localization by non-radioactive in situ hybridization. Hum. Genet. 77, 366–370, 1987.CrossRefGoogle Scholar
  22. 22.
    Lichter, P., Cremer, T., Borden, J., Manuelidis, L., and Ward, D. C. Delineation of individual human chromosomes in metaphase and interphase cells by in situ hybridization using recombinant DNA libraries. Hum. Genet. 80, 224–234, 1988.CrossRefGoogle Scholar
  23. 23.
    Pinkel, D., Landegent, J., Collins, C., Fuscoe, J., Segraves, R., Lucas, J., and Gray, J. W. Fluorescence in situ hybridization with human chromosome specific libraries: Detection of trisomy 21 and translocation of chromosome 4. Proc. Natl. Acad. Sci. USA 85, 9138–9142, 1988.Google Scholar
  24. 24.
    van Gijlswijk, R. P. M., van Gijkswijk-Janssen, D. J., Raap, A. K., Daha, M. R., and Tanke, H. J. Enzyme-labelled antibody-avidin conjugates: New flexible and sensitive immunochemical reagents. J. Immunol. Methods 189, 117–127. 1996.Google Scholar
  25. 25.
    van Gijlswijk, R. P. M., Wiegant, J., Vervenne, R., Lasan, R., Tanke, H. J., and Raap, A. K. Horseradish peroxidase-labeled oligonucleotides and fluorescent tyramides for rapid detection of chromosome-specific repeat sequences. Cytogenet. Cell Genet. 75, 258–262, 1996.Google Scholar
  26. 26.
    Raap, A. K., van de Corput, M. P. C., Vervenne, R. A. W., van Gijlswijk, R. P. M., Tanke, H. J., and Weigant, J. Ultra-sensitive FISH using peroxidase-mediated deposition of biotin-or fluorochrome tyramides. Hum. Molec. Genet. 4, 529–534, 1995.Google Scholar
  27. 27.
    Bobrow, M. N., and Litt, G. J. Method for the detection or quantitation of an analyte using an analyte dependent enzyme activation system. United States Patent no. 5196306, 1993.Google Scholar
  28. 28.
    Adams, J. C. Biotin amplification of biotin and horseradish peroxidase signals in histochemical stains. J. Histochem. Cytochem. 40, 1457–1463, 1992.Google Scholar
  29. 29.
    van Gijlswijk, R. P. M., Zijlmans, H. J. M. A. A., Wiegant, J., Bobrow, M. N., Erickson, T. J., Adler, K. E., Tanke, H. J., and Raap, A. K. Fluorochrome-labeled tyramides: Use in immunocytochemistry and fluorescence in situ hybridization. J. Histochem. Cytochem. 45, 375–382, 1997.Google Scholar
  30. 30.
    van Gijlswijk, R. P. M., Wiegant, J., Raap, A. K., and Tanke, H. J. Improved localization of fluorescent tyramides for fluorescence in situ hybridization using dextran sulfate and polyvinyl alcohol. J. Histochem. Cytochem. 44, 389–392, 1996.Google Scholar
  31. 31.
    Lichter, P., and Ward, D. C. Is non-isotopic in situ hybridization finally coming of age? Nature 345, 93–95, 1990.CrossRefGoogle Scholar
  32. 32.
    Lichter, P., Chang Tang, C.-J., Call, K., Hermanson, G., Evans, G. A., Housman, D., and Ward, D. C. High resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science 247, 64–69, 1990.Google Scholar
  33. 33.
    Bellanné-Chantelot, C., Lacroix, B., Ougen, P., Bilaut, A., Beaufils, S., Betrand, S., Georges, I., Glibert, F., Gros, I., Lucotte, G., Susini, L., Codani, J. J., Gesnouin, P., Pook, S., Vaysseix, G., Lu-Kuo, J., Ried, T., Ward, D. C., Chumakov, I., Le Paslier, D., Barillot, E., and Cohen, D. Mapping the whole human genome by fingerprinting yeast artificial chromosomes. Cell 70, 1059–1068, 1992.Google Scholar
  34. 34.
    Dixon, M. J., Dixon, M., Houseal, T, Bhatt, M., Ward, D. C., Klinger, K., and Landes, G. M. Narrowing the position of the Treacher Collins syndrome locus to a small interval between three new microsatellite markers at 5q32-33.1. Am. J. Hum. Genet. 52, 907–914, 1993.Google Scholar
  35. 35.
    Lichter, J. B., Difilippantonio, M., Wu, J., Miller, D., Ward, D. C., Goodfellow, P. J., and Kidd, K. K. Localization of the gene for MEN 2A. Henry Ford Hosp. Med. J. 40, 199–204, 1992.Google Scholar
  36. 36.
    Lichter, J. B., Difilippantonio, M. J., Pakstis, A. J., Goodfellow, P. J., Ward, D. C., and Kidd, K. K. Physical and genetic maps for chromosome 10. Genomics 16, 320–324, 1993.CrossRefGoogle Scholar
  37. 37.
    Jauch, A., Daumer, C., Lichter, P., Murken, J., Schroeder-Kurth, T, and Cremer, T. Chromosomal in situ suppressionhybridization of human gonosomes and autosomes and its use in clinical cytogenetics. Hum. Genet. 85, 145–150, 1990.CrossRefGoogle Scholar
  38. 38.
    Lengauer, C., Eckelt, A., Weith, A., Endlich, N., Ponelies, N., Lichter, P., Greulich, K. O., and Cremer, T. Selective staining of defined chromosomal subregions by in situ suppression hybridization of libraries from laser-microdissected chromosomes. Cytogenet. Cell Genet. 56, 27–30, 1991.Google Scholar
  39. 39.
    Ried, T, Mahler, V., Vogt, P., Blonden, L., van Ommen, G. J. B., Cremer, T., and Cremer, M. Direct carrier detection by in situ suppression hybridization with cosmid clones for the Duchenne/ Beckermuscular dystrophy locus. Hum. Genet. 85, 581–586, 1990.CrossRefGoogle Scholar
  40. 40.
    Gallagher, P. G., Upender, M., Ward, D. C., and Forget, B. G. The gene for human erythrocyte membrane protein band 7.2 (EPB72) maps to 9q33-q34 centromeric to the Philadelphia chromosome translocation breakpoint region. Genomics 18, 167–169, 1993.CrossRefGoogle Scholar
  41. 41.
    Otsu, K., Fujii, J., Periasamy, M., Difilippantonio, M., Uppender, M., Ward, D. C., and MacLennan, D. H. Chromosome mapping of five human cardiac and skeletal muscle sarcoplasmic reticulum protein genes. Genomics 17, 507–509, 1993.CrossRefGoogle Scholar
  42. 42.
    Upender, M., Gallagher, P. G., Moon, R. T., Ward, D. C., and Forget, B. G. Localization of the human alpha-fodrin gene (SPTAN1) to 9q33→q34 by fluorescence in situ hybridization. Cytogenet. Cell Genet. 66, 39–41, 1994.CrossRefGoogle Scholar
  43. 43.
    Chowdhary, B., Raudsepp, T., Fronicke, L., and Scherthan, H. Emerging patterns of comparative genome organization in some mammalian species as revealed by Zoo-FISH. Genome Res. 8, 577–589, 1998.Google Scholar
  44. 44.
    Fronicke, L., and Scherthan, H. (1997). Zoo-fluorescence in situ hybridization analysis of human and Indian muntjac karyotypes (Muntiacus muntjak vaginalis) reveals satellite DNA clusters at the margins of conserved syntenic segments. Chromosome Res. 5, 254–261, 1997.Google Scholar
  45. 45.
    O’Brien, S., Cevario, S., Martenson, J., Thompson, M., Nash, W., Chang, E., Graves, J., Spencer, J., Tsujimoto, H., and Lyons, L. Comparative gene mapping in the domestic cat (Felis catus). J. Hered. 88, 408–414, 1997.Google Scholar
  46. 46.
    Raudsepp, T., Fronicke, L., Scherthan, H., Gustavsson, I., and Chowdhary, B. Zoo-FISH delineates conserved chromosomal segments in horse and man. Chromosome Res. 4, 218–225, 1996.CrossRefGoogle Scholar
  47. 47.
    Wienberg, J., Stanyon, R., Jauch, A., and Cremer, T. Homologies in human and Macaca fuscata chromosomes revealed byinsitu suppression hybridization with human chromosome specific DNA libraries. Chromosoma 101, 265–270, 1992.CrossRefGoogle Scholar
  48. 48.
    Giordano, S. J., Yoo, M., Ward, D. C., Bhatt, M., Overhauser, J., and Steggles, A. W. The human cytochrome b5 gene and two of its pseudogenes are located on chromosomes 18q23, 14q31–32.1 and 20p11.2, respectively. Hum. Genet. 92, 615–618, 1993.CrossRefGoogle Scholar
  49. 49.
    Hilwig, I., and Gropp, A. Staining of constitutive heterochromatin in mammalian chromosomes with a new fluorochrome. Exp. Cell Res. 75, 122–126, 1972.CrossRefGoogle Scholar
  50. 50.
    Bobrow, M., and Cross, J. Differential staining of human and mouse chromosomes in interspecific cell hybrids. Nature (Lond.) 251, 77–79, 1974.CrossRefGoogle Scholar
  51. 51.
    Kozak, C. A., Lawrence, J. B., and Ruddle, F. H. A sequential stainiing technique for the chromosomal analysis of interspecific mouse/hamster somatic cell lines. Exp. Cell Res. 105, 109–117, 1977.CrossRefGoogle Scholar
  52. 52.
    Schardin, M., Cremer, T., Hager, H. D., and Lang, M. Specific staining of human chromosomes in Chinese hamsters×man hybrid cell lines demonstrates interphase chromosome territories. Hum. Genet. 71, 281–287, 1985.CrossRefGoogle Scholar
  53. 53.
    Manuelidis, L. Individual interphase chromosome domains revealed by in situ hybridization. Hum. Genet. 71, 288–293, 1985.CrossRefGoogle Scholar
  54. 54.
    Durnam, D. M., Gelinas, R. E., and Myerson, D. Detection of species specific chromosomes in somatic cell hybrids. Somat. Cell Mol. Genet. 11, 571–577, 1985.CrossRefGoogle Scholar
  55. 55.
    Boyle, A., Lichter, P., and Ward, D. C. Rapid analysis of mouse-hamster hybrid cell lines by in situ hybridization. Genomics 7, 127–130, 1990.CrossRefGoogle Scholar
  56. 56.
    Doucette-Stamm, L. A., Riba, L., Handelin, B., Difilippantonio, M., Ward, D. C., Wasmuth, J. J., Gusella, J. R, and Housman, D. E. Generation and characterization of irradiation hybrids of human chromosome 4. Somat. Cell Molec. Genet. 17, 471–480, 1991.Google Scholar
  57. 57.
    Lichter, P., Ledbetter, S. A., Ledbetter, D. H., and Ward, D. C. Fluorescence in situ hybridization with Alu and L1 polymerase chain reaction probes for rapid characterization of human chromosomes in hybrid cell lines. Proc. Natl. Acad. Sci. USA 87, 6634–6638, 1990.Google Scholar
  58. 58.
    Nelson, D. L., Ledbetter, S. A., Corbo, L., Victoria, M. F., Ramirez-Solis, R., Webster, T., Ledbetter, D. H., and Caskey, C. T. Alu polymerase chain reaction: A method for rapid isolation of human-specific sequences from complex DNA sources. Proc. Natl. Acad. Sci. USA 86, 6686–6690, 1989.Google Scholar
  59. 59.
    Sachs, E. S., Van Hemel, J. O., Den Hollander, J. C., and Jahoda, M. G. Marker chromosomes in a series of 10,000 prenatal diagnoses. Cytogenetic and follow-up studies. Prenatal Diagn. 7, 81–89, 1987.Google Scholar
  60. 60.
    Warburton, D. De novo balanced chromosome rearrangements and extra marker chromosomes identified at prenatal diagnosis: Clinical significance and distribution of breakpoints. Am. J. Hum. Genet. 49, 995–1013, 1991.Google Scholar
  61. 61.
    Blennow, E., Nielson, K. B., Telenius, H., Carter, N. P., Kristoffersson, U., Holmberg, E., Gillberg, C., and Nordenskjøld, M. Fifty probands with extra structurally abnormal chromosomes characterized by fluorescence in situ hybridization. Am. J. Med. Genet. 55, 85–94, 1995.CrossRefGoogle Scholar
  62. 62.
    Heim, S., and Mitelman, F. Cancer Cytogenetics. New York: Wiley-Liss, 1995.Google Scholar
  63. 63.
    Ried, T., Heselmeyer-Haddad, K., Blegen, H., Schrock, E., Auer, G. Genomic changes defining the genesis, progression, and malignancy potential in solid human tumors: A phenotype/genotype correlation. Genes Chromosomes Cancer 25, 195–204, 1999.CrossRefGoogle Scholar
  64. 64.
    Carter, N. P. Cytogenetic analysis bychromosome painting. Cytometry 18, 2–10, 1994.CrossRefGoogle Scholar
  65. 65.
    Speicher, M. R., Gwyn Ballard, S., Ward, D. C. Karyotyping human chromosomes by combinatorial multi-floor FISH. Nat. Genet. 12, 368–375, 1996.CrossRefGoogle Scholar
  66. 66.
    Schröck, E., du Manoir, S., Veldman, T., Schoell, B., Wienberg, J., Ferguson-Smith, M. A., Ning, Y., Ledbetter, D. H., Bar-Am, I., Soenksen, D., Garini, Y, and Ried, T. Multicolor spectral karyotyping of human chromosomes. Science 273, 494–497, 1996.Google Scholar
  67. 67.
    Macville, M., Veldman, T., Padilla-Nash, H., Wangsa, D., O’Brien, P., Schröck, E., and Ried, T. Spectral karyotyping, a 24-colour FISH technique for the identification of chromosomal rearrangements. Histochem. Cell Biol. 108, 299–305, 1997.CrossRefGoogle Scholar
  68. 68.
    Liyanage, M., Coleman, A., du Manoir, S., Veldman, T., McCormack, S., Dickson, R. B., Barlow, C., Wynshaw-Boris, A., Janz, S., Wienberg, J., Ferguson-Smith, M. A., Schrock, E., and Ried, T. Multicolour spectral karyotyping of mouse chromosomes. Nature Genet. 14, 312–315, 1996.CrossRefGoogle Scholar
  69. 69.
    Ried, T., Arnold, N., Ward, D.C.,and Wienberg, J. Comparative high-resolution mapping of human and primate chromosomes by fluorescence in situ hybridization. Genomics 18, 381–386, 1993.CrossRefGoogle Scholar
  70. 70.
    Wienberg, J., Jauch, A., Stanyon, R., and Cremer, T. Molecular cytotaxonomy of primates by chromosomal in situ suppression hybridization. Genomics 8, 347–370, 1990.CrossRefGoogle Scholar
  71. 71.
    Nash, W. G., Menninger, J. C., Wienberg, J., Padilla-Nash, H. M., O’Brien, S. J. The pattern of phylogenomic evolution of the Canidae. Cytogenet. Cell Genet. 95, 210–224, 2001.CrossRefGoogle Scholar
  72. 72.
    Koehler, U., Arnold, N., Wienberg, J., Tofanelli, S., and Stanyon, R. Genomic reorganization and disrupted synteny in the Siamang (Hylobates syndactylus) revelaed by flujorescence in situ hybridization. Am. J. Phys. Anthropol. 97, 37–47, 1995.Google Scholar
  73. 73.
    Koehler, U., Bigoni, F., Wienberg, J., and Stanyon, R. Genomic reorganization in the concolor gibbon (Hylobates concolor) revealedby chromosome painting. Genomics 30, 287–292, 1995.CrossRefGoogle Scholar
  74. 74.
    Müller, S., O’Brien, P. C. M., Ferguson-Smith, M. A., and Wienberg, J. Reciprocal chromosome painting reveals homologies between human and prosimian (Eulemur macaco macaco and Eulemur fulvis mayottensis) karyotypes. Cytogenet. Cell Genet. 78, 260–271, 1997.Google Scholar
  75. 75.
    de Grouchy, J., Truleau, C., Roubin, M., and Klein, M. Evolution caryotypique de ľhomme et du chimpanzé; Étude comparative des topographies de bandes après dénaturation ménagée. Ann. Genet. (Paris) 15, 79–84, 1972.Google Scholar
  76. 76.
    Jauch, A., Wienberg, J., Stanyon, R., Arnold, N., Tofanelli, S., Ishida, T., and Cremer, T. Reconstruction of genomic rearrangements in great apes and gibbons by chromosome painting. Proc. Natl. Acad. Sci.USA 89, 8611–8615, 1992.Google Scholar
  77. 77.
    Yang, F., Carter, N. P., Shi, L., and Ferguson-Smith, M. A. A comparative study of the karyotype of the muntjacs by chromosome painting. Chromosoma 103, 642–652, 1995.Google Scholar
  78. 78.
    Yang, F., O’Brien, P., Wienberg, J., Neitzel, H., Lin, C. C., and Ferguson-Smith, M. A. (1997). Chromosomal evolution of the Chinese muntjac (Muntiacus reevesi). Chromosoma 106, 37–43, 1997.CrossRefGoogle Scholar
  79. 79.
    Yang, F., O’Brien, P. C. M., Wienberg, J., and Ferguson-Smith, M. A. A reappraisal of the tandem fusion theory of karyotype evolution in the Indian muntjac using chromosome painting. Chromosome Res. 5, 109–117, 1997.CrossRefGoogle Scholar
  80. 80.
    Kallioniemi, A., Kallioniemi, O.-P., Sudar, D., Rutovitz, D., Gray, J. W., Waldman, E, and Pinkel, D. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258, 818–821, 1992.Google Scholar
  81. 81.
    Ried, T., Liyanage, M., du Manoir, S., Heselmeyer, K., Auer, G., Macville, M., and Schröck, E. Tumor cytogenetics revisited: comparative genomic hybridization and spectral karyotyping. J. Molec. Med. 75, 801–814, 1997.Google Scholar
  82. 82.
    Forozan, F., Karhu, R., Kononen, J., Kallioniemi, A., and Kallioniemi, O. P. Genome screening by comparative genomic hybridization. Trends Genet. 13, 405–409, 1997.CrossRefGoogle Scholar
  83. 83.
    Zitzelsberger, H., Lehmann, L., Werner, M., and Bauchinger, M. Comparative genomic hybridization for the analysis of chromosomal imbalances in solid tumors and haematological malignancies. Histochem. Cell Biol. 108, 403–417, 1997.CrossRefGoogle Scholar
  84. 84.
    Veldman, T., Vignon, C., Schröck, E., Rowley, J. D., and Ried, T. Hidden chromosomes: Abnormalities in hematological malignancies detected by multicolour spectral karyotyping. Natire Genet. 15, 406–410, 1997.Google Scholar
  85. 85.
    Coleman, A. E., Schrock, E., Weaver, Z., du Manoir, S., Yang, F., Ferguson-Smith, M. A., Ried, T, and Janz, S. Previously hidden chromosome aberrations in T(12;15)-positive BALB/c plasmacytomas uncovered by multicolor spectral karyotyping. Cancer Res. 57, 4585–4592, 1997.Google Scholar
  86. 86.
    Difilippantonio, M. J., Zhu, J., Chen, H. T., Meffre, E., Nussenzweig, M. C., Max, E. E., Ried, T., and Nussenzweig, A. DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature 404, 510–514, 2000.CrossRefGoogle Scholar
  87. 87.
    Liyanage, M., Weaver, Z., Barlow, C., Coleman, A., Pankratz, D. G., Anderson, S., Wynshaw-Boris, A., and Ried, T. Abnormal rearrangement within the alpha/delta T-cell receptor locus in lymphomas from Atm-deficient mice. Blood 96, 1940–1946, 2000.Google Scholar
  88. 88.
    Weaver, Z. A., McCormack, S. J., Liyanage, M., du Manoir, S., Coleman, A., Schrock, E., Dickson, R. B., and Ried, T. A recurring pattern of chromosomal aberrations in mammary gland tumors of MMTV-cmyc transgenic mice. Genes Chromosomes Cancer 25, 251–260, 1999.CrossRefGoogle Scholar
  89. 89.
    Xu, X., Weaver, Z., Linke, S. P., Li, C., Gotay, J., Wang, X. W., Harris, C. C., Ried, T, and Deng, C. X. Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol. Cell 3, 389–395, 1999.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Michael J. Difilippantonio
    • 1
  • Thomas Ried
    • 1
  1. 1.Center for Cancer Reserach, National Cancer InstituteNational Institutes of HealthBethesda

Personalised recommendations